進階搜尋


 
系統識別號 U0026-1707201709550800
論文名稱(中文) 利用大地測量觀測研究地殼變形與水文問題
論文名稱(英文) Studies of Crustal Deformation and Hydrological Problems Using Geodetic Observations
校院名稱 成功大學
系所名稱(中) 測量及空間資訊學系
系所名稱(英) Department of Geomatics
學年度 105
學期 2
出版年 106
研究生(中文) 司拉夫
研究生(英文) Ashraf Rateb
學號 P68017014
學位類別 博士
語文別 英文
論文頁數 99頁
口試委員 指導教授-郭重言
共同指導教授-景國恩
召集委員-饒瑞鈞
口試委員-蕭宇伸
口試委員-鄭凱謙
口試委員-江凱偉
中文關鍵字 大地測量學  地殼變形  水文  氣候變化 
英文關鍵字 Geodetic Sciences  Crustal deformations  Hydrology  Climate change 
學科別分類
中文摘要 none
英文摘要 ABSTRACT
This thesis presents three research themes for applying geodetic techniques to solve crustal deformations and hydrological problems.
The first theme is devoted to modeling the kinematics of tectonic blocks and faults, as well as assessing seismic hazards, in eastern and northern Taiwan based on the Global Positioning System (GPS) and leveling data. Data are combined and inverted in a 3D block model. Results demonstrate that surface deformation in eastern Taiwan is predominantly consistent with the direction and retrogression of the arc-continent collision from south to north. A high horizontal GPS velocity of 42 ± 2 mm/yr and a rapid clockwise rotation rate of 41.7° ± 8.4°/Myr are presented in the Taitung domain. A low deformation rate is observed in the Hualien domain, with a GPS horizontal velocity of 30 ± 2 mm/yr and a relatively rapid clockwise rotation rate of 23.6° ± 5.7°/Myr. In the backarc extension domain in northern Taiwan, the southern flank of Ilan rotates clockwise at a rapid rate of 34.9° ± 65.9°/Myr, whereas the northern section exhibits an insignificant rate. The distributions of elastic deformations over the faults show that the Chihshang segment is experiencing long-standing creeping with a long-term slip rate of approximately 35–10 mm/yr. A new key finding regarding the kinematics of faults in northern Taiwan is that high long-term slip rates increase toward offshore Ilan domain over the Suao and Choshui faults, with rates of 15–38 mm/yr and 18–22 mm/yr, respectively. The moment deficit rate over Chihshang is sufficient to release a Mw 6.6 earthquake. Meanwhile, an earthquake with a maximum magnitude of 6.2 is proposed for the Suao and Choshui faults.
The second theme is dedicated to analyzing the errors of the Gravity Recovery and Climate Experiment (GRACE). Intercomparison of different satellite solutions, such as spherical harmonics (SH), mascon solutions, and Slepian-based estimates, is also conducted at small to large scales and under different climate hydrological regimes in Africa. This research concludes that GRACE error levels vary more with climate conditions than with region size. The errors increase more in regions with arid climate than in regions with a wet climate and in small regions than in large ones. Reliance on independent scale factors from hydrological models to attain a reliable signal after filtering errors is insufficient because most models do not simulate all the components of water changes, as GRACE observes. Such limitation will lead to inaccurate estimates, particularly in estimating long-term groundwater storage (GWS) or assessing the impacts of total water storage (TWS) extremes (drought, flood). The Slepian localization-based estimate is reliable for small, arid zones and can efficiently reduce leakage errors because the optimal concentration of the orthogonal basis cancels leakage from outside the region. Moreover, unlike SH estimate, the method does not rely on post processing filters. The estimates derived from SH, Jet Propulsion Laboratory (JPL)-mascon, and Slepian exhibit good agreement in the major humid catchments in Africa. In medium-sized and small regions, the means of the Slepian and JPL-mascon estimates are better predictors than the SH-based estimate. The trends of TWS, seasonal, and sub seasonal changes for the African hydrological regimes are measured and intercompared among the three estimates. The TWS reduction trend in regions dominated by extensive irrigation is higher than previously reported. Reduction rates of −1.04 Gt/year and −6.9 Gt/year are estimated in the lower Nile and Sahara, respectively.
The third theme is inspired by the results of the second one. The Slepian method is applied to assess TWS reduction, GWS depletion, and the impact of the 2007 drought in arid zones in the Middle East (ME) and the Arabian Peninsula (AP). The analysis determines the decrease rates of TWS and GWS between April 2002 and December 2015 and the acceleration rate after the onset of the 2007 drought. The estimated depletion rate of TWS in ME is approximately −24.3 ± 2 Gt/yr with a total loss of about −285 Gt between 2002 and 2015. Meanwhile, AP presents a TWS reduction rate of about −17.5 ± 2 Gt/yr with a total volume loss of −196 Gt from 2002 to 2015. The most affected regions are Northern Iraq, Northwestern Iran, and North AP. The total reduction rates are estimated at approximately −17.3 ± 1.6, 4.5 ± 1.3, and −5.5 ± 0.6 Gt/yr from 2002 to 2015 for Iran, Iraq, and Northern AP, respectively. Climate change is determined to be a significant contributor to GWS reduction compared with human activities. The water level of the lakes responds to the 2007 drought with fluctuations and decreases. The possible contribution of the net land water loss from AP and ME to sea level rise is approximately 0.11 ± 0.04 mm/yr with a seasonal amplitude of 0.33 mm. ME contributes about 60% of this rate, whereas AP contributes 40%. Approximately 575 Gt of land water mass is moved from the land to the ocean, which is equivalent to 1.6 mm of the sea level rise from ME and AP. Such rate in sea level rise constitutes only 3.3% of the total rise, and the land-water budget causes 13.7% of the rise.
論文目次 TABLE OF CONTENTS
1
DEDICATION II
ACKNOWLEDGEMENTS III
ABSTRACT IV
PUBLISHED CONTENT VI
FIELDS OF STUDY VI
TABLE OF CONTENTS VII
TABLE OF ILLUSTRATIONS IX
LIST OF TABLES X
1. CHAPTER I: INTRODUCTION 1
1.1. BACKGROUND 1
1.2. THEORETICAL FRAMEWORK 2
1.2.1. Interseismic deformation, and kinematic models 2
1.2.2. 3-D Block modeling 3
1.2.3. GRACE mission and temporal gravity field 5
1.3. OBJECTIVES OF THE THESIS 7
1.4. OUTLINE OF THE THESIS 8
2 CHAPTER II: PRESENT- DAY KINEMATICS AND DEFORMATIONS IN EASTERN TAIWAN 9
SUMMARY 9
2.1. INTRODUCTION 10
2.2. TECTONIC FRAMEWORK 11
2.3. GEODETIC DATA AND SURFACE VELOCITY IN EASTERN TAIWAN. 13
2.3.1. GPS data collection and GPS velocity estimation 13
2.3.2. Leveling data collection and leveling rate estimate 14
2.3.3. Horizontal and vertical deformation fields 14
2.4. BLOCK MODEL 16
2.4.1. Fault geometries and Elastic blocks 16
2.4.2. Model parameters. 17
2.5. MODEL RESULTS 19
2.6. DISCUSSION 20
2.6.1. Kinematics of block motions in eastern Taiwan 20
2.6.2. Kinematics of the LVF and CRF 23
2.6.3. Implications of seismic hazards 24
2.7. CONCLUSIONS AND OUTLOOK 25
3 CHAPTER III: CRUSTAL DEFORMATION, FAULT LOCKING, AND BLOCK KINEMATICS IN NORTHERN TAIWAN 26
SUMMARY 26
3.1. INTRODUCTION 27
3.2. TECTONIC FRAMEWORK 28
3.3. GEODETIC DATA AND SURFACE VELOCITY FIELD IN NORTHERN TAIWAN 30
3.3.1. Data collection and velocity estimation 30
3.3.2. GPS horizontal velocity, and leveling vertical velocity fields 32
3.4. BLOCK MODEL 33
3.4.1. Tectonic blocks and fault configurations 33
3.4.2. Model parameters 35
3.5. MODEL RESULTS 36
3.6. DISCUSSION 38
3.6.1. Block rotation mechanism in Northern Taiwan 38
3.6.2. Seismic implications in Northern Taiwan. 41
3.7. CONCLUSIONS AND OUTLOOKS 42
4 CHAPTER IV: TERRESTRIAL WATER STORAGE IN AFRICA DERIVED FROM GRACE MISSION: INTERCOMPARISON OF THE SPHERICAL HARMONICS, MASS CONCENTRATION, AND SCALAR SLEPIAN METHODS. 45
SUMMARY 45
4.1. INTRODUCTION 46
4.2. MATERIALS AND METHODS 48
4.2.1. Africa Hydrological regimes 48
4.2.2. Theory and practice 50
4.2.3. GRACE data and processing 52
4.2.4. Analysis and model 52
4.3. RESULTS 55
4.3.1. GRACE errors and CLM4.0 scale factor in African regimes 55
4.3.2. Statistical performance of the TWS estimates 56
4.3.1. TWS Variations in Africa 56
4.4. DISCUSSION 57
4.4.1. GRACE error assessment at African hydrological regimes 57
4.4.2. Comparison of SH-TWS, SL-TWS, and MSC-TWS 58
4.4.3. TWS recharge and depletion in Africa 61
4.5. CONCLUSIONS 63
5 CHAPTER V: HUMAN AND CLIMATE CHANGE FOOTPRINTS IN WATER DEPLETION IN THE MIDDLE EAST —AS REVEALED BY GRACE; ALTIMETRY; AND HYDROLOGICAL MODELS. 64
SUMMARY 64
5.1. INTRODUCTION 65
5.2. MATERIALS, AND METHODS 67
5.2.1. Data and models 67
5.2.2. GLDAS-SM 67
5.2.3. CLM4.5-TWS 67
5.2.4. WGHM2.2b-TWS 68
5.2.5. Altimetry data 68
5.2.6. Singular Spectrum Analysis (SSA). 69
5.3. RESULTS 69
5.3.1. Statistical performance of GRACE and Land hydrological models. 69
5.3.2. Land water alarming trends 71
5.3.3. Lakes alarming trend 76
5.4. DISCUSSION 77
5.4.1. The human footprint on water depletion in ME. 77
5.4.2. Climate Change footprint in water depletion in ME 80
5.4.3. Contribution to the Global Sea level rise. 82
5.5. CONCLUSIONS 83
6 CHAPTER VI: CONCLUSIONS AND OUTLOOK 84
7 OUTLOOK 87
8 BIBLIOGRAPHY 88
APPENDIX I: SLEPIAN FUNCTIONS 98

參考文獻 8 BIBLIOGRAPHY
1. Ellsworth W, Lindh A, Prescott W, & Herd D (1981) The 1906 San Francisco earthquake and the seismic cycle. Earthquake Prediction:126-140.
2. Meade BJ & Loveless JP (2009) Block Modeling with Connected Fault-Network Geometries and a Linear Elastic Coupling Estimator in Spherical Coordinates. B Seismol Soc Am 99(6):3124-3139. doi:10.1785/0120090088.
3. Thatcher W (2007) Microplate model for the present-day deformation of Tibet. J Geophys Res-Sol Ea 112(B1). doi:10.1029/2005JB004244.
4. Shen Z-K, Lü J, Wang M, & Bürgmann R (2005) Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. J Geophys Res-Sol Ea 110(B11). doi:10.1029/2004JB003421.
5. Savage J & Burford R (1973) Geodetic determination of relative plate motion in central California. J Geophys Res-Sol Ea 78(5):832-845.
6. Haines A & Holt W (1993) A procedure for obtaining the complete horizontal motions within zones of distributed deformation from the inversion of strain rate data. J Geophys Res-Sol Ea 98(B7):12057-12082.
7. England P & Molnar P (2005) Late Quaternary to decadal velocity fields in Asia. J Geophys Res-Sol Ea 110(B12). doi:10.1029/2004JB003541.
8. Hetland E & Hager B (2006) Interseismic strain accumulation: Spin‐up, cycle invariance, and irregular rupture sequences. Geochem. Geophys. Geosyst 7(5). doi:10.1029/2005GC001087.
9. Liu Z & Bird P (2008) Kinematic modelling of neotectonics in the Persia-Tibet-Burma Orgen. Geophys J Int 172(2):779-797.
10. Nur A & Mavko G (1974) Postseismic viscoelastic rebound. Science 183(4121):204. doi:10.1126/science.183.4121.204.
11. Feldl N & Bilham R (2006) Great Himalayan earthquakes and the Tibetan plateau. Nature 444(7116):165-170.
12. Mazzotti S, Le Pichon X, Henry P, & Miyazaki SI (2000) Full interseismic locking of the Nankai and Japan‐west Kurile subduction zones: An analysis of uniform elastic strain accumulation in Japan constrained by permanent GPS. J Geophys Res-Sol Ea 105(B6):13159-13177.
13. Segall P (2002) Integrating geologic and geodetic estimates of slip rate on the San Andreas fault system. Int Geol Rev 44(1):62-82.
14. McCaffrey R (2005) Block kinematics of the Pacific-North America plate boundary in the southwestern United States from inversion of GPS, seismological, and geologic data. J Geophys Res-Sol Ea 110(B7). doi:10.1029/2004jb003307.
15. Savage JC (1983) A Dislocation Model of Strain Accumulation and Release at a Subduction Zone. J Geophys Res-Sol Ea 88(Nb6):4984-4996. doi:10.1029/JB088iB06p04984.
16. McCaffrey R (1995) DEF-NODE users guide, Rensselaer Polytechnic Institute, Troy, New York.
17. Prawirodirdjo L, et al. (1997) Geodetic observations of interseismic strain segmentation at the Sumatra subduction zone. Geophys Res Lett 24(21):2601-2604.
18. McCaffrey R (2002) Crustal Block Rotations and Plate Coupling. J. Geodyn. Ser. 30:101-122. doi:10.1029/GD030p0101.
19. Ching KE, et al. (2011) Present-day kinematics of active mountain building in Taiwan from GPS observations during 1995-2005. J Geophys Res-Sol Ea 116(B9). doi:10.1029/2010jb008058.
20. Okada Y (1992) Internal Deformation Due to Shear and Tensile Faults in a Half-Space. B Seismol Soc Am 82(2):1018-1040. doi:10.1130/2008.2436(12).
21. Kaneko Y, Avouac J-P, & Lapusta N (2010) Towards inferring earthquake patterns from geodetic observations of interseismic coupling. Nat Geosci 3(5):363-369.
22. Wallace LM, Beavan J, McCaffrey R, & Darby D (2004) Subduction zone coupling and tectonic block rotations in the North Island, New Zealand. J Geophys Res-Sol Ea 109(B12). doi:10.1029/2004jb003241.
23. Schmalzle GM, McCaffrey R, & Creager KC (2014) Central Cascadia subduction zone creep. Geochem. Geophys. Geosyst 15(4):1515-1532.
24. Socquet A, et al. (2006) India and Sunda plates motion and deformation along their boundary in Myanmar determined by GPS. J Geophys Res-Sol Ea 111(B5). doi:10.1029/2005jb003877.
25. Wallace LM, McCaffrey R, Beavan J, & Ellis S (2005) Rapid microplate rotations and backarc rifting at the transition between collision and subduction. Geology 33(11):857-860.
26. Socquet A, et al. (2006) Microblock rotations and fault coupling in SE Asia triple junction (Sulawesi, Indonesia) from GPS and earthquake slip vector data. J Geophys Res-Sol Ea 111(B8). doi:10.1029/2005jb003963.
27. Tapley BD, et al. (2004) GRACE measurements of mass variability in the Earth system. Science 305(5683):503-505. doi:10.1126/science.1099192.
28. Wahr J, Molenaar M, & Bryan F (1998) Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res-Sol Ea 103(B12):30205-30229. 10.1029/98jb02844.
29. Dziewonski AM & Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet In 25(4):297-356.
30. Angelier J, Chu HT, & Lee JC (1997) Shear concentration in a collision zone: Kinematics of the Chihshang Fault as revealed by outcrop-scale quantification of active faulting, Longitudinal Valley, eastern Taiwan. Tectonophysics 274(1-3):117-143. doi:10.1016/S0040-1951(96)00301-0.
31. Angelier J, Chu HT, Lee JC, & Hu JC (2000) Active faulting and earthquake hazard: The case study of the Chihshang Fault, Taiwan. J Geodyn 29(3-5):151-185. doi:10.1016/S0264-3707(99)00045-9.
32. Wu YM, Zhao L, Chang CH, & Hsu YJ (2008) Focal-mechanism determination in Taiwan by genetic algorithm. B Seismol Soc Am 98(2):651-661. doi:10.1785/0120070115.
33. Shyu JBH, Sieh K, Chen YG, & Liu CS (2005) Neotectonic architecture of Taiwan and its implications for future large earthquakes. J Geophys Res-Sol Ea 110(B8). doi:10.1029/2004jb003251.
34. Yu SB & Kuo LC (2001) Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan. Tectonophysics 333(1-2):199-217. doi:10.1016/S0040-1951(00)00275-4.
35. Yu SB, Kuo LC, Punongbayan RS, & Ramos EG (1999) GPS observation of crustal deformation in the Taiwan-Luzon region. Geophys Res Lett 26(7):923-926. doi:10.1029/1999gl900148.
36. Chuang RY, et al. (2012) Interseismic Deformation and Earthquake Hazard along the Southernmost Longitudinal Valley Fault, Eastern Taiwan. B Seismol Soc Am 102(4):1569-1582. doi:10.1785/0120110262.
37. Chen CY, Lee JC, Chen YG, & Chen RF (2014) Campaigned GPS on Present-Day Crustal Deformation in Northernmost Longitudinal Valley Preliminary Results, Hualien Taiwan. Terr Atmos Ocean Sci 25(3):337-357. doi:10.3319/Tao.2013.12.25.01(Tt).
38. Rau RJ, Chen KH, & Ching KE (2007) Repeating earthquakes and seismic potential along the northern Longitudinal Valley fault of eastern Taiwan. Geophys Res Lett 34(24). doi:10.1029/2007gl031622.
39. Barrier E & Angelier J (1983) Tectonic analysis of compressional structure in an active collision zone-the deformation of the pinanshan conglomerate. Proc. Geol. Soc. China 25(2):229-238.
40. Biq C (1972) Dual-trench structure in the Taiwan-Luzon region. in Proc. Geol. Soc. China, pp 65-75.
41. Yu SB, Chen HY, & Kuo LC (1997) Velocity field of GPS stations in the Taiwan area. Tectonophysics 274(1-3):41-59. doi:10.1016/S0040-1951(96)00297-1.
42. Sella GF, Dixon TH, & Mao A (2002) REVEL: A model for recent plate velocities from space geodesy. J Geophys Res-Sol Ea 107(B4).
43. Lallemand S & Liu C-S (1998) Geodynamic implications of present-day kinematics in the southern Ryukyus. J. Geol. Soc. China 41:551-564.
44. McIntosh KD & Nakamura Y (1998) Crustal structure beneath the Nanao forearc basin from TAICRUST MCS/OBS Line 14. Terr Atmos Ocean Sci 9(3):345-362.
45. Lallemand S, et al. (1999) Trench‐parallel stretching and folding of forearc basins and lateral migration of the accretionary wedge in the southern Ryukyus: A case of strain partition caused by oblique convergence. Tectonics. 18(2):231-247. doi:10.1029/1998TC900011.
46. Teng LS (1996) Extensional collapse of the northern Taiwan mountain belt. Geology 24(10):949-952. doi:10.1130/0091-7613(1996)024<0949.
47. Malavieille J, et al. (2002) Arc-continent collision in Taiwan: New marine observations and tectonic evolution. Spec. Pap. Geol. Soc. Am:187-211.
48. Teng LS (1990) Geotectonic Evolution of Late Cenozoic Arc Continent Collision in Taiwan. Tectonophysics 183(1-4):57-76. doi:10.1016/0040-1951(90)90188-E.
49. Chen KH, Toda S, & Rau R-J (2008) A leaping, triggered sequence along a segmented fault: The 1951ML7.3 Hualien-Taitung earthquake sequence in eastern Taiwan. J Geophys Res-Sol Ea 113(B2). doi:10.1029/2007jb005048.
50. Cheng L, Lee J, Wu Y, & Hu J (2004) Inversion of coseismic deformation of Chengkung Earthquake in eastern Taiwan revealed by strong motion and continuous GPS. AGU Fall Meet, pp Abstract T13F-06.
51. Wu YM, et al. (2006) Seismogenic structure in a tectonic suture zone: with new constraints from 2006 Mw6. 1 Taitung earthquake. Geophys Res Lett 33(22).
52. Chuang RY, et al. (2014) Active back thrust in the eastern Taiwan suture revealed by the 2013 Rueisuei earthquake: Evidence for a doubly vergent orogenic wedge?. Geophys Res Lett 41:3464-3470. doi:10.1002/2014GL060097.
53. Dach R, Hugentobler U, Fridez P, & Meindl M (2007) User Manual of the Bernese GPS software version 5.0).
54. Altamimi Z, Sillard P, & Boucher C (2002) ITRF2000: A new release of the International Terrestrial Reference frame for earth science applications. J Geophys Res-Sol Ea 107(B10). doi:10.1029/2001jb000561.
55. Wdowinski S, et al. (1997) Southern California Permanent GPS Geodetic Array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake. J Geophys Res-Sol Ea 102(B8):18057-18070. doi:10.1029/97jb01378.
56. Chen KH, et al. (2011) Vertical Displacement Rate Field of Taiwan from Geodetic Levelling Data 2000-2008. Surv Rev 43(321):296-302. doi:10.1179/003962611x13055561708380.
57. Shyu JBH, et al. (2007) Re-evaluation of the surface ruptures of the November 1951 earthquake series in eastern Taiwan, and its neotectonic implications. J Asian Earth Sci 31(3):317-331. doi:10.1016/j.jseaes.2006.07.018.
58. Hsu V (1990) Seismicity and Tectonics of a Continent-Island Arc Collision Zone at the Island of Taiwan. J Geophys Res-Sol Ea 95(B4):4725-4734. DOI 10.1029/JB095iB04p04725.
59. McCaffrey R (2006) DEFNODE User's Manual Version 2007.10. 25.
60. McCaffrey R, King RW, Payne SJ, & Lancaster M (2013) Active tectonics of northwestern US inferred from GPS‐derived surface velocities. J Geophys Res-Sol Ea 118(2):709-723.
61. Huang WJ, Johnson KM, Fukuda J, & Yu SB (2010) Insights into active tectonics of eastern Taiwan from analyses of geodetic and geologic data. J Geophys Res-Sol Ea 115. doi:10.1029/2008jb006208.
62. Chemenda AI, Yang RK, Hsieh CH, & Groholsky AL (1997) Evolutionary model for the Taiwan collision based on physical modelling. Tectonophysics 274(1-3):253-274. doi:10.1016/S0040-1951(97)00025-5.
63. Huang CY, et al. (2000) Geodynamic processes of Taiwan arc-continent collision and comparison with analogs in Timor, Papua New Guinea, Urals and Corsica. Tectonophysics 325(1-2):1-21. doi:10.1016/S0040-1951(00)00128-1.
64. Lee TQ, Angelier J, Chu HT, & Bergerat F (1991) Rotations in the Northeastern Collision Belt of Taiwan - Preliminary-Results from Paleomagnetism. Tectonophysics 199(1):109-120. doi:10.1016/0040-1951(91)90121-8.
65. Hsu YJ, Ando M, Yu SB, & Simons M (2012) The potential for a great earthquake along the southernmost Ryukyu subduction zone. Geophys Res Lett 39. doi:10.1029/2012gl052764.
66. Yen JY, et al. (2011) Investigating Active Deformation in the Northern Longitudinal Valley and City of Hualien in Eastern Taiwan Using Persistent Scatterer and Small-Baseline SAR Interferometry. Terr Atmos Ocean Sci 22(3):291-304. doi:10.3319/Tao.2010.10.25.01(Tt).
67. Ching KE, et al. (2011) Modern vertical deformation rates and mountain building in Taiwan from precise leveling and continuous GPS observations, 2000-2008. J Geophys Res-Sol Ea 116. doi:10.1029/2011jb008242.
68. Shyu JBH, et al. (2008) Geomorphology of the southernmost Longitudinal Valley fault: Implications for evolution of the active suture of eastern Taiwan. Tectonics 27(1). doi:10.1029/2006tc002060.
69. Thomas MY, et al. (2014) Spatiotemporal evolution of seismic and aseismic slip on the Longitudinal Valley Fault, Taiwan. J Geophys Res-Sol Ea 119(6):5114-5139. doi:10.1002/2013jb010603.
70. Chang C, Angelier J, Huang C, & Liu C (2001) Structural evolution and significance of a mélange in a collision belt: the Lichi Mélange and the Taiwan arc–continent collision. Geol. Mag 138(06):633-651. doi:10.1017/S0016756801005970.
71. Suppe J (1981) Mechanics of mountain building and metamorphism in Taiwan. Mem. Geol. Soc. China. 4(6):67–89.
72. Yu S & Liu C (1989) Fault creep on the central segment of the Longitudinal Valley fault, eastern Taiwan. Proc. Geol. Soc. China, pp 209-231.
73. Hsu L & Burgmann R (2006) Surface creep along the Longitudinal Valley fault, Taiwan from InSAR measurements. Geophys Res Lett 33(6). doi:10.1029/2005gl024624.
74. Shyu JBH, et al. (2006) Millennial slip rate of the Longitudinal Valley fault from river terraces: Implications for convergence across the active suture of eastern Taiwan. J Geophys Res-Sol Ea 111(B8). doi:Artn B08403,10.1029/2005jb003971.
75. Wells DL & Coppersmith KJ (1994) New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. B Seismol Soc Am 84(4):974-1002.
76. Wu YM, et al. (2006) Coseismic versus interseismic ground deformations, fault rupture inversion and segmentation revealed by 2003 Mw 6.8 Chengkung earthquake in eastern Taiwan. Geophys Res Lett 33(2). doi:10.1029/2005gl024711.
77. Shyu JBH, et al. (2016) A New On-Land Seismogenic Structure Source Database from the Taiwan Earthquake Model (TEM) Project for Seismic Hazard Analysis of Taiwan. Terr Atmos Ocean Sci 27(3).
78. Kang CC, Chang CP, Siame L, & Lee JC (2015) Present-day surface deformation and tectonic insights of the extensional Ilan Plain, NE Taiwan. J Asian Earth Sci 105(0):408-417. doi:10.1016/j.jseaes.2015.02.013.
79. Lallemand S & Liu C-S (1998) Geodynamic implications of present-day kinematics in the southern Ryukyus. J. Geol. Soc. China. 41:551-564.
80. Nakamura M (2004) Crustal deformation in the central and southern Ryukyu Arc estimated from GPS data. Earth Planet Sc Lett 217(3-4):389-398. doi:10.1016/S0012-821x(03)00604-6.
81. Nishimura S, Hashimoto M, & Ando M (2004) A rigid block rotation model for the GPS derived velocity field along the Ryukyu arc. Phys Earth Planet In 142(3-4):185-203. doi:10.1016/j.pepi.2003.12.014.
82. Sibuet JC, et al. (1987) Back Arc Extension in the Okinawa Trough. J Geophys Res-Sol Ea 92(B13). doi:10.1029/JB092iB13p14041.
83. Teng LS, Lee CT, Tsai YB, & Hsiao LY (2000) Slab breakoff as a mechanism for flipping of subduction polarity in Taiwan. Geology 28(2):155-158.
84. Suppe J (1984) Kinematics of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan. Mem. Geol. Soc. China. 6: 21–34.
85. Wu FT, et al. (2009) A model for the termination of the Ryukyu subduction zone against Taiwan: A junction of collision, subduction/separation, and subduction boundaries. J Geophys Res-Sol Ea 114(B7). doi:10.1029/2008jb005950.
86. Rau RJ, Ching KE, Hu JC, & Lee JC (2008) Crustal deformation and block kinematics in transition from collision to subduction: Global positioning system measurements in northern Taiwan, 1995-2005. J Geophys Res-Sol Ea 113(B9). doi:10.1029/2007jb005414.
87. Lai KY, et al. (2009) The 2005 Ilan earthquake doublet and seismic crisis in northeastern Taiwan: evidence for dyke intrusion associated with on-land propagation of the Okinawa Trough. Geophys J Int 179(2):678-686. doi:10.1111/j.1365-246X.2009.04307.
88. Shyu JBH, Sieh K, Chen YG, & Chung LH (2006) Geomorphic analysis of the Central Range fault, the second major active structure of the Longitudinal Valley suture, eastern Taiwan. Geol Soc Am Bull 118(11-12):1447-1462. doi:10.1130/B25905.1.
89. Lee CS, et al. (1980) Okinawa Trough - Origin of a Back-Arc Basin. Mar Geol 35(1-3):219-241. doi:10.1016/0025-3227(80)90032-8.
90. Fabbri O & Fournier M (1999) Extension in the southern Ryukyu arc (Japan): Link with oblique subduction and back arc rifting. Tectonics 18(3):486-497. doi:10.1029/1999tc900001.
91. Fournier M, Fabbri O, Angelier J, & Cadet JP (2001) Regional seismicity and on‐land deformation in the Ryukyu arc: Implications for the kinematics of opening of the Okinawa Trough. J Geophys Res-Sol Ea 106(B7):13751-13768. doi:10.1029/2001JB900010.
92. Kubo A & Fukuyama E (2003) Stress field along the Ryukyu Arc and the Okinawa Trough inferred from moment tensors of shallow earthquakes. Earth Planet Sc Lett 210(1-2):305-316. doi:10.1016/S0012-821x(03)00132-8.
93. Tsai Y, Feng C, Chiu J, & Liaw H (1975) Correlation between micro-earthquakes and geologic faults in the Hsintien-Ilan area. Petrol. Geol. Taiwan. 12:149-167.
94. Liu C (1995) The Ilan plain and the southwestward extending Okinawa Trough. J. Geol. Soc. China. 38(3):183-193.
95. Hou CS, et al. (2009) The crustal deformation of the Ilan Plain acted as a westernmost extension of the Okinawa Trough. Tectonophysics 466(3-4):344-355. doi:10.1016/j.tecto.2007.11.022.
96. Clift PD, et al. (2008) Post-collisional collapse in the wake of migrating arc-continent collision in the Ilan Basin, Taiwan. Geol Soc Am. Spec. Pupl 436:257-278. doi:10.1130/2008.2436.12.
97. Huang HH, et al. (2012) Seismotectonics of northeastern Taiwan: Kinematics of the transition from waning collision to subduction and postcollisional extension. J Geophys Res-Sol Ea 117. doi:10.1029/2011jb008852.
98. Hsu SK (2001) Lithospheric structure, buoyancy and coupling across the southernmost Ryukyu subduction zone: an example of decreasing plate coupling. Earth Planet Sc Lett 186(3-4):471-478. doi:10.1016/S0012-821x(01)00261-8.
99. Lee YH, Chen GT, Rau RJ, & Ching KE (2008) Coseismic displacement and tectonic implication of 1951 Longitudinal Valley earthquake sequence, eastern Taiwan. J Geophys Res-Sol Ea 113(B4). doi:10.1029/2007jb005180.
100. Hsu M-T (1971) Seismicity of Taiwan and some related problems. Bull. Inst. Seismol. Earthquake Eng. 8:41-160.
101. Wang JH, Chen KC, Lee SJ, & Huang WG (2011) The 15 April 1909 Taipei Earthquake. Terr Atmos Ocean Sci 22(1):91-96. doi:10.3319/Tao.2010.08.16.01(T).
102. Angelier J, Bergerat F, Hao-Tsu C, & Teh-Quei L (1990) Tectonic analysis and the evolution of a curved collision belt: The Hsüehshan Range, Northern Taiwan. Tectonophysics 183(1-4):77-96. doi:10.1016/0040-1951(90)90189-f.
103. Ho CS (1986) A Synthesis of the Geologic Evolution of Taiwan. Tectonophysics 125(1-3):1-16. doi:10.1016/0040-1951(86)90004-1.
104. Shieh Y (2000) The paleogeography of the ancient Taipei lakebed in the K’anghsi Period. J. Geogr. Sci. 27:85-95.
105. Chen SK, Chan YC, Hu JC, & Kuo LC (2014) Current crustal deformation at the junction of collision to subduction around the Hualien area, Taiwan. Tectonophysics 617:58-78. doi:10.1016/j.tecto.2014.01.014.
106. Ku CY, Hsu SK, Sibuet JC, & Tsai CH (2009) The Neo-Tectonic Structure of the Southwestern Tip of the Okinawa Trough. Terr Atmos Ocean Sci 20(5):749-759. doi:10.3319/TAO.2008.09.01.01(Oc).
107. Sasajima S (1977) Tertiary paleomagnetism of the Ryukyu Islands and its relevance to the development of the Philippine basin. Rock Magn. Paleogeophys 4:108-113.
108. Ustaszewski K, et al. (2012) Crust-mantle boundaries in the Taiwan-Luzon arc-continent collision system determined from local earthquake tomography and 1D models: Implications for the mode of subduction polarity reversal. Tectonophysics 578(0):31-49. doi:10.1016/j.tecto.2011.12.029.
109. Clift PD, Schouten H, & Draut AE eds (2003) A general model of arc-continent collision and subduction polarity reversal from Taiwan and the Irish CaledonidesGeol. Soc. Spec. Publ. London), Vol 219, pp 81-98.
110. Angelier J, Barrier E, & Chu HT (1986) Plate Collision and Paleostress Trajectories in a Fold Thrust Belt - the Foothills of Taiwan. Tectonophysics 125(1-3):161-178. doi:10.1016/0040-1951(86)90012-0.
111. Yih-Hsiung Y, Eric B, Cheng-Horng L, & Jacques A (1991) Stress tensor analysis in the Taiwan area from focal mechanisms of earthquakes. Tectonophysics 200(1-3):267-280. doi:10.1016/0040-1951(91)90019-o.
112. Lu CY, Angelier J, Chu HT, & Lee JC (1995) Contractional, Transcurrent, Rotational and Extensional Tectonics - Examples from Northern Taiwan. Tectonophysics 246(1-3):129-146. doi:10.1016/0040-1951(94)00252-5.
113. Bos AG, Spakman W, & Nyst MCJ (2003) Surface deformation and tectonic setting of Taiwan inferred from a GPS velocity field. J Geophys Res-Sol Ea 108(B10). doi:10.1029/2002jb002336.
114. Segall P (2010) Earthquake and volcano deformation (Princeton University Press) p 456
115. Ellsworth W (2003) Working Group on California Earthquake Probabilities, earthquake probabilities in the San Francisco Bay region: 2002–2031. ( U.S. Geol Surv. ), pp 03-214.
116. Cheng S-N, Yeh Y-T, & Yu M-S (1996) The 1951 Taitung earthquake in Taiwan. J. Geol. Soc. China. 39:267-286.
117. Chang CP, et al. (2010) Monitoring of Surface Deformation in Northern Taiwan Using DInSAR and PSInSAR Techniques. Terr Atmos Ocean Sci 21(3):447-461. doi:10.3319/Tao.2009.11.20.01(Th).
118. Ramillien G, Famiglietti JS, & Wahr J (2008) Detection of Continental Hydrology and Glaciology Signals from GRACE: A Review. Surv Geophy 29(4-5):361-374. doi:10.1007/s10712-008-9048-9.
119. Voss KA, et al. (2013) Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resour Res 49(2):904-914. 10.1002/wrcr.20078.
120. Ramillien G, et al. (2006) Time variations of the regional evapotranspiration rate from Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry. Water Resour Res 42(10). doi:10.1029/2005wr004331.
121. Chen JL, Wilson CR, & Tapley BD (2010) The 2009 exceptional Amazon flood and interannual terrestrial water storage change observed by GRACE. Water Resour Res 46. doi:10.1029/2010wr009383.
122. Syed TH, Famiglietti JS, & Chambers DP (2009) GRACE-Based Estimates of Terrestrial Freshwater Discharge from Basin to Continental Scales. J Hydrometeorol 10(1):22-40. doi:10.1175/2008jhm993.1.
123. Rodell M, Velicogna I, & Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460(7258):999-1002. doi:10.1038/nature08238.
124. Guntner A (2008) Improvement of Global Hydrological Models Using GRACE Data. Surv Geophys 29(4-5):375-397. doi:10.1007/s10712-008-9038-y.
125. Tapley BD, Schutz BE, & Born GH (2004) Statistical Orbit Determination (Elsevier Academic press, Amsterdam, Netherlands) p 547.
126. Watkins MM, et al. (2015) Improved methods for observing Earth's time variable mass distribution with GRACE using spherical cap mascons. J Geophys Res-Sol Ea 120(4):2648-2671. 10.1002/2014jb011547.
127. Wahr J, Swenson S, & Velicogna I (2006) Accuracy of GRACE mass estimates. Geophys Res Lett 33(6). doi:10.1029/2005gl025305.
128. Longuevergne L, Scanlon BR, & Wilson CR (2010) GRACE Hydrological estimates for small basins: Evaluating processing approaches on the High Plains Aquifer, USA. Water Resour Res 46(11). 10.1029/2009wr008564.
129. Swenson S & Wahr J (2006) Post‐processing removal of correlated errors in GRACE data. Geophys Res Lett 33(8). 10.1029/2005GL025285.
130. Jekeli C (1981) Alternative methods to smooth the Earth's gravity field. in Unknown (327Dep. of Geod. Sci. and Surv., Ohio State Univ), p 54.
131. Werth S, Guntner A, Schmidt R, & Kusche J (2009) Evaluation of GRACE filter tools from a hydrological perspective. Geophys J Int 179(3):1499-1515. doi:10.1111/j.1365-246X.2009.04355.x.
132. Klees R, Zapreeva E, Winsemius H, & Savenije H (2006) The bias in GRACE estimates of continental water storage variations. Hydrol. Earth Syst. Sci. 3(6):3557–3594.
133. Landerer FW & Swenson SC (2012) Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour Res 48(4). 10.1029/2011wr011453.
134. Harig C & Simons FJ (2012) Mapping Greenland's mass loss in space and time. Proc Natl Acad Sci U S A 109(49):19934-19937. 10.1073/pnas.1206785109.
135. Simons FJ & Dahlen FA (2006) Spherical Slepian functions and the polar gap in geodesy. Geophys J Int 166(3):1039-1061. doi:10.1111/j.1365-246X.2006.03065.x.
136. Wang L, et al. (2012) Coseismic and postseismic deformation of the 2011 Tohoku-Oki earthquake constrained by GRACE gravimetry. Geophys Res Lett 39. doi:10.1029/2012gl051104.
137. Han SC, Riva R, Sauber J, & Okal E (2013) Source parameter inversion for recent great earthquakes from a decade-long observation of global gravity fields. J Geophys Res-Sol Ea 118(3):1240-1267. doi:10.1002/jgrb.50116.
138. Wiese DN, Nerem RS, & Han SC (2011) Expected improvements in determining continental hydrology, ice mass variations, ocean bottom pressure signals, and earthquakes using two pairs of dedicated satellites for temporal gravity recovery. J Geophys Res-Sol Ea 116(B11). doi:10.1029/2011jb008375.
139. Unicef & Organization WH (2014) Progress on sanitation and drinking water: 2014 update. (World Health Organization, Paris, France).
140. FAO (2016) World Map of the Major Hydrological Basins ed (FAO) AwFaAOotUN (Roma, Italy).
141. Trabucco A & Zomer R (2009) Global aridity index (global-aridity) and global potential evapo-transpiration (global-PET) geospatial database. in CGIAR Consortium for Spatial Information.
142. Trabucco A, et al. (2008) Climate change mitigation through afforestation/reforestation: A global analysis of hydrologic impacts with four case studies. Agr Ecosyst Environ 126(1-2):81-97. doi:10.1016/j.agee.2008.01.015.
143. Simons FJ, Dahlen FA, & Wieczorek MA (2006) Spatiospectral concentration on a sphere. Siam Rev 48(3):504-536. 10.1137/S0036144504445765.
144. Simons FJ, Hawthorne JC, & Beggan CD (2009) Efficient analysis and representation of geophysical processes using localized spherical basis functions. Proc. SPIE Int. Soc. Opt. Eng, pp 74460G-74460G.
145. Cheng MK, Ries JC, & Tapley BD (2011) Variations of the Earth's figure axis from satellite laser ranging and GRACE. J Geophys Res-Sol Ea 116(B1). doi:10.1029/2010jb000850.
146. Swenson S, Chambers D, & Wahr J (2008) Estimating geocenter variations from a combination of GRACE and ocean model output. J Geophys Res-Sol Ea 113(B8). 10.1029/2007jb005338.
147. Geruo A, Wahr J, & Zhong SJ (2013) Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophys J Int 192(2):557-572. doi:10.1093/gji/ggs030.
148. Jolliffe I (2002) Principal component analysis (John Wiley & Sons, Inc, Hoboken, NJ, USA).
149. Nash JE & Sutcliffe JV (1970) River flow forecasting through conceptual models part I—A discussion of principles. J Hydrol 10(3):282–290.
150. Anonymous (Okavango Basin Information System (OBIS). Available online: http://leutra.geogr.uni-jena.de/obis/metadata/start.php (accessed on 25 September 2016).
151. Long D, Longuevergne L, & Scanlon BR (2015) Global analysis of approaches for deriving total water storage changes from GRACE satellites. Water Resour Res 51(4):2574-2594. 10.1002/2014wr016853.
152. Chen JL, Wilson CR, Famiglietti JS, & Rodell M (2007) Attenuation effect on seasonal basin-scale water storage changes from GRACE time-variable gravity. J Geodesy 81(4):237-245. doi:10.1007/s00190-006-0104-2.
153. Dutt Vishwakarma B, Devaraju B, & Sneeuw N (2016) Minimizing the effects of filtering on catchment scale GRACE solutions. Water Resour Res 52(8):5868–5890.
154. Wiese DN, Landerer FW, & Watkins MM (2016) Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution. Water Resour Res 52(9):7490-7502. doi:10.1002/2016wr019344.
155. Sultan M, et al. (2014) Monitoring Aquifer Depletion from Space: Case Studies from the Saharan and Arabian Aquifers. Remote Sensing of the Terrestrial Water Cycle., (John Wiley & Sons, Inc, Hoboken, NJ, USA), pp 347–366.
156. Ramillien G, Frappart F, & Seoane L (2014) Application of the Regional Water Mass Variations from GRACE Satellite Gravimetry to Large-Scale Water Management in Africa. Remote Sens 6(8):7379-7405. doi:10.3390/rs6087379.
157. Goncalves J, et al. (2013) Quantifying the modern recharge of the "fossil" Sahara aquifers. Geophys Res Lett 40(11):2673-2678. doi:10.1002/grl.50478.
158. Foster S & Loucks DP (2006) Non-renewable groundwater resources: a guidebook on socially-sustainable management for water-policy makers (Unesco, Paris, France).
159. Sultan B & Janicot S (2000) Abrupt shift of the ITCZ over West Africa and intra‐seasonal variability. Geophys Res Lett 27(20):3353–3356.
160. Asnani G (1993) Tropical meteorology (GC Asnani Pune, New Delh, India).
161. Ferreira VG, Andam-Akorful SA, He X-f, & Xiao R-y (2014) Estimating water storage changes and sink terms in Volta Basin from satellite missions. Water Sci. Eng 7(1):5–16. doi:10.3882/j.issn.1674-2370.2014.01.002.
162. Awange JL, et al. (2013) Understanding the decline of water storage across the Ramser-Lake Naivasha using satellite-based methods. Adv Water Resour 60:7-23. doi:10.1016/j.advwatres.2013.07.002.
163. Becker M, et al. (2010) Recent hydrological behavior of the East African great lakes region inferred from GRACE, satellite altimetry and rainfall observations. Cr Geosci 342(3):223-233. doi:10.1016/j.crte.2009.12.010.
164. Gan TY, et al. (2016) Possible climate change/variability and human impacts, vulnerability of drought-prone regions, water resources and capacity building for Africa. Hydrol Sci J:1-18. doi:10.1080/02626667.2015.1057143.
165. Swenson S & Wahr J (2009) Monitoring the water balance of Lake Victoria, East Africa, from space. J Hydrol 370(1-4):163-176. doi:10.1016/j.jhydrol.2009.03.008.
166. Deus D, Gloaguen R, & Krause P (2013) Water Balance Modeling in a Semi-Arid Environment with Limited in situ Data Using Remote Sensing in Lake Manyara, East African Rift, Tanzania. Remote Sens 5(4):1651-1680. doi:10.3390/rs5041651.
167. Vorosmarty CJ, et al. (2010) Global threats to human water security and river biodiversity. Nature 467(7315):555-561. 10.1038/nature09440.
168. United N (2015) World Population Prospects. Key Findings and Advanced Tables. The 2015 Revision. (ESA/P/WP., New York,USA).
169. Bucknall J (2007) Making the most of scarcity: accountability for better water management results in the Middle East and North Africa (World Bank Publications).
170. Trigo RM, Gouveia CM, & Barriopedro D (2010) The intense 2007-2009 drought in the Fertile Crescent: Impacts and associated atmospheric circulation. Agr Forest Meteorol 150(9):1245-1257. 10.1016/j.agrformet.2010.05.006.
171. Michel D, et al. (2012) Water Challenges and Cooperative Response in the Middle East and North Africa. in Available online at: http://www.brookings.edu/research/papers/, ed Papers US-IWF (Brookings Insititution, Washington, DC. USA), p 44.
172. Longuevergne L, Wilson C, Scanlon B, & Crétaux J (2012) GRACE water storage estimates for the Middle East and other regions with significant reservoir and lake storage. Hydrol. Earth Syst. Sci. 9:11131-11159.
173. Mulder G, et al. (2015) Identifying water mass depletion in northern Iraq observed by GRACE. Hydrol. Earth Syst. Sci. 19(3):1487-1500. 10.5194/hess-19-1487-2015.
174. Forootan E, et al. (2014) Separation of large scale water storage patterns over Iran using GRACE, altimetry and hydrological data. Remote Sens Environ 140:580-595. 10.1016/j.rse.2013.09.025.
175. Joodaki G, Wahr J, & Swenson S (2014) Estimating the human contribution to groundwater depletion in the Middle East, from GRACE data, land surface models, and well observations. Water Resour Res 50(3):2679-2692. 10.1002/2013wr014633.
176. Gassert F, M. Luck, M. Landis, P. Reig, and T. Shiao. (2013) "Aqueduct Global Maps 2.0." Working Paper. (accessed 24 April 2017).
177. Cheng MK, Tapley BD, & Ries JC (2013) Deceleration in the Earth's oblateness. J Geophys Res-Sol Ea 118(2):740-747. 10.1002/jgrb.50058.
178. Paulson A, Zhong SJ, & Wahr J (2007) Inference of mantle viscosity from GRACE and relative sea level data. Geophys J Int 171(2):497-508. 10.1111/j.1365-246X.2007.03556.x.
179. Rodell M, et al. (2004) The global land data assimilation system. B Am Meteorol Soc 85(3):381-+. 10.1175/Bams-85-3-381.
180. Hurrell JW, et al. (2013) The Community Earth System Model A Framework for Collaborative Research. B Am Meteorol Soc 94(9):1339-1360. 10.1175/Bams-D-12-00121.1.
181. Döll P, et al. (2014) Global‐scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites. Water Resour Res 50(7):5698-5720.
182. Schwatke C, Dettmering D, Bosch W, & Seitz F (2015) Kalman filter approach for estimating water level time series over inland water using multi-mission satellite altimetry. Hydrol. Earth Syst. Sci. 12:4813-4855.
183. Ghil M, et al. (2002) Advanced spectral methods for climatic time series. Rev Geophys 40(1). 10.1029/2000rg000092.
184. Golyandina N & Zhigljavsky A (2013) Singular Spectrum Analysis for time series (Springer Science & Business Media).
185. Chulov M (2009) Iraq: Water, Water Nowhere. World Policy J 26(4):33-41.
186. Jalili S, Hamidi SA, & Ghanbari RN (2016) Climate variability and anthropogenic effects on Lake Urmia water level fluctuations, northwestern Iran. Hydrolog Sci J 61(10):1759-1769. 10.1080/02626667.2015.1036757.
187. Hesami A & Amini A (2016) Changes in irrigated land and agricultural water use in the Lake Urmia basin. Lake and Reservoir Management 32(3):288-296.
188. Siebert S, Henrich V, Frenken K, & Burke J (2013) Update of the digital Global Map of Irrigation Areas (GMIA) to version 5. in Update of the digital Global Map of Irrigation Areas (GMIA) to version 5, ed FAO ( FAO GeoNetwork Rome, Italy).
189. Murakami M (1995) Managing water for peace in the middle east; alternative strategies (United Nations University Press).
190. Lelieveld J, et al. (2012) Climate change and impacts in the Eastern Mediterranean and the Middle East. Clim Cha 114(3-4):667-687. 10.1007/s10584-012-0418-4.
191. Jones C, et al. (2008) Hydrologic impacts of engineering projects on the Tigris-Euphrates system and its marshlands. J Hydrol 353(1-2):59-75. 10.1016/j.jhydrol.2008.01.029.
192. Issa IE, Al-Ansari N, Sherwany G, & Knutsson S (2014) Expected Future of Water Resources within Tigris-Euphrates Rivers Basin, Iraq. Journal of Water Resource and Protection 2014. 10.4236/jwarp.2014.65042
193. Van Camp M, Radfar M, Martens K, & Walraevens K (2012) Analysis of the groundwater resource decline in an intramountain aquifer system in Central Iran. Geologica Belgica 15(3):176-180.
194. Emam AR, et al. (2015) Estimation of groundwater recharge and its relation to land degradation: case study of a semi-arid river basin in Iran. Environ Earth Sci 74(9):6791-6803. 10.1007/s12665-015-4674-2.
195. Motagh M, et al. (2008) Land subsidence in Iran caused by widespread water reservoir overexploitation. Geophys Res Lett 35(16). 10.1029/2008gl033814.
196. Alpert P, et al. (2006) Relations between climate variability in the Mediterranean region and the tropics: ENSO, South Asian and African monsoons, hurricanes and Saharan dust. The Mediterranean Climate: An Overview of the Main Characteristics and Issues, ed P. Lionello PM-R, and R. Boscolo (Elsevier, New York,USA), Vol 4, pp 149-177.
197. Touchan R, et al. (2005) Reconstructions of spring/summer precipitation for the Eastern Mediterranean from tree-ring widths and its connection to large-scale atmospheric circulation. Clim dyn 25(1):75-98.
198. Evans JP, Smith RB, & Oglesby RJ (2004) Middle East climate simulation and dominant precipitation processes. Int J Climatol 24(13):1671-1694. 10.1002/joc.1084.
199. Cullen HM & deMenocal PB (2000) North Atlantic influence on Tigris-Euphrates streamflow. Int J Climatol 20(8):853-863. 10.1002/1097-0088.
200. Scott AA (2013) The Intertropical Convergence Zone over the Middle East and North Africa: Detection and Trends Master (King Ab dullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia).
201. Fleitmann D, et al. (2003) Changing moisture sources over the last 330,000 years in Northern Oman from fluid-inclusion evidence in speleothems. Quaternary Res 60(2):223-232. 10.1016/S0033-5894(03)00086-3.
202. Wilcox B, et al. (2003) The water balance on rangelands. Encyclo water sci:791-794.
203. Zhang XB, et al. (2005) Trends in Middle East climate extreme indices from 1950 to 2003. J Geophys Res-Atmos 110(D22). 10.1029/2005jd006181.
204. Stocker TF (2014) Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change (Cambridge University Press).
205. Evans JP (2009) 21st century climate change in the Middle East. Climatic Change 92(3-4):417-432. 10.1007/s10584-008-9438-5.
206. Bozkurt D, Sen OL, & Hagemann S (2015) Projected river discharge in the Euphrates-Tigris Basin from a hydrological discharge model forced with RCM and GCM outputs. Clim Res 62(2):131-147. 10.3354/cr01268.
207. Aguilera H & Murillo JM (2009) The effect of possible climate change on natural groundwater recharge based on a simple model: a study of four karstic aquifers in SE Spain. Environ Geol 57(5):963-974. 10.1007/s00254-008-1381-2.
208. Wada Y, et al. (2010) Global depletion of groundwater resources. Geophys Res Lett 37(20). 10.1029/2010gl044571.
209. Sultan M, et al. (2008) Geochemical, isotopic, and remote sensing constraints on the origin and evolution of the Rub Al Khali aquifer system, Arabian Peninsula. J Hydrol 356(1-2):70-83. 10.1016/j.jhydrol.2008.04.001.
210. Slepian D (1964) Prolate spheroidal wave functions, Fourier analysis and uncertainty—IV: extensions to many dimensions; generalized prolate spheroidal functions. Bell System Technical Journal 43(6):3009-3057.
211. Simons FJ & Plattner A (2013) Scalar and vector Slepian functions, spherical signal estimation and spectral analysis. arXiv preprint arXiv:1306.3184.
212. Plattner A, Simons FJ, & Wei L (2012) Analysis of real vector fields on the sphere using Slepian functions. Statistical Signal Processing Workshop (SSP), 2012 IEEE, (IEEE), pp 1-4.
213. Wieczorek MA & Simons FJ (2005) Localized spectral analysis on the sphere. Geophys J Int 162(3):655-675. 10.1111/j.1365-246X.2005.02687.x.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-10-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-10-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw