進階搜尋


下載電子全文  
系統識別號 U0026-1707201722315600
論文名稱(中文) 氧化鋅與氧化鎢奈米結構之綠能氣體感測器研究
論文名稱(英文) Study of ZnO and WO3 nanostructure green energy gas sensor
校院名稱 成功大學
系所名稱(中) 微電子工程研究所
系所名稱(英) Institute of Microelectronics
學年度 105
學期 2
出版年 106
研究生(中文) 林志鴻
研究生(英文) Chih-Hung Lin
學號 q18021048
學位類別 博士
語文別 英文
論文頁數 97頁
口試委員 召集委員-蘇炎坤
口試委員-武東星
口試委員-黃柏仁
口試委員-郭浩中
口試委員-張鼎張
口試委員-邱裕中
口試委員-許正良
口試委員-薛丁仁
指導教授-張守進
中文關鍵字 綠能氣體感測器  氧化鋅  氧化鎢  微機電技術 
英文關鍵字 Green Energy  Gas Sensor  ZnO  WO3  MEMS Technology 
學科別分類
中文摘要   本論文研究中,我們採用氣相傳輸沉積法(Vapor Phase Transport Deposition , VPTD)成長氧化鋅奈米線,並成功將其應用於多晶矽太陽能電池和塑膠基板上方並以光強化氣體感測器響應之能力,其後續採用矽穿孔(TSV)技術製造多功能的感測器元件以達降低功耗損失。最終,將採用熱燈絲化學沉積法(HWCVD)成長氧化鎢奈米顆粒並成功利用微機電系統技術整合成微小化、低功耗之氣體感測器元件。
  首先,製作氧化鋅奈米線應用在酒精氣體感測及紫外光(UV)檢測結合於多晶矽太陽能電池,對於UV光檢測的結果,當UV光源開啟時,光電流的響應時間為137秒,隨著光源的關閉光電流從3×10-6降低至1.2×10-7安培。對於酒精感測器功能而言,當光源的照射下(53℃)時,酒精濃度從50 ppm提升到150 ppm時,感測器的響應從8%成長到21%。量測的結果說明,於多晶矽太陽能電池上研製酒精氣體感測器及UV光檢測器且不影響太陽能電池所產生的轉換效率。
  另一方面,於塑膠基板上研製低溫的酒精氣體感測器,採用紫外光照射的方式降低其操作溫度可達室溫;實驗結果證明,低溫下的量測於60℃時響應程度最佳,並證明此元件可易於整合至可攜帶式產品上,同時藉由太陽光源之輻射所帶來的廢熱可進一步提升氣體感測器響應且達節能之效果。
  相同的氧化鋅奈米結構中,環境感測器以三維矽穿孔技術研製,其矽穿孔的直徑與長度分別為200和400微米,對於氮氧化物的量測濃度從20、40及60 ppm時,其響應約為12%、16%及20%;作為濕度及溫度感測器而言,氧化鋅奈米線電流隨著溫度增加而呈現對數增加,相對濕度的響應也隨著溫度的增加呈現增加的情形。
  最終,我們以熱燈絲化學氣相沉積氧化鎢奈米顆粒作為氣體感測器,實驗結果言明,隨著量測溫度的升高其感測器的靈敏值降低,最佳的退火參數為400℃所製備的氧化鎢奈米顆粒有著最大的響應程度;隨著微加熱器操作為150℃時,分別注入100、150、200、 250、300及350 ppb濃度時,響應程度分別約有3.22、3.91、5.02、11.68及15.93等。
英文摘要   In this dissertation, we use Vapor Phase Transport Deposition (VPTD) to produce ZnO nanowires, successfully of the applied poly silicon solar cells and plastice substrates and used sunlight enhancement the response of gas sensor. The Through-Silicon Via (TSV) technology to produce a multi-functional sensor achieve the low power consumption. Ultimately, we used the hot wire chemical vapor deposition (HWCVD) method to produce WO3 nanoparticles, and successfully use MEMS technology to fabricate a device integration the microminiaturization and low power consumption.
  First, a transparent ZnO nanowire (NW)-based device for ethanol gas sensing and UV detection was fabricated and deposited on to an indium tin oxide/crystalline silicon (c-Si) solar cell. For UV detection, the photocurrent increased rapidly with a time constant of about 137 s when UV excitation was applied. The photo- current decreased from 3×10-6 to 1.2×10-7 A when the UV light was switched off. For ethanol gas sensing, UV light was used to increase the quantity of O2− species. The ZnO sensor response increased from 8% to 21% when the ethanol gas concentration was increased from 50 to 150 ppm at 53℃ (with the heat generated by the c-Si solar cell). The sensor response was approximately zero without solar illumination. The sensor had almost no effect on the transfer efficiency of the solar cell.
  A low-temperature ZnO nanowire ethanol gas sensor was also prepared on plastic substrate. The operating temperature of the ZnO nanowire ethanol gas sensor was reduced to room temperature using UV illumination. The experimental results indicate a favorable sensor response at low temperature, with the best response at 60℃. The results also reveal that the ZnO nanowire ethanol gas sensor can be easily integrated into portable products, whose waste heat can improve the sensor’s response and achieve energy savings, while energy consumption can be further reduced by solar irradiation.
  ZnO nanostructure environmental sensors were prepared via the three-dimensional through silicon via (3D-TSV) technique. For 3D-TSV, the diameter and length of the Si via were about 200 and 400 μm, respectively. For nitrogen oxide (NO), the measured responses were around ~12, ~16, and ~20% when the concentrations of the injected NO gas were 20, 40 and 60 ppm, respectively. For humidity and temperature sensing, the measured nanowire current increased logarithmically with increasing chamber temperature. The response to relative humidity also increased with increasing temperature.
  Finally, a WO3 nanoparticle gas sensor was fabricated using an ICP-assisted hot wire system. The results of experiments indicated that the sensitivity became smaller when the measured temperature increased. It was also found that the WO3 nanoparticle gas sensor prepared at an annealing temperature of 400℃ had the greatest sensitivity. The measured sensitivity for a micro-electro-mechanical system (MEMS) type WO3 nanoparticle gas sensor was found to be around 3.22, 3.91, 5.02, 7.52, 11.68, and 15.93 when the operating temperature of the micro-heater was 150 °C and the concentration of injected NO gas was 100, 150, 200, 250, 300 and 350 ppb, respectively.
論文目次 摘要..........II
Abstract..........IV
Figure Captions..........IX
Chapter 1. Introduction..........1
1-1. Background and Motivation..........1
1-2. Overviews of Nnomaterials and Application for Sensors ..........2
1-4. Organization of Dissertation..........4
Chapter 2. Experimental Equipment and Relevant Theory..........9
2-1. Growth of Nanowires by Vapor Phase Transport..........9
2-2. Theory concerning gas sensor based on ZnO nanowires ..........13
2-3. Theory concerning humidity sensor based on ZnO nanowires..........14
2-4. Experimental Details and Equipments used for the Analysis..........15
Chapter 3. Transparent ZnO-nanowire-based device for UV light detection and ethanol gas sensing on c-Si solar cell ..........26
3-1. Introduction..........26
3-2. Preparation of ZnO Nanowire-based Gas Sensor and UV Detector..........27
3-3. Results and Discussion..........28
3-4. Summary..........31
Chapter 4. A low-temperature ZnO nanowire ethanol gas sensor prepared on plastic substrate..........37
4-1. Introduction..........37
4-2. Preparation of the ZnO nanowire-based device on Plastic Substrate..........38
4-3. Results and Discussion..........39
4-4. Summary..........44
Chapter 5. Three-Dimensional ZnO Nanostructure Based Gas and Humidity Sensors..........50
5-1. Introduction..........50
5-2. Preparation of Three-Dimensional ZnO Nanostructure Based Gas and Humidity Sensors..........51
5-3. Results and Discussion..........53
5-4. Summary..........55
Chapter 6. A WO3 nanoparticles NO gas sensor prepared by Hot-wire CVD..........61
6-1. Introduction..........61
6-2. Preparation of WO3 Nanoparticles NO Gas Sensor..........62
6-3. Results and Discussion..........63
6-4. Summary..........66
Reference..........71
Chpater 7. Conclusion..........95
publication list 97
參考文獻 [1]. Anoymous, “'Plenty of room' revisited,” Nature Nanotechnology., vol. 4, no. 12, pp.781-781, Dec. 2009. doi: 10.1038/nnano.2009.356
[2]. H. Launois, “Introduction: Micro and nanotechnologies,” Applied Surface Science., vol. 164, pp. 1-1, Sep. 2000. doi: 10.1016/S0169-4332(00)00324-X
[3]. Noy, “Bionanoelectronics,” Advanced Materials., vol. 23, no. 7, pp.807-820, Feb. 2011. doi: 10.1002/adma.201003751
[4]. R. Liu, J. Duay, and S. B. Lee, “Heterogeneous nanostructured electrode materials for electrochemical energy storage,” Chemical Communications., vol. 47, no. 5, pp. 1384-1404, 2011. doi: 10.1039/c0cc03158e
[5]. C. Klingshirn, J. Fallery, O. Gogolin, M. Wissinger, R. Hauschild, M. Hauser, H. Kalt, and H. Zhou, Linear and nonlinear optics, dynamics, and lasing in ZnO bulk and nanostructures,” Journal of Luminescence., vol. 128, no. 5-6, pp. 792-796, May. 2008. doi: 10.1016/j.jlumin.2007.11.010
[6]. X. D. Wang, C. J. Summers, and Z .L. Wang, “Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays,” Nano Letters., vol. 4, no. 3, pp. 423-426, Mar. 2004. doi: 10.1021/nl035102c
[7]. C. S. Rout, S. H. Krishna, S. R. C. Vivekchand, A. Govindaraj, and C. N. R. Rao, “Hydrogen and ethanol sensors based on ZnO nanorods, nanowires and nanotubes,” Chemical Physics Letters., vol. 418, no. 4-6, pp. 586-590, Feb. 2006. doi: 10.1016/j.cplett.2005.11.040
[8]. T. Shibata, K. Unno, E. Makino, Y. Ito, and S. Shimada, “Characterization of sputtered ZnO thin film as sensor and actuator for diamond AFM probe,” Sensors and Actuators A-Physical., vol. 102, no. 1-2, pp. 106-113, Dec. 2002. doi: 10.1016/S0924-4247(02)00339-4
[9]. H. wang, D. Wingett, M. H. Engelhard, K. Feris, K. M. Reddy, P. Turner, J. Layne, C. Hanley, J. Bell, D. Tenne, C. Wang, and A. Punnoose, “Fluorescent dye encapsulated ZnO particles with cell-specific toxicity for potential use in biomedical applications,”Journal of Materials Science-Materials in Medicine., vol. 20, no. 1, pp. 11-22, Jan. 2009. doi: 10.1007/s10856-008-3541-z
[10]. T. P. Chou, Q. F. Zhang, G. E. Fryxell, and G. Z. Cao, “Hierarchically structured ZnO film for dye-sensitized solar cells with enhanced energy conversion efficiency,” Advanced Materials., vol. 19, no. 18, pp. 2588-+, Sep. 2007. doi: 10.1002/adma.200602927
[11]. F. Pan, C. Song, X. J. Liu, Y. C. Yang, and F. Zeng, “Ferromagnetism and possible application in spintronics of transition-metal-doped ZnO films,” Materials Science and Engineering R-Reports., vol. 62, no. 1, pp. 1-35, Jun. 2008. doi: 10.1016/j.mser.2008.04.002
[12]. B. S. Sang, and M. Konagai, “Growth of transparent conductive oxide ZnO films by atomic layer deposition,” Japanese Journal of Applied Physics Part 2-Letters., vol. 35, no. 5B, pp. L602-L605, May. 1996. doi: 10.1143/JJAP.35.L602
[13]. K. Maruyama, S. Endo, G. Sasaki, K. Kamata, J. Nishino, and K. Kuchitsu, “Formation of ZnO Films by CO2-Laser Ablation at Atmospheric-Pressure,” Journal of Materials Science Letters., vol. 11, no. 23, pp. 1588-1589, Dec. 1992. doi: 10.1007/BF00740841
[14]. A. Kolodzoejczak-Radzimska, and T. Jesionowski, “Zinc Oxide-From Synthesis to Application: A Review,” Matreials., vol. 7, no. 4, Apr. 2014. doi: 10.3390/ma7042833
[15]. K. Govender, D. S. Boyle, P. B. Kenway, and P. Q’Brien, “Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution,” Journal of Matreials Chemistry., vol. 14, no. 16, pp. 2575-2591, 2004. doi: 10.1039/b404784b
[16]. Y. W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D. P. Norton, F. Ren, and P. H. Fleming, “Site-specific growth of Zno nanorods using catalysis-driven molecular-beam epitaxy,” Applied Physics Letters., vol. 81, no. 16, pp. 3046-3048, Oct. 2002. doi: 10.1063/1.1512829
[17]. S. Muthukumar, H. F. Sheng, J. Zhong, Z. Zhang, N. W. Emanetoglu, and Y. C. Lu, “Selective MOCVD growth of ZnO nanotips,” IEEE Transactions on Nanotechnology., vol. 2, no. 1, pp. 50-54, Mar. 2003. doi: 10.1109/TNANO.2003.809120
[18]. G. S. Wu, T. Xie, X. Y. Yuan, Y. Li, L. Yang, Y. H. Xiao, and L. D. Zhang, “Controlled synthesis of ZnO nanowires or nanotubes via sol-gel template process,” Solid State Communications., vol. 134, no. 7, pp. 485-489, Mar. 2005. doi: 10.1016/j.ssc.2005.02.015
[19]. Q. X. Zhao, P. Klason, and M. Willander, “Growth of ZnO nanostructures by vapor-liquid-solid method,” Applied Physics A-Materials Science and Processing., vol. 88, no. 1, pp. 27-30, Jul. 2007. doi: 10.1007/s00339-007-3958-0
[20]. P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes, “Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering,” Applied Physics Letters., vol. 82, no. 7, pp. 1117-1119, Feb. 2003. doi: 10.1063/1.1553997
[21]. Z. L. Wang, “ZnO nanowire and nanobelt platform for nanotechnology,” Materials Science and Engineering R-Reports., vol. 64, no. 3-4, pp. 33-71, Apr. 2009. doi: 10.1016/j.mser.2009.02.001
[22]. E. Salje, and K. Viswanathan, “Physical-Properties and Phase-Transitions in WO3,” Acta Crystallographica Section A., vol. A31, no. May1, pp. 356-359, 1975. doi: 10.1107/S0567739475000745
[23]. L. F. Zhu, J. C. She, J. Y. Luo, S. Z. Deng, J. Chen, and N. S. Xu, “Study of Physical and Chemical Processes of H2 Sensing of Pt-Coated WO3 Nanowire Films,” Journal of Physical Chemistry C., vol. 114, no. 36, pp. 11504-11509, Sep. 2010. doi: 10.1021/jp106460w
[24]. H. D. Zheng, Y. Tachibana, and K. Kalantar-zadeh, “Dye-Sensitized Solar Cells Based on WO3,” Langmuir., vol. 26, no. 24, pp. 19148-19152, Dec. 2010. doi: 10.1021/la103692y
[25]. K. Hara, Z. G. Zhao, Y. Cui, M. Miyauchi, M. Miyashita, and S. Mori, “Nanocrystalline Electrodes Based on Nanoporous-Walled WO3 Nanotubes for Organic-Dye-Sensitized Solar Cells,” Langmuir., vol. 27, no. 20, pp. 12730-12736, Oct. 2011. doi: 10.1021/la201639f
[26]. S. Adhikari, and D. Sarkar, “Hydrothermal synthesis and electrochromism of WO3 nanocuboids,” Rsc Advances., vol. 4, no. 39, pp. 20145-20153, 2014. doi: 10.1039/c4ra00023d
[27]. X. Q. An, J. C. Yu, Y. Wang, Y. M. Hu, X. L. Yu, and G. J. Zhang, “WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing,” Journal of Materials Chemistry., vol. 22, no. 17, pp. 8525-8531, 2012. doi: 10.1039/c2jm16709c
[28]. Y. Li, P. C. Hsu, S. M. Chen, “Multi-functionalized biosensor at WO3-TiO2 modified electrode for photoelectrocatalysis of norepinephrine and riboflavin,” Sensors and Actuators B-Chemical., vol. 174, pp. 427-435, Nov. 2012. doi: 10.1016/j.snb.2012.06.061
[29]. Y. Zhou, W. M. Liu, X. C. Hu, Y. Q. Chu, and C. A. Ma, “Nano-WO3 Composite Materials as Electro-Catalyst for Methanol Oxidation,” Acta Physico Chimica Sinica., vol. 29, no. 7, pp. 1487-1493, Jul. 2013. doi: 10.3866/PKU.WHXB201304121
[30]. C. S. Wu, “Hydrothermal Fabrication of WO3 Hierarchical Architectures: Structure, Growth and Response,” Nanomaterials., vol. 5, no. 3, pp. 1250-1255, Sep. 2015. doi: 10.3390/nano5031250
[31]. G. Leftheriotis, M. Liveri, M. Galanopoulou, I. D. Manariotis, and P. Yianoulis, “A simple method for the fabrication of WO3 films with electrochromic and photocatalytic properties,” Thin Solid Films., vol. 573, pp. 6-13, Dec. 2014. doi: 10.1016/j.tsf.2014.10.087
[32]. C. W. Lai, and S. Sreekantan, “Fabrication of WO3 nanostructures by anodization method for visible-light driven water splitting and photodegradation of methyl orange,” Materials Science in Semiconductor Processing., vol. 16, no. 2, pp. 303-310, Apr. 2013. doi: 10.1016/j.mssp.2012.10.002
[33]. M. Bekri, N. M. Shaalan, and A. S. Ahmed, “Thermal Evaporated WO3 Nanoparticles Film Under Different Evaporation Pressures for NO2 Sensing,” Digest Journal of Nanomaterials and Biostructures., vol. 10, no. 2, pp. 603-613, Apr-Jun. 2015.
[34]. A. Ghatak, S. R. Moulik, and B. Ghosh, “Pulsed laser assisted growth of aligned nanowires of WO3: role of interface with substrate,” Rsc Advances., vol. 6, no. 38, pp. 31705-31716, 2016. doi: 10.1039/c5ra27542c
[35]. Z. S. Houweling, J. W. Geus, and R. E. I. Schropp, “Synthesis of WO3 Nanogranular Thin Films by Hot-Wire CVD,” Rsc Advances., vol. 16, no. 4-6, pp. 179-184, Jun. 2010. doi: 10.1002/cvde.200906838
[36]. S. Pokhrel, J. Birkenstock, A. Dianat, J. Zimmermann, M. Schowalter, A. Rosenaure, L. C. Ciacchi, and L. Madler, “In situ high temperature X-ray diffraction, transmission electron microscopy and theoretical modeling for the formation of WO3 crystallites,” Crystengcomm., vol. 17, no. 36, pp. 6985-6998, 2010. doi: 10.1039/c5ce00526d
[37]. M. J. Bierman, Y. K. A. Lau, A. V. Kvit, A. L. Schmitt, and S. Jin, “Dislocation-driven nanowire growth and Eshelby twist,” Science., vol. 320, no. 5879, pp. 1060-1063, May. 2008. doi: 10.1126/science.1157131
[38]. X. F. Duan, and C. M. Lieber, “General synthesis of compound semiconductor nanowires,” Advanced Materials., vol. 12, no. 4, pp. 298-302, Feb. 2000. doi: 10.1002/(SICI)1521-4095(200002)12:4<298::AID-ADMA298>3.0.CO;2-Y
[39]. Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and Y. Q. Yan, “One-dimensional nanostructures: Synthesis, characterization, and applications,” Advanced Materials., vol. 15, no. 5, pp. 353-389, Mar. 2003. doi: 10.1002/adma.200390087
[40]. R. S. Wagner, and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth (New Method Growth Catalysis form Impurity Whisker Epitaxial + Large Crystals Si E),” Applied Physics Letters., vol. 4, no. 5, pp. 89-&, 1964. doi: 10.1063/1.1753975
[41]. C. M. Lieber, “Nanoscale science and technology: Building a big future from small things,” Mrs Bulletin., vol. 28, no. 7, pp. 486-491, Jul. 2003. doi: 10.1557/mrs2003.144
[42]. S. Z. Li, X. Huang, Q. Liu, X. H. Cao, F. W. Huo, H. Zhang, and C. L. Gan, “Vapor-Liquid-Solid Growth of Endotaxial Semiconductor Nanowires,” Nano Letters., vol. 12, no. 11, pp. 5565-5570, Nov. 2012. doi: 10.1021/nl3025196
[43]. Y. Y. Wu, and P. D. Yang, “Direct observation of vapor-liquid-solid nanowire growth,” Journal of the American Chemical Society., vol. 123, no. 13, pp. 3165-3166, Apr. 2001. doi: 10.1021/ja0059084
[44]. M. H. Huang, Y. Y. Wu, H. Feick, N. Tran, E. Weber, and P. D. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Advanced Materials., vol. 13, no. 2, pp. 113-116, Jan. 2001. doi: 10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H
[45]. A. M. Morales, and C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science., vol. 279, no. 5348, pp. 208-211, Jan. 1998. doi: 10.1126/science.279.5348.208
[46]. Y. F. Zhang, Y. H. Tang, N. Wang, D. P. Yu, C. S. Lee, I. Bello, and S. T. Lee, “Silicon nanowires prepared by laser ablation at high temperature,” Applied Physics Letters., vol. 72, no. 15, pp. 1835-1837, Apr. 1998. doi: 10.1063/1.121199
[47]. N. Wang, Y. H. Tang, C. S. Lee, and S. T. Lee, “Nucleation and growth of Si nanowires from silicon oxide,” Physical Review B., vol. 58, no. 24, pp. 16021-16026, Dec. 1998.
[48]. S. T. Lee, Y. F. Zhang, N. Wang, Y. H. Tang, I. Bello, C. S. Lee, and Y. W. Chung, “Semiconductor nanowires from oxides,” Journal of Materials Research., vol. 14, no. 12, pp. 4503-4507, Dec. 1999.
[49]. S. T. Lee, N. Wang, Y. F. Zhang, and Y. H. Tang, “Oxide-assisted semiconductor nanowire growth,” Mrs Bulletin., vol. 24, no. 8, pp. 36-42, Aug. 1999.
[50]. X. T. Zhou, N. Wang, F. C. K. Au, H. L. Lai, H. Y. Peng, I. Bello, C. S. Lee, and S. T. Lee, “Growth and emission properties of beta-SiC nanorods,” Materials Science and Engineering A-Structural Materials Properties Microstructure and processing., vol. 286, no. 1, pp. 119-124, Jun. 2000. doi: 10.1016/S0921-5093(00)00654-7
[51]. R. Q. Zhang, Y. Lifshitz, and S. T. Lee, “Oxide-assisted growth of semiconducting nanowires,” Advanced Materials., vol. 15, no. 7-8, pp. 635-640, Apr. 2003. doi: 10.1002/adma.200301641
[52]. N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, “Si nanowires grown from silicon oxide,” Chemical Physics Letters., vol. 299, no. 2, pp. 237-242, Jan. 1999. doi: 10.1016/S0009-2614(98)01228-7
[53]. Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and Y. Q. Yan, “One-dimensional nanostructures: Synthesis, characterization, and applications,” Advanced Materials., vol. 15, no. 5, pp. 353-389, Mar. 2003. doi: 10.1002/adma.200390087
[54]. G. W. Sears, “A Mechanism of Whisker Growth,” Acta Metallurgica., vol. 3, no. 4, pp. 367-369, 1955. doi: 10.1016/0001-6160(55)90042-0
[55]. G. W. Sears, “A Growth Mechanism for Whisker Mercury,” Acta Metallurgica., vol. 3, no. 4, pp. 361-366, 1955. doi: 10.1016/0001-6160(55)90041-9
[56]. E. G. Wolff, and T. D. Coskren, “Growth and Morphology of Magnesium oxide Whiskers,” Journal of the American Ceramic Society., vol. 48, no. 6, pp. 279-+, 1965. doi: 10.1111/j.1151-2916.1965.tb14741.x
[57]. Y. J. Hsu, and S. Y. Lu, “Vapor-solid growth of Sn nanowires: Growth mechanism and superconductivity,” Journal of Physical Chemistry B., vol. 109, no. 10, pp. 4398-4403, Mar. 2005. doi: 10.1021/jp046354k
[58]. A. Umar, S. H. Kim, K. S. Nahm, and Y. B. Hahn, “Catalyst-free large-quantity synthesis of ZnO nanorods by a vapor-solid growth mechanism: Structural and optical properties,” Journal of Crystal Growth., vol. 282, no. 1-2, pp. 131-136, Aug. 2005. doi: 10.1016/j.jcrysgro.2005.04.095
[59]. A. Umar, Y. H. Lm, and Y. B. Hahn, “Evolution of ZnO nanostructures on silicon substrate by vapor-solid mechanism: Structural and optical properties,” Journal of Electronic Materials., vol. 35, no. 4, pp. 758-765, Apr. 2006. doi: 10.1007/s11664-006-0135-8
[60]. X. L. Zhao, T. Shaymurat, T. F. Pei, L. Bai, B. Cai, Y. H. Tong, Q. X. Tang, and Y. C. Liu, “Low-temperature, catalyst-free vapor solid growth of ultralong ZnO nanowires,” Materials Chemistry and Physics., vol. 136, no. 2-3, pp. 455-459, Oct. 2012. doi: 10.1016/j.matchemphys.2012.07.008
[61]. C. Y. Geng, Y.Jiang, Y. Yao, X. M. Meng, J. A. Zapien, C. S. Lee, Y. Lifshitz , and S. T. Lee, “Well-aligned ZnO nanowire arrays fabricated on silicon substrates,” Advanced Functional Materials., vol. 14, no. 6, pp. 589-594, Jun. 2004. doi: 10.1002/adfm.200305074
[62]. C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, and A. F. I. Morral, “Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy,” Physical Review B., vol. 77, no. 15, Apr. 2008. doi: 10.1103/PhysRevB.77.155326
[63]. H. J. Egelhaaf, and D. Oelkrug, “Luminescence and nonradiative deactivation of excited states involving oxygen defect centers in polycrystalline ZnO,” Journal of Crystal Growth., vol. 161, no. 1-4, pp. 190-194, Apr. 1996. doi: 10.1016/0022-0248(95)00634-6
[64]. W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Applied Physics Letters., vol. 80, no. 22, pp. 4232-4234, Jun. 2002. doi: 10.1063/1.1482800
[65]. P. Mitra, A. P. Chatterjee, H. S. Maiti, “ZnO thin film sensor,” Materials Letters., vol. 35, no. 1-2, pp. 33-38, Apr. 1998. doi: 10.1016/S0167-577X(97)00215-2
[66]. Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Applied Physics Letters., vol. 84, no. 18, pp. 3654-3656, May. 2004. doi: 10.1063/1.1738932
[67]. M. Batzill, and U. Diebold, “Surface studies of gas sensing metal oxides,” Physical Chemistry Chemical Physics., vol. 9, no. 19, pp. 2307-2318, 2007. doi: 10.1039/b617710g
[68]. J. C. Belmonte, J. Manzano, J. Arbiol, A. Cirera, J. Puigcorbe, A. Vila, N. Sabate, I. Gracia, C. Cane, and J. R. Morante, “Micromachined twin gas sensor for CO and O2 quantification based on catalytically modified nano-SnO2,” Sensors and Actuators B-Chemical., vol. 114, no. 2, pp. 881-892, Apr. 2006. doi: 10.1016/j.snb.2005.08.007
[69]. P. P. Sahay, “Zinc oxide thin film gas sensor for detection of acetone,” Journal of Materials Science., vol. 40, no. 16, pp. 4383-4385, Aug. 2005. doi: 10.1007/s10853-005-0738-0
[70]. Y. D. Wang, J. B. Chen, and X. H. Wu, “Preparation and gas-sensing properties of perovskite-type SrFeO3 oxide,” Materials Letters., vol. 49, no. 6, pp. 361-364, Jul. 2001. doi: 10.1016/S0167-577X(00)00400-6
[71]. A. Kolmakov, Y. X. Zhang, G. S. Cheng, and M. Moskovits, “Detection of CO and O2 using tin oxide nanowire sensors,” Advanced Materials., vol. 15, no. 12, pp. 997-+, Jun. 2003. doi: 10.1002/adma.200304889
[72]. W. P. Tai, and J. H. Oh, “Humidity sensing behaviors of nanocrystalline Al-doped ZnO thin films prepared by sol-gel process,” Journal of Materials Science Materials Electronics., vol. 13, no. 7, pp. 391-394, Jul. 2002. doi: 10.1023/A:1016084309094
[73]. N. Yamazoe, “Semiconductor Gas Sensors,” Denki Kagaku., vol. 50, no. 1, pp. 29-37, 1982.
[74]. Q. H. Li, Y. X. Liang, Q. Wan, and T. H. Wang, “Oxygen sensing characteristics of individual ZnO nanowire transistors,” Applied Physics Letters., vol. 85, no. 26, pp. 6389-6391, Dec. 2004. doi: 10.1063/1.1840116
[75]. C. L. Lai, X. X. Wang, Y. Zhao, H. Fong, and Z. T. Zhu, “Effects of humidity on the ultraviolet nanosensors of aligned electrospun ZnO nanofibers,” RSC Advances., vol. 3, no. 18, pp. 6640-6645, 2013. doi: 10.1039/c3ra23420g
[76]. C. L. Hsu, H. H. Li, and T. J. Hsueh, “Water- and Humidity-Enhanced UV Detector by Using p-Type La-Doped ZnO Nanowires on Flexible Polyimide Substrate,” ACS Applied Materials and Interfaces., vol. 5, no. 21, pp. 11142-11151, Nov. 2013. doi: 10.1021/am403364r
[77]. X. C. Chen, R. Woogeun, and Z. H. Wang, “Low Power Sensor Design for IoT and Mobile Healthcare Applications,” China Communications., vol. 13, no. 5, pp. 42-54, May. 2015.
[78]. T. J. Hsueh, Y. W. Chen, S. J. Chang, S. F. Wang, C. L. Hsu, Y. R. Lin, T. S. Lin, and I. C. Chen, “ZnO nanowire-based CO sensors prepared on patterned ZnO:Ga/SiO2/Si templates,” Sensors and Actuators B-Chemical., vol. 125, no. 2, pp. 498-503, Aug. 2007. doi: 10.1016/j.snb.2007.02.059
[79]. Z. Q. Zheng, B. Wang, and G. W. Yang, “Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices,” Scientific Reports., vol. 5, Jun. 2015. doi: 10.1038/srep11070
[80]. C. S. Chou, Y. C. Wu, and C.H. Lin, “Oxygen sensor utilizing ultraviolet irradiation assisted ZnO nanorods under low operation temperature,” RSC Advances., vol. 4, no. 95, pp. 52903-52910, 2014. doi: 10.1039/c4ra05500d
[81]. Q. J. Yu, C. L. Yu, J. Z. Wang, F. Y. Guo, S. Y. Gao, S. J. Jiao, H. T. Li, X. T. Zhang, X. Z. Wang, H. Gao, H. B. Yang, and L. C. Zhao, “Gas sensing properties of self-assembled ZnO nanotube bundles,” RSC Advances., vol. 3, no. 37, pp. 16619-16625, 2013. doi: 10.1039/c3ra42383b
[82]. Y. Y. Zeng, X. H. Pan, W. Dai, Y. C. Chen, and Z. Z. Ye, “The enhancement of a self-powered UV photodetector based on vertically aligned Agmodified ZnO nanowires,” RSC Advances., vol. 5, no. 82, pp. 66738-66741, 2015. doi: 10.1039/c5ra08187d
[83]. M. N. Rumyantseva, E. A. Makeeva, and A. M. Gas'kov, “Influence of the microstructure of semiconductor sensor materials on oxygen chemisorption on their surface,” Russian Journal of General Chemistry., vol. 78, no. 12, pp. 2556-2565, Dec. 2008. doi: 10.1134/S1070363208120359
[84]. M. R. Hasan, T. Xie, S. C. Barron, G. N. Liu, N. V. Nguyen, A. Motayed, M. V. Rao, and R. Debnath, “Self-powered p-NiO/n-ZnO heterojunction ultraviolet photodetectors fabricated on plastic substrates,” Apl Materials., vol. 3, no. 10, Oct. 2015. doi: 10.1063/1.4932194
[85]. L. Zhang, S. Bai, C. Su, Y. B. Zheng, Y. Qin, C. Xu, and Z. L. Wang, “A High-Reliability Kevlar Fiber-ZnO Nanowires Hybrid Nanogenerator and its Application on Self-Powered UV Detection,” Advanced Functional Materials., vol. 25, no. 36, pp. 5794-5798, Sep. 2015. doi: 10.1002/adfm.201502646
[86]. S. S. Zhang, C. S. Xie, G. Z. Zhang, Q. Zhu, and S. P. Zhang, “Assessing multi-variable coupling effects of UV illumination, heat and oxygen on porous ZnO nanocrystalline film through electron concentration and mobility extraction,” Physical Chemistry Chemical Physics., vol. 17, no. 27, pp. 18045-18054, 2015. doi: 10.1039/c5cp02391b
[87]. C. C. Yu, Y. T. Hsu, W. H. Lan, M. C. Shih, J. H. Hong, K. F. Huang, and C. J. Huang, “UV Enhanced Oxygen Response Resistance Ratio of ZnO Prepared by Thermally Oxidized Zn on Sapphire Substrate,” Journal of Nanomaterials., 2013. doi: 10.1155/2013/531328
[88]. J. C. Belmontem, J. Manzano, J. Arbiol, A. Cirera, J. Puigcorbe, A. Vila, N. Sabate, I. Gracia, C. Cane, and J. R. Morante, “Micromachined twin gas sensor for CO and O2 quantification based on catalytically modified nano-SnO2,” Sensors and Actuators B-Chemical., vol. 114, no. 2, pp. 881-892, Apr. 2006. doi: 10.1016/j.snb.2005.08.007
[89]. Y. W. Heo, L. C. Tien, D. P. Norton, F. Ren, J. R. La Roche, and S. J. Pearton, “UV photoresponse of single ZnO nanowires,” Applied Physics A-Materials Science and Processing., vol. 80, no. 3, pp. 497-499, Feb. 2005. doi: 10.1007/s00339-004-3045-8
[90]. Y. D. Wang, J. B. Chen, and X. H. Wu, “Preparation and gas-sensing properties of perovskite-type SrFeO3 oxide,” Materials Letters., vol. 49, no. 6, pp. 361-364, Jul. 2001. doi: 10.1016/S0167-577X(00)00400-6
[91]. Y. Khan, A. E. Ostfeld, C. M. Lochner, A. Pierre, and A. C. Arias, “Monitoring of Vital Signs with Flexible and Wearable Medical Devices,” Advanced Materials., vol. 28, no. 22, pp. 4373-4395, Jun. 2016. doi: 10.1002/adma.201504366
[92]. C. I. Chang, M. H. Tsai, Y. C. Liu, C. M. Sun, and W. L. Fang, “Pick-and-place process for sensitivity improvement of the capacitive type CMOS MEMS 2-axis tilt sensor,” Journal of Micromechanics and Microengineering., vol. 23, no. 9, Sep. 2013. doi: 10.1088/0960-1317/23/9/095029
[93]. H. K. Gatty, G. Stemme, and N. Roxhed, “A wafer-level liquid cavity integrated amperometric gas sensor with ppb-level nitric oxide gas sensitivity,” Journal of Micromechanics and Microengineering., vol. 25, no. 10, Oct. 2015. doi: 10.1088/0960-1317/25/10/105013
[94]. C. J. Huang, C. C. Lu, T. Y. Lin, T. C. Chou, and G. B. Lee, “An electrochemical albumin-sensing system utilizing microfluidic technology,” Journal of Micromechanics and Microengineering., vol. 17, no. 4, pp. 835-842, Apr. 2007. doi: 10.1088/0960-1317/17/4/022
[95]. J. F. Cheng, J. C. Chou, T. P. Sun, S. K. Hsiung, and H. L. Kao, “Study on All-Solid-State Chloride Sensor Based on Tin Oxide/Indium Tin Oxide Glass,” Japanese Journal of Applied Physics., vol. 50, no. 3, Mar. 2011. doi: 10.1143/JJAP.50.037001
[96]. K. Golaszewska, E. Kaminska, T. Pustelny, P. Struk, T. Piotrowski, A. Piotrowska, , M. Ekielski, R. Kruszka, M. Wzorek, M. Borysiewicz, I. Pasternak, and K. Gut, “Planar Optical Waveguides for Application in Optoelectronic Gas Sensors,” Acta Physica Polonica A., vol. 114, no. 6A, pp. A223-A230, Dec. 2008. doi: 10.1143/JJAP.50.037001
[97]. B. Behera, and S. Chandra, “P A MEMS based acetone sensor incorporating ZnO nanowires synthesized by wet oxidation of Zn film,” Journal of Micromechanics and Microengineering., vol. 25, no. 1, Jan. 2015. doi: 10.1088/0960-1317/25/1/015007
[98]. Y. L. Wang, X. C. Jiang, Y. N. Xia, “A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions,” Journal of the American Chemical Society., vol. 125, no. 52, pp. 16176-16177, Dec. 2003. doi: 10.1021/ja037743f
[99]. F. Li, X. H. Yu, L. Y. Chen, J. M. Zhu, Z. R. Yang, and X. Q. Xin, “One-step solid-state reaction synthesis and gas sensing property of tin oxide nanoparticles,” Sensors and Actuators B-Chemical., vol. 81, no. 2-3, pp. 165-169, Jan. 2002. doi: 10.1016/S0925-4005(01)00947-9
[100]. N. Kumar, A. Dorfman, and J. Hahm, “Fabrication of optically enhanced ZnO nanorods and microrods using novel biocatalysts,” Journal of Nanoscience and Nanotechnology., vol. 5, no. 11, pp. 1915-1918, Nov. 2005. doi: 10.1166/jnn.2005.422
[101]. A. Kolmakov, M. Moskovits, “Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures,” Annual Review of Materials Research., vol. 34, pp. 150-180, 2004. doi: 10.1146/annurev.matsci.34.040203.112141
[102]. L. L. Xing, Y. F. Hu, P. L. Wang, Y. Y. Zhao, Y. X. Nie, P. Deng, and X. Y. Xue, “Realizing room-temperature self-powered ethanol sensing of Au/ZnO nanowire arrays by coupling the piezotronics effect of ZnO and the catalysis of noble metal,” Applied Physics Letters., vol. 104, no. 1, Jan. 2004. doi: 10.1063/1.4861169
[103]. P. Camagni, G. Faglia, P. Galinetto, C. Perego, G. Samoggia, and G. Sberveglieri, “Photosensitivity activation of SnO2 thin film gas sensors at room temperature,” Sensors and Actuators B-Chemical., vol. 31, no. 1-2, pp. 99-103, Feb. 1996. doi: 10.1016/0925-4005(96)80023-2
[104]. N. Barsan, and U. Weimar, “Conduction model of metal oxide gas sensors,” Journal of Electroceramics., vol. 7, no. 3, pp. 143-167, Dec. 2001. doi: 10.1023/A:1014405811371
[105]. N. Yamazoe, G. Sakai, and K. Shimanoe, “Oxide semiconductor gas sensors,” Catalysis Surveys from Asia., vol. 7, no. 1, pp. 63-75, Apr. 2003. doi: 10.1023/A:1023436725457
[106]. T. J. Hsueh, C. L. Hsu, S. J. Chang, and I. C. Chen, “Laterally grown ZnO nanowire ethanol gas sensors,” Sensors and Actuators B-Chemical., vol. 126, no. 2, pp. 473-477, Oct. 2007. doi: 10.1016/j.snb.2007.03.034
[107]. T. Gao, and T. H. Wang, “Synthesis and properties of multipod-shaped ZnO nanorods for gas-sensor applications,” Applied Physics A-Materials Science and Processing., vol. 80, no. 7, pp. 1451-1454, Apr. 2005. doi: 10.1007/s00339-004-3075-2
[108]. T. J. Hsueh, Y. W. Chen, S. J. Chang, S. F. Wang, C. L. Hsu, Y. R. Lin, T. S. Lin, and I. C. Chen, “ZnO nanowire-based CO sensors prepared at various temperatures,” Journal of the Electrochemical Society., vol. 154, no. 12, pp. J393-J396, 2007. doi: 10.1149/1.2789813
[109]. T. J. Hsueh, and C. L. Hsu, “Fabrication of gas sensing devices with ZnO nanostructure by the low-temperature oxidation of zinc particles,” Sensors and Actuators B-Chemical., vol. 131, no. 2, pp. 572-576, May. 2008. doi: 10.1016/j.snb.2007.12.045
[110]. Y. Chen, X. G. Li, X. X. Li, J. Wang, and Z. A. Tang, “UV activated hollow ZnO microspheres for selective ethanol sensors at low temperatures,” Sensors and Actuators B-Chemical., vol. 232, pp. 158-164, Sep. 2016. doi: 10.1016/j.snb.2016.03.138
[111]. T. Gao, and T. H. Wang, “Vapor phase growth of ZnO nanorod-nanobelt junction arrays,” Journal of Nanoscience and Nanotechnology., vol. 5, no. 7, pp. 1120-1124, Jul. 2005. doi: 10.1166/jnn.2005.150
[112]. H. J. Egelhaaf, and D. Oelkrug, “Luminescence and nonradiative deactivation of excited states involving oxygen defect centers in polycrystalline ZnO,” Journal of Crystal Growth., vol. 161, no. 1-4, pp. 190-194, Apr. 1996. doi: 10.1016/0022-0248(95)00634-6
[113]. T. J. Hsueh, Y. W. Chen, S. J. Chang, S. F. Wang, C. L. Hsu, Y. R. Lin, T. S. Lin, and I. C. Chen, “ZnO nanowire-based CO sensors prepared on patterned ZnO:Ga/SiO2/Si templates,” Sensors and Actuators B-Chemical., vol. 125, no. 2, pp. 498-503, Aug. 2007. doi: 10.1016/j.snb.2007.02.059
[114]. T. J. Hsueh, J. M. Shieh, Y. M. Yeh, “Hybrid Cd-free CIGS solar cell/TEG device with ZnO nanowires,” Progress in photovoltaics., vol. 23, no. 4, pp. 507-512, Apr. 2015. doi: 10.1002/pip.2457
[115]. S. B. Rudraswamy, and N. Bhat, “Optimization of RF Sputtered Ag-Doped BaTiO3-CuO Mixed Oxide Thin Film as Carbon Dioxide Sensor for Environmental Pollution Monitoring Application,” IEEE Sensors Journal., vol. 16, no. 13, pp. 5145-5151, Jul. 2016. doi: 10.1109/JSEN.2016.2567220
[116]. A. Kaushik, R. Kumar, S. K. Arya, M. Nair, B. D. Malhotra, and S. Bhansali, “Organic-Inorganic Hybrid Nanocomposite-Based Gas Sensors for Environmental Monitoring,” Chemical Reviews., vol. 115, no. 11, pp. 4571-4606, Jun. 2015. doi: 10.1021/cr400659h
[117]. C. C. Ling, Q. Z. Xue, Z. D. Han, H. P. Lu, F. J. Xia, Z. F. Yan, and L. J. Deng, “Room temperature hydrogen sensor with ultrahigh-responsive characteristics based on Pd/SnO2/SiO2/Si heterojunctions,” Sensors and Actuators B-Chemical., vol. 227, pp. 438-447, May. 2016. doi: 10.1016/j.snb.2015.12.077
[118]. J. Moon, H. P. Hedman, M. Lemell, A. Tuominen, and R. Pukkinen, “Hydrogen sensor of Pd-decorated tubular TiO2 layer prepared by anodization with patterned electrodes on SiO2/Si substrate,” Sensors and Actuators B-Chemical., vol. 222, pp. 190-197, Jan. 2016. doi: 10.1016/j.snb.2015.08.054
[119]. Y. H. Park, Y. J. Kim, C. S. Lee, “Development of a Detection Sensor for Lethal H2S Gas,” Journal of Nanoscience and Nanotechnology., vol. 12, no. 7, pp. 5283-5289, Jul. 2016. doi: 10.1166/jnn.2012.6355
[120]. D. Barreca, D. Bekermann, E. Comini, A. Devi, R. A. Fischer, A. Gasparotto, C. Maccato, G. Sberveglieri, and E. Tondello, “1D ZnO nano-assemblies by Plasma-CVD as chemical sensors for flammable and toxic gases,” Sensors and Actuators B-Chemical., vol. 149, no. 1, pp. 1-7, Aug. 2010. doi: 10.1016/j.snb.2010.06.048
[121]. M. Tonezzer, T. T. L. Dang, N. Bazzanella, V. H. Nguyen, and S. Lannotta, “Comparative gas-sensing performance of 1D and 2D ZnO nanostructures,” Sensors and Actuators B-Chemical., vol. 220, pp. 1152-1160, Dec. 2015. doi: 10.1016/j.snb.2015.06.103
[122]. X. G. San, G. S. Wang, B. Liang, Y. M. Song, S. Y. Gao, J. S. Zhang, and F. L. Meng, “Catalyst-free growth of one-dimensional ZnO nanostructures on SiO2 substrate and in situ investigation of their H2 sensing properties,” Journal of Alloys Compounds., vol. 622, pp. 73-78, Feb. 2015. doi: 10.1016/j.jallcom.2014.09.224
[123]. M. F. Bin Alam, D. T. Phan, and G. S. Chung, “Palladium nanocubes decorated on a one-dimensional ZnO nanorods array for use as a hydrogen gas sensor,” Materials Letters., vol. 156, pp. 113-117, Oct. 2015. doi: 10.1016/j.matlet.2015.05.007
[124]. Y. F. Qiu, G. P. Tan, P. R. Xu, Q. Luo, X. Z. Lin, W. Q. Huang, and J. H. Li, “Preparation of Cu(OH)2 and ZnO nanoarrays on surface of metal substrates by a simple method and application as ammonia sensors,” Applied Surface Science., vol. 347, pp. 548-552, Aug. 2015. doi: 10.1016/apsusc.2015.04.135
[125]. Y. X. Qin, Z. Y. Bao, M. Hu, and J. Zhang, “Synthesis and NO2-Sensing Properties of One-Dimensional Tungsten Oxide Nanowire Bundles,” Journal of Nanoscience and Nanotechnology., vol. 11, no. 12, pp. 11142-11146, Dec. 2011. doi: 10.1166/jnn.2011.4012
[126]. H. S. Nalwa, Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publishers, Los Angeles, CA(2004), Vols. 1-10.
[127]. S. P. Lee, “System in Package of Integrated Humidity Sensor Using CMOS-MEMS Technolog,” Journal of Nanoscience and Nanotechnology., vol. 15, no. 10, pp. 7503-7507, Oct. 2015. doi: 10.1166/jnn.2015.11162
[128]. K. Mohri, Y. Honkura, L. V. Panina, and T. Uchiyama, “Super MI Sensor: Recent Advances of Amorphous Wire and CMOS-IC Magneto-Impedance Sensor,” Journal of Nanoscience and Nanotechnology., vol. 12, no. 9, pp. 7491-7495, Sep. 2012. doi: 10.1166/jnn.2012.6541
[129]. F. J. Ramirez, E. C. N. Silva, and W. Montealegre-Rubio, “Topology optimization design of 3D electrothermomechanical actuators by using GPU as a co-processor,” Computer Methods in Applied Mechanics and Engineering., vol. 302, pp. 44-69, Apr. 2016. doi: 10.1016/j.cma.2015.12.021
[130]. P. C. Pearlman, H. D. Tagare, B. A. Lin, A. J. Sinusas, and J. S. Duncan, “Segmentation of 3D radio frequency echocardiography using a spatio-temporal predictor,” Medical Image Analysis., vol. 16, no. 2, pp. 351-360, Feb. 2012. doi: 10.1016/j.media.2011.09.002
[131]. J. C. Wang, and X. X. Li, “Single-Side Fabrication of Multilevel 3-D Microstructures for Monolithic Dual Sensors,” Journal of Microelectromechanical Systems., vol. 24, no. 3, pp. 531-533, Jun. 2015. doi: 10.1109/JMEMS.2015.2423296
[132]. M. Motoyoshi, T. Miyoshi, M. Ikebec, and Y. Arai, “3D integration technology for sensor application using less than 5 mu m-pitch gold cone-bump connpdfection,” Journal of Instrumentation., vol. 10, Mar. 2015. doi: 10.1088/1748-0221/10/03/C03004
[133]. L. Servoli, D. Passeri, A. Morozzi, D. Magalotti, and L. Piperku, “3D monolithically stacked CMOS Active Pixel Sensors for particle position and direction measurements,” Journal of Instrumentation., vol. 10, Jan. 2015. doi: 10.1088/1748-0221/10/01/C01001
[134]. J. Thom, U. Heintz, M. Johnson, M. Narain, R. Badman, L. Spiegel, M. Triphati, G. Deptuch, C. Kenney, S. Parker, Z. Ye, and D. P. Siddons, “3D IC for future HEP detectors,” Journal of Instrumentation., vol. 9, Nov. 2014. doi: 10.1088/1748-0221/9/11/C11005
[135]. S. C. Lyu, Y. Zhang, H. Ruh, H. J. Lee, H. W. Shim, E. K. Suh, and C. J. Lee, “Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires,” Chemical Physics Letters., vol. 363, no. 1-2, pp. 134-138, Sep. 2002. doi: 10.1016/S0009-2614(02)01145-4
[136]. B. J. Jin, S. Y. Lee, and S. Im, “Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition,” Materials Science and Engineering B-Solid State Materials for Advanced Technology., vol. 71, pp. 301-305, Feb. 2000. doi: 10.1016/S0921-5107(99)00395-5
[137]. B. Ruhland, T. Becker, and G. Muller, “Gas-kinetic interactions of nitrous oxides with SnO2 surfaces,” Sensors and Actuators B-Chemical., vol. 50, no. 1, pp. 85-94, Jul. 1998. doi: 10.1016/S0925-4005(98)00160-9
[138]. C. L. Lai, X. X. Wang, Y. Zhao, H. Fong, and Z. T. Zhu, “Effects of humidity on the ultraviolet nanosensors of aligned electrospun ZnO nanofibers,” RSC Advances., vol. 3, no. 18, pp. 6640-6645, 2013. doi: 10.1039/c3ra23420g
[139]. C. L. Hsu, H. H. Li, T. J. Hsueh, “Water- and Humidity-Enhanced UV Detector by Using p-Type La-Doped ZnO Nanowires on Flexible Polyimide Substrate,” ACS Applied Materials and Interfaces., vol. 5, no. 21, pp. 11142-11151, Nov. 2013. doi: 10.1021/am403364r
[140]. H. B. Kim, S. P. Eckel, J. H. Kim, and F. D. Gilliland, “Exhaled NO: Determinants and Clinical Application in Children With Allergic Airway Disease,” Allergy Asthma and Immunology Research., vol. 8, no. 1, pp. 12-21, Jan. 2016, doi: 10.4168/aair.2016.8.1.12
[141]. E. Tseliou, V. Bessa, G. Hillas, V. Delimpoura, G. Papadaki, C. Roussos, S. Papiris, P. Bakakos, and S. Loukides, “Exhaled Nitric Oxide and Exhaled Breath Condensate pH in Severe Refractory Asthma,” Chest., vol. 138, no. 1, pp. 107-113, Jul. 2010, doi: 10.1378/chest.09-1257
[142]. N. Imanaka, and T. Masui, “Advances in direct NOx decomposition catalysts,” Applied Catalysis A-General., vol. 431, pp. 1-8, Jul. 2012, doi: 10.1016/j.apcata.2012.02.047
[143]. J. Obermeier, P. Trefz, K. Wex, B. Sabel, J. K. Schubert, and W. Miekisch, “Electrochemical sensor system for breath analysis of aldehydes, CO and NO,” Journal of Breath Research., vol. 9, no. 1, Mar. 2015, doi: 10.1088/1752-7155/9/1/016008
[144]. M. Y. Chuang, J. N. Chen, H. W. Zan, C. J. Lu, and H. F. Meng, “Modulated gas sensor based on vertical organic diode with blended channel for ppb-regime detection,” Sensors and Actuators B-Chemical., vol. 230, pp. 223-230, Jul. 2016, doi: 10.1016/j.snb.2016.02.030
[145]. Y. Li, D. L. Chen, B. B. Fan, H. X. Lu, H. L. Wang, H. L. Xu, D. Y. Yang, G. S. Shao, and R. Zhang, “Enhanced selective response to nitric oxide (NO) of Au-modified tungsten trioxide nanoplates,” Materials Chemistry and Physics., vol. 143, no. 1, pp. 461-469, Dec. 2013, doi: 10.1016/j.matchemphys.2013.09.028
[146]. M. Nadherna, F. Opekar, and J. Reiter, “Ionic liquid-polymer electrolyte for amperometric solid-state NO2 sensor,” Electrochimica Acta., vol. 56, no. 16, pp. 5650-5655, Jun. 2011, doi: 10.1016/j.electacta.2011.04.022
[147]. E. D. Costa, B. A. Rezende, S. F. Cortes, and V. S. Lemos, “Neuronal Nitric Oxide Synthase in Vascular Physiology and Diseases,” Frontiers in Physiology., vol. 7, Jun. 2016, doi: 10.3389/fphys.2016.00206
[148]. M. Li, J. F. Wang, S. Q. Song, and C. W. Li, “Molecular characterization of a novel nitric oxide synthase gene from Portunus trituberculatus and the roles of NO/O2¯ -generating and antioxidant systems in host immune responses to Hematodinium,” Fish and Shellfish Immunology., vol. 52, pp. 263-277, May. 2016, doi: 10.1016/j.fsi.2016.03.042
[149]. C.F. Chen, J. Y. Huang, H. Li, C. Zhang, X. R. Huang, G. X. Tong, and Y. Z. Xu, “MicroRNA-221 regulates endothelial nitric oxide production and inflammatory response by targeting adiponectin receptor 1,” Gene., vol. 565, no. 2, pp. 246-251, Jul. 2015, doi: 10.1016/j.gene.2015.04.014
[150]. H. Scheiblich, and G. Bicker, “Nitric oxide regulates antagonistically phagocytic and neurite outgrowth inhibiting capacities of microglia,” Developmental Neurobiology., vol. 76, no. 5, pp. 566-584, May. 2016, doi: 10.1002/dneu.22333
[151]. G. R. Willis, M. Udiawar, W. D. Evans, H. L. Blundell, P. E. James, and D. A. Rees, “Detailed characterisation of circulatory nitric oxide and free radical indices-is there evidence for abnormal cardiovascular homeostasis in young women with polycystic ovary syndrome?,” Bjog-An International Journal of Obstetrics and Gynaecology., vol. 121, no.13, pp. 1596-1603, Dec. 2014, doi: 10.1111/1471-0528.12834
[152]. A. Sharma, M. Tomar, and V. Gupta, “Enhanced response characteristics of SnO2 thin film based NO2 gas sensor integrated with nanoscaled metal oxide clusters,” Sensors and Actuators B-Chemical., vol. 181, pp. 735-742, May. 2013, doi: 10.1016/j.snb.2013.01.074
[153]. P. S. Cho, K. W. Kim, and J. H. Lee, “NO2 sensing characteristics of ZnO nanorods prepared by hydrothermal method,” Journal of Electrocermics., vol. 17 , no. 2-4, pp. 975-978, Dec. 2006, doi: 10.1007/s10832-006-8146-7
[154]. S. Vallejos, V. Khatko, J. Calderer, I. Gracia, C. Cane, E. Llobet, and X. Correig, “Micro-machined WO3-based sensors selective to oxidizing gases,” Sensors and Actuators B-Chemical., vol. 132, no. 1, pp. 209–215, May. 2008, doi: 10.1016/j.snb.2008.01.044
[155]. M. Akiyama, J. Tamaki, N. Miura, and N. Yamazoe, “Tungsten oxide- based semiconductor sensor highly sensitive to NO and NO2,” Chemistry Letters., vol. 9, pp. 1611-1614, Sep. 1991, doi: 10.1246/cl.1991.1611
[156]. W. T. Koo, S. J. Choi, N. H. Kim, J. S. Jang, and I. D. Kim, “Catalyst-decorated hollow WO3 nanotubes using layer-by-layer self-assembly on polymeric nanofiber templates and their application in exhaled breath sensor,” Sensors and Actuators B-chemical., vol. 223, pp. 301-310, Feb. 2016, doi: 10.1016/j.snb.2015.09.095
[157]. Y. T. Hsieh, L. W. Chang, C. C. Chang, and H. C. Shih, “Synthesis of WO3 Nanorods by Thermal CVD at Various Gas Flow Rates and Substrate Temperatures,” Electrochemical and Solid-State Letters., vol. 14, no. 7, pp. K40-K42, 2011, doi: 10.1149/1.3586784
[158]. J.C. Belmonte, J. Manzano, J. Arbiol, A. Cirera, J. Puigcorbe, A. Vila, N. Sabate, I. Gracia, C. Cane, and J.R. Morante, “Micromachined twin gas sensor for CO and O2 quantification based on catalytically modified nano-SnO2,” Sensors and Actuators B-chemical, vol. 114, no. 2, pp. 881-892, Apr. 2006, doi: 10.1016/j.snb.2005.08.007
[159]. B. Y. Chang, C. Y. Wang, H. F. Lai, R. J. Wu, and M. Chavali, “Evaluation of Pt/In2O3-WO3 nano powder ultra-trace level NO gas sensor,” Journal of the Taiwan Institute of Chemical Engineers., vol. 45, no. 3, pp. 1056-1064, May. 2014, doi: 10.1016/jjtice.2013.09.002
[160]. Z. X. Cai, H. Y. Li, X. N. Yang, and X. Guo, “NO sensing by single crystalline WO3 nanowires,” Sensors and Actuators B-chemical., vol. 219, pp. 346-353, Nov. 2015, doi: 10.1016/j.snb.2015.05.036
[161]. C. Wang, R. Z. Sun, X. Li, Y. F. Sun, P. Sun, and F. M. Liu, “Hierarchical flower-like WO3 nanostructures and their gas sensing properties,” Sensors and Actuators B-chemical., vol. 204, pp. 224-230, Dec. 2014, doi: 10.1016/j.snb.2014.07.083
[162]. B. Ruhland, T. Becker, and G. Muller, “Gas-kinetic interactions of nitrous oxides with SnO2 surfaces,” Sensors and Actuators B-chemical., vol. 50, no. 1, pp. 85-94, Jul. 1998, doi: 10.1016/S0925-4005(98)00160-9
[163]. T. Kida, A. Nishiyama, Z.Q. Hua, K. Suematsu, M. Yuasa, and K. Shimanoe, “WO3 nano lamella gas sensor: porosity control using SnO2 nanoparticles for enhanced NO2 sensing,” Langmuir., vol. 30, no. 9, pp. 2571–2579, Mar. 2014, doi: 1021/la4049105
[164]. M. Epifani, E. Comini, R. Diaz, T. Andreu, A. Genc, J. Arbiol, P. Siciliano, G. Faglia, and J. R. Morante, “Solvothermal, chloroalkoxide-based synthesis of monoclinic WO3 quantum dots and gas-sensing enhancement by surface oxygen vacancies,” ACS Applied Materials and Interfaces., vol. 6, no. 19, pp. 16808–16816, Oct. 2014, doi: 10.1021/am504158r
[165]. N. H. Kim, S.J. Choi, D. J. Yang, J. Bae, J. Park, and I. D. Kim, “Highly sensitive and selective hydrogen sulfide and toluene sensors using Pd functionalized WO3 nanofibers for potential diagnosis of halitosis and lung cancer,” Sensors and Actuators B-Chemical., vol. 193, pp. 574–581, Mar. 2014, doi: 10.1016/j.snb.2013.12.011
[166]. Z. S. Houweling, P. P. R. M. L. Harks, Y. Kuang, C. H. M. Van-Der Werf, J. W. Geus, and R. E. I. Schropp, “Hetero- and homogeneous three-dimensional hierarchical tungsten oxide nanostructures by hot-wire chemical vapor deposition,” Thin Solid Films., vol. 575, pp. 76-83, Jan. 2015, doi: 10.1016/j.tsf.2014.10.032
[167]. I. Kostis, N. Vourdas, M. Vasilopoulou, A. Douvas, G. Papadimitropoulos, N. Konofaos, A. Lliadis, and D. Davazoglou, “Formation of stoichiometric, sub-stoichiometric undoped and hydrogen doped tungsten oxide films, enabled by pulsed introduction of O2 or H2 during hot-wire vapor deposition,” Thin Solid Films., vol. 537, pp. 124-130, Jun. 2013, doi: 10.1016/j.tsf.2013.04.021
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-06-22起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-06-22起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw