進階搜尋


 
系統識別號 U0026-1707201514091200
論文名稱(中文) 經顱電刺激對姿勢訓練的效應
論文名稱(英文) The Effects of Transcranial Current Stimulation on Postural Training
校院名稱 成功大學
系所名稱(中) 物理治療學系
系所名稱(英) Department of Physical Therapy
學年度 103
學期 2
出版年 104
研究生(中文) 陳慈吟
研究生(英文) Tzu-Yin Chen
學號 T66024019
學位類別 碩士
語文別 英文
論文頁數 45頁
口試委員 指導教授-黃英修
口試委員-成戎珠
口試委員-楊政峰
召集委員-張國清
中文關鍵字 經顱電刺激  姿勢訓練  動作學習  轉移效果  肢段間協調 
英文關鍵字 transcranial current stimulation  postural training  motor learning  transfer effect  inter-segment coordination 
學科別分類
中文摘要 目的:經顱電刺激具有調節大腦皮質活性與促進動作學習的功效;然而經顱電刺激可能帶來的學習增益,未曾在需要高度動作與感覺統合的姿勢訓練,進行系統化驗證並評估其學習轉移效果。本研究藉由足底壓力中心、平衡板、與踝膝關節運動學耦合,探討合併經顱電刺激(直流電刺激或隨機噪聲電刺激)是否造成健康成年人姿勢訓練產生更大的學習增益與轉移效果。
方法:36位無神經肌肉疾病或下肢手術史的健康成年人(平均年齡:23.2 ± 2.0歲),隨機分成控制組、直流電刺激組及隨機噪聲電刺激組,每組各有12人參與本實驗。所有受試者在一天內完成了前後測試與動態姿勢平衡訓練。前後測試的項目包含動態姿勢平衡(與訓練相同的姿勢作業)與雙腳在氣墊枕上靜止站立(轉移測試)。在動態姿勢平衡訓練中,受測者站在平衡板上接受視覺回饋指引,以踝關節控制板面移動去耦合由複合正弦波(0.03赫茲+0.15赫茲+0.3赫茲)所組成的目標訊號;訓練過程將電極置放於動作皮質區與枕骨。直流電刺激組受試者的動作皮質區接受1毫安培的正直流電,隨機噪聲電刺激組則接受相同強度但頻率隨機調節的電流,電刺激時間皆包含20分鐘。控制組接受和直流電刺激組相同的電刺激,但電流僅出現在訓練過程的前30秒。前後測試行為量測包含:平衡板傾斜角度,電子量角器記錄慣用腳的膝關節與踝關節角度變化,轉移測試時足底壓力中心變化。以重複量數二因子變異數分析及事後檢定檢測時間效果(前測及後測)和組別效益(控制組、直流電刺激組及隨機噪聲電刺激組)在轉移測試姿勢任務中足底壓力中心的特徵(總路徑長、強度位移量及相位位移量的均方根與熵值),以及動態姿勢平衡的表現(追蹤錯誤、追蹤相對錯誤)與平衡板、踝膝關節角度之間相互訊息量。
結果:對轉移測試姿勢任務而言,足底壓力中心的總路徑長以及強度位移均方根受到訓練效果的影響,而且三組受試者的後測值小於前測值。相位位移熵同樣受訓練效果的影響,然而訓練後只有直流電刺激組的相位位移熵出現變大(複雜性增加)的情形。對動態姿勢平衡任務而言,三組受試者在訓練後,姿勢追蹤錯誤與相對錯誤均減小但無組間差異。平衡板、膝關節和踝關節之間的運動學耦合受到訓練效果的影響,但只有直流電刺激組的平衡板-膝關節活動相互訊息量和踝關節-膝關節活動相互訊息量,在後測有顯著增加的情形,而噪聲電刺激組出現平衡板-膝關節活動相互訊息量有增加的情形。
結論:相對於單純姿勢訓練,合併經顱電刺激沒有明顯改變正常成年人動態姿勢平衡與轉移測試的姿勢晃動量的變化;但是在轉移測試作業,直流電刺激合併姿勢訓練,較單純姿勢訓練有更增加姿勢控制自動化的趨勢,而且直流電刺激、隨機噪聲電刺激合併姿勢訓練在動態姿勢平衡作業,較單純姿勢訓練有簡化踝膝關節調控或增加膝關節使用的趨勢。
英文摘要 Objective: Transcranial current stimulation could modulate cortical excitability and enhance motor learning. However, the potential benefits of postural training associated with transcranial current stimulation has not been systematically validated, considering a high degree of sensorimotor integration required for posture balance. The purpose of this study was to examine whether application of transcranial direct current stimulation (tDCS) or transcranial random noise stimulation (tRNS) add to positive training benefits in transfer test and stabilometer stance following dynamic balance training with stabilometer.
Methods: Thirty-six healthy adults (mean age: 23.2 ± 2.0 years) without diagnosed neuromuscular diseases or surgery history of the lower limb were involved in the study. All participants were randomly assigned into three groups (control, tDCS, and tRNS) with each group containing twelve subjects. They completed the pre-test, stabilometer training session, and post-test in a day. The pre-test and post-test consisted of stabilometer stance (identical to postural task during training) and bilateral stance on air-pillow (transferring postural task). During dynamic balance training with stabilometer, the participants stood barefoot on the stabilometer to couple plate movement of the stabilometer to a designate target signal of a combined sinusoid waveform (0.03Hz + 0.15Hz + 0.3Hz) with on-line visual feedback. During stabilometer training session, two stimulation electrodes were placed over the primary motor cortex and inion. The tDCS group received a direct current of 1-mA with positive polarity on the primary motor cortex. The tRNS group received the same amount of stimulation current with varying spectrum ranges. The stimulation duration was 20-minutes for the two groups. The control group received the sham stimulation except that the current was delivered for 30 seconds just in the beginning of the training session like the tDCS group. Behavioral measures in the pre-test and post-test included 1) tilting angle of the stabilometer, displacement of the dominant knee and ankle joints for the stabilometer stance, and 2) variations in center of pressure (COP) for the transferring postural task. Repeat measure two-way ANOVA and post-hoc analysis were used to examine training effect (pre-test vs. post-test) and group effect (control vs. tDCS vs. tRNS) on 1) COP characteristics (total path length (TPL), root mean square (RMS), and sample entropy (SampEn) of amplitude displacement/phase displacement) during transferring postural task , and 2) sway properties (stance error and relative stance error) and mutual information for kinematics of the knee, ankle, and plate during stabilometer stance.
Results: For transferring postural task, the total path length and the RMS of amplitude displacement of COP were subject to training effect, and all the three groups consistently exhibited a smaller postural sway in the post-test. There was a significant training effect on SampEn of phase displacement, but only the tDCS group exhibited a larger SampEn of phase displacement in the post-test. For the stabilometer postural task, training decreased stance error and relative stance error in the post-test for the three groups. Kinematic couplings between stabilometer and ankle/knee movements were all subject to the training effect. To be addressed, only the tDCS group exhibited greater mutual information of stabilometer and knee movements (MI_Stabilometer-knee) and mutual information of ankle and knee movements (MI_Ankle-Knee) in the post-test. MI_Stabilometer-knee was potentiated in the post-test for the tRNS group.
Conclusion: Concurrent transcranial current stimulation did not significantly alter the size of postural sway following postural training. But, dynamic balance training with stabilometer adds to postural automaticity of transferring postural task when concurrent tDCS was applied. tDCS and tRNS may simplify inter-joint coordination or reinforce the use of knee joint for dynamic stabilometer stance after postural training.
論文目次 Abstract...........Ⅰ
摘要...........Ⅳ
致謝...........Ⅵ
Contents..........VII
List of Tables .......IX
List of Figures.........X

Chapter 1. Introduction.........1
1.1 Overview of postural control and training...1
1.2 Transcranial current stimulation and motor learning.2
1.3 Motivation, Research Purposes, and Hypothesis...4

Chapter 2. Methods.........7
2.1 Subjects..........7
2.2 Research procedures and experimental setup....7
2.3 Data analysis.........10
2.4 Statistical analysis.........13

Chapter 3. Results..........15
3.1 Postural sway of bilateral stance on air-pillow for the transfer test...15
3.2 Changes in stance performance and kinematic coupling of stabilometer stance.16

Chapter 4. Discussion..........18
4.1 Changes in stance performance and kinematic coupling of stabilometer postural task....18
4.2 Changes in irregularity of postural sway for the transfer test...21

Chapter 5. Conclusion..........23
Reference...........24
自述............45
參考文獻 Almeida, G. L., Carvalho, R. L., & Talis, V. L. (2006). Postural strategy to keep balance on the seesaw. Gait Posture, 23(1), 17-21. doi:10.1016/j.gaitpost.2004.11.020
Bolognini, N., Pascual-Leone, A., & Fregni, F. (2009). Using non-invasive brain stimulation to augment motor training-induced plasticity. J Neuroeng Rehabil, 6, 8. doi: 10.1186/1743-0003-6-8
Cappelletti, M., Gessaroli, E., Hithersay, R., Mitolo, M., Didino, D., Kanai, R., . . . Walsh, V. (2013). Transfer of cognitive training across magnitude dimensions achieved with concurrent brain stimulation of the parietal lobe. J Neurosci, 33(37), 14899-14907. doi: 10.1523/jneurosci.1692-13.2013
Chaieb, L., Kovacs, G., Cziraki, C., Greenlee, M., Paulus, W., & Antal, A. (2009). Short-duration transcranial random noise stimulation induces blood oxygenation level dependent response attenuation in the human motor cortex. Exp Brain Res, 198(4), 439-444. doi: 10.1007/s00221-009-1938-7
Chaieb, L., Paulus, W., & Antal, A. (2011). Evaluating aftereffects of short-duration transcranial random noise stimulation on cortical excitability. Neural Plast, 2011, 105927. doi: 10.1155/2011/105927
Clark, R. A., Bryant, A. L., Pua, Y., McCrory, P., Bennell, K., & Hunt, M. (2010). Validity and reliability of the Nintendo Wii Balance Board for assessment of standing balance. Gait Posture, 31(3), 307-310. doi: 10.1016/j.gaitpost.2009.11.012
Cofre Lizama, L. E., Pijnappels, M., Reeves, N. P., Verschueren, S. M., & van Dieen, J. H. (2013). Frequency domain mediolateral balance assessment using a center of pressure tracking task. J Biomech, 46(16), 2831-2836. doi: 10.1016/j.jbiomech.2013.08.018
DaSilva, A. F., Volz, M. S., Bikson, M., & Fregni, F. (2011). Electrode positioning and montage in transcranial direct current stimulation. J Vis Exp(51). doi: 10.3791/2744
Demura, S., & Kitabayashi, T. (2006). Comparison of power spectrum characteristics of body sway during a static upright standing posture in healthy elderly people and young adults. Percept Mot Skills, 102(2), 467-476. doi: 10.2466/pms.102.2.467-476
Demura, S., Kitabayashi, T., & Noda, M. (2008). Power spectrum characteristics of sway position and velocity of the center of pressure during static upright posture for healthy people. Percept Mot Skills, 106(1), 307-316. doi: 10.2466/pms.106.1.307-316
Di Giulio, I., Baltzopoulos, V., Maganaris, C. N., & Loram, I. D. (2013). Human standing: does the control strategy preprogram a rigid knee? J Appl Physiol (1985), 114(12), 1717-1729. doi: 10.1152/japplphysiol.01299.2012
Dietz, V., Trippel, M., Ibrahim, I. K., & Berger, W. (1993). Human stance on a sinusoidally translating platform: balance control by feedforward and feedback mechanisms. Exp Brain Res, 93(2), 352-362.
Dockery, C. A., Hueckel-Weng, R., Birbaumer, N., & Plewnia, C. (2009). Enhancement of planning ability by transcranial direct current stimulation. J Neurosci, 29(22), 7271-7277. doi: 10.1523/jneurosci.0065-09.2009
Donker, S. F., Roerdink, M., Greven, A. J., & Beek, P. J. (2007). Regularity of center-of-pressure trajectories depends on the amount of attention invested in postural control. Exp Brain Res, 181(1), 1-11. doi: 10.1007/s00221-007-0905-4
Dutta, A., Chugh, S., Banerjee, A., & Dutta, A. (2014). Point-of-care-testing of standing posture with Wii balance board and microsoft kinect during transcranial direct current stimulation: A feasibility study. Neurorehabilitation, 34(4), 789-798. doi: 10.3233/nre-141077
Edwards, D. J., Krebs, H. I., Rykman, A., Zipse, J., Thickbroom, G. W., Mastaglia, F. L., . . . Volpe, B. T. (2009). Raised corticomotor excitability of M1 forearm area following anodal tDCS is sustained during robotic wrist therapy in chronic stroke. Restor Neurol Neurosci, 27(3), 199-207. doi: 10.3233/rnn-2009-0470
Fujiwara, K., & Ikegami, H. (1984). The characteristics of postural response in upright stance to the floor vibration. Japanese with English abstract]. Jpn J Phys Educ, 29, 251-261.
Furubayashi, T., Terao, Y., Arai, N., Okabe, S., Mochizuki, H., Hanajima, R., . . . Ugawa, Y. (2008). Short and long duration transcranial direct current stimulation (tDCS) over the human hand motor area. Exp Brain Res, 185(2), 279-286. doi: 10.1007/s00221-007-1149-z
Gandiga, P. C., Hummel, F. C., & Cohen, L. G. (2006). Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol, 117(4), 845-850. doi: 10.1016/j.clinph.2005.12.003
Goldberger, A. L., Amaral, L. A., Hausdorff, J. M., Ivanov, P., Peng, C. K., & Stanley, H. E. (2002). Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci U S A, 99 Suppl 1, 2466-2472. doi: 10.1073/pnas.012579499
Gruneberg, C., Bloem, B. R., Honegger, F., & Allum, J. H. (2004). The influence of artificially increased hip and trunk stiffness on balance control in man. Exp Brain Res, 157(4), 472-485. doi: 10.1007/s00221-004-1861-x
Guo, M. C., Yang, J. F., Huang, C. T., & Hwang, I. S. (2012). Organization of physiological tremors and coordination solutions to postural pointing on an uneven stance surface. J Electromyogr Kinesiol, 22(4), 589-597. doi: 10.1016/j.jelekin.2012.03.002
Hampstead, B. M., Brown, G. S., & Hartley, J. F. (2014). Transcranial direct current stimulation modulates activation and effective connectivity during spatial navigation. Brain Stimul, 7(2), 314-324. doi: 10.1016/j.brs.2013.12.006
Horak, F. B., & Diener, H. C. (1994). Cerebellar control of postural scaling and central set in stance. J Neurophysiol, 72(2), 479-493.
Ivanenko, Y. P., Levik, Y. S., Talis, V. L., & Gurfinkel, V. S. (1997). Human equilibrium on unstable support: the importance of feet-support interaction. Neurosci Lett, 235(3), 109-112.
Jahn, K., Deutschlander, A., Stephan, T., Strupp, M., Wiesmann, M., & Brandt, T. (2004). Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging. Neuroimage, 22(4), 1722-1731. doi: 10.1016/j.neuroimage.2004.05.017
Jang, S. H., Ahn, S. H., Byun, W. M., Kim, C. S., Lee, M. Y., & Kwon, Y. H. (2009). The effect of transcranial direct current stimulation on the cortical activation by motor task in the human brain: an fMRI study. Neurosci Lett, 460(2), 117-120. doi: 10.1016/j.neulet.2009.05.037
Kaminski, E., Hoff, M., Sehm, B., Taubert, M., Conde, V., Steele, C. J., . . . Ragert, P. (2013). Effect of transcranial direct current stimulation (tDCS) during complex whole body motor skill learning. Neurosci Lett, 552, 76-80. doi: 10.1016/j.neulet.2013.07.034
Karim, H. T., Sparto, P. J., Aizenstein, H. J., Furman, J. M., Huppert, T. J., Erickson, K. I., & Loughlin, P. J. (2014). Functional MR imaging of a simulated balance task. Brain Res, 1555, 20-27. doi: 10.1016/j.brainres.2014.01.033
Kaski, D., Allum, J. H., Bronstein, A. M., & Dominguez, R. O. (2014). Applying anodal tDCS during tango dancing in a patient with Parkinson's disease. Neurosci Lett, 568, 39-43. doi: 10.1016/j.neulet.2014.03.043
Kaski, D., Dominguez, R. O., Allum, J. H., & Bronstein, A. M. (2013). Improving Gait and Balance in Patients With Leukoaraiosis Using Transcranial Direct Current Stimulation and Physical Training: An Exploratory Study. Neurorehabilitation and Neural Repair, 27(9), 864-871. doi: 10.1177/1545968313496328
Kwon, Y. H., Kang, K. W., Son, S. M., & Lee, N. K. (2015). Is effect of transcranial direct current stimulation on visuomotor coordination dependent on task difficulty? Neural Regen Res, 10(3), 463-466. doi: 10.4103/1673-5374.153697
Laczo, B., Antal, A., Rothkegel, H., & Paulus, W. (2014). Increasing human leg motor cortex excitability by transcranial high frequency random noise stimulation. Restor Neurol Neurosci, 32(3), 403-410. doi: 10.3233/rnn-130367
Lake, D. E., Richman, J. S., Griffin, M. P., & Moorman, J. R. (2002). Sample entropy analysis of neonatal heart rate variability. Am J Physiol Regul Integr Comp Physiol, 283(3), R789-797. doi: 10.1152/ajpregu.00069.2002
Liebetanz, D., Nitsche, M. A., Tergau, F., & Paulus, W. (2002). Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain, 125(Pt 10), 2238-2247.
Malouin, F., Richards, C. L., Jackson, P. L., Dumas, F., & Doyon, J. (2003). Brain activations during motor imagery of locomotor-related tasks: a PET study. Hum Brain Mapp, 19(1), 47-62. doi: 10.1002/hbm.10103
McNevin, N. H., Shea, C. H., & Wulf, G. (2003). Increasing the distance of an external focus of attention enhances learning. Psychol Res, 67(1), 22-29. doi: 10.1007/s00426-002-0093-6
Moliadze, V., Atalay, D., Antal, A., & Paulus, W. (2012). Close to threshold transcranial electrical stimulation preferentially activates inhibitory networks before switching to excitation with higher intensities. Brain Stimul, 5(4), 505-511. doi: 10.1016/j.brs.2011.11.004
Monte-Silva, K., Kuo, M. F., Hessenthaler, S., Fresnoza, S., Liebetanz, D., Paulus, W., & Nitsche, M. A. (2013). Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain Stimul, 6(3), 424-432. doi: 10.1016/j.brs.2012.04.011
Morasso, P. G., & Schieppati, M. (1999). Can muscle stiffness alone stabilize upright standing? J Neurophysiol, 82(3), 1622-1626.
Moss, F., Ward, L. M., & Sannita, W. G. (2004). Stochastic resonance and sensory information processing: a tutorial and review of application. Clin Neurophysiol, 115(2), 267-281.
Musolino, M. C., Loughlin, P. J., Sparto, P. J., & Redfern, M. S. (2006). Spectrally similar periodic and non-periodic optic flows evoke different postural sway responses. Gait Posture, 23(2), 180-188. doi: 10.1016/j.gaitpost.2005.02.008
Nitsche, M. A., Kuo, M. F., Grosch, J., Bergner, C., Monte-Silva, K., & Paulus, W. (2009). D1-receptor impact on neuroplasticity in humans. J Neurosci, 29(8), 2648-2653. doi: 10.1523/jneurosci.5366-08.2009
Nitsche, M. A., Liebetanz, D., Antal, A., Lang, N., Tergau, F., & Paulus, W. (2003). Modulation of cortical excitability by weak direct current stimulation--technical, safety and functional aspects. Suppl Clin Neurophysiol, 56, 255-276.
Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol, 527 Pt 3, 633-639.
Nitsche, M. A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 1899-1901.
Nitsche, M. A., & Paulus, W. (2011). Transcranial direct current stimulation--update 2011. Restor Neurol Neurosci, 29(6), 463-492. doi: 10.3233/rnn-2011-0618
Nitsche, M. A., Seeber, A., Frommann, K., Klein, C. C., Rochford, C., Nitsche, M. S., . . . Tergau, F. (2005). Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. J Physiol, 568(Pt 1), 291-303. doi: 10.1113/jphysiol.2005.092429
Nonnekes, J., Arrogi, A., Munneke, M. A., van Asseldonk, E. H., Oude Nijhuis, L. B., Geurts, A. C., & Weerdesteyn, V. (2014). Subcortical structures in humans can be facilitated by transcranial direct current stimulation. PLoS One, 9(9), e107731. doi: 10.1371/journal.pone.0107731
Ouchi, Y., Okada, H., Yoshikawa, E., Nobezawa, S., & Futatsubashi, M. (1999). Brain activation during maintenance of standing postures in humans. Brain, 122 ( Pt 2), 329-338.
Powers, K. C., Kalmar, J. M., & Cinelli, M. E. (2014). Dynamic stability and steering control following a sport-induced concussion. Gait Posture, 39(2), 728-732. doi: 10.1016/j.gaitpost.2013.10.005
Prichard, G., Weiller, C., Fritsch, B., & Reis, J. (2014). Effects of different electrical brain stimulation protocols on subcomponents of motor skill learning. Brain Stimul, 7(4), 532-540. doi: 10.1016/j.brs.2014.04.005
Reis, J., & Fritsch, B. (2011). Modulation of motor performance and motor learning by transcranial direct current stimulation. Curr Opin Neurol, 24(6), 590-596. doi: 10.1097/WCO.0b013e32834c3db0
Rhea, C. K., Kiefer, A. W., Haran, F. J., Glass, S. M., & Warren, W. H. (2014). A new measure of the CoP trajectory in postural sway: Dynamics of heading change. Medical Engineering & Physics, 36(11), 1473-1479. doi: 10.1016/j.medengphy.2014.07.021
Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol, 278(6), H2039-2049.
Roerdink, M., De Haart, M., Daffertshofer, A., Donker, S. F., Geurts, A. C., & Beek, P. J. (2006). Dynamical structure of center-of-pressure trajectories in patients recovering from stroke. Exp Brain Res, 174(2), 256-269. doi: 10.1007/s00221-006-0441-7
Roulston, M. S. (1999). Estimating the errors on measured entropy and mutual information. Phys. D, 125(3-4), 285-294. doi: 10.1016/s0167-2789(98)00269-3
Rroji, O., van Kuyck, K., Nuttin, B., & Wenderoth, N. (2015). Anodal tDCS over the Primary Motor Cortex Facilitates Long-Term Memory Formation Reflecting Use-Dependent Plasticity. PLoS One, 10(5), e0127270. doi: 10.1371/journal.pone.0127270
Shea, C. H., Wulf, G., Whitacre, C. A., & Park, J. H. (2001). Surfing the implicit wave. Q J Exp Psychol A, 54(3), 841-862. doi: 10.1080/713755993
Stagg, C. J., & Nitsche, M. A. (2011). Physiological basis of transcranial direct current stimulation. Neuroscientist, 17(1), 37-53. doi: 10.1177/1073858410386614
Terney, D., Chaieb, L., Moliadze, V., Antal, A., & Paulus, W. (2008). Increasing human brain excitability by transcranial high-frequency random noise stimulation. J Neurosci, 28(52), 14147-14155. doi: 10.1523/jneurosci.4248-08.2008
Tesio, L., Benedetti, M. G., Rota, V., Manfrini, M., Perucca, L., & Caronni, A. (2014). Surgical leg rotation: cortical neuroplasticity assessed through brain mapping using transcranial magnetic stimulation. Int J Rehabil Res, 37(4), 323-333. doi: 10.1097/mrr.0000000000000075
Tse, Y. Y., Petrofsky, J. S., Berk, L., Daher, N., Lohman, E., Laymon, M. S., & Cavalcanti, P. (2013). Postural sway and rhythmic electroencephalography analysis of cortical activation during eight balance training tasks. Med Sci Monit, 19, 175-186. doi: 10.12659/msm.883824
Van Doren, J., Langguth, B., & Schecklmann, M. (2014). Electroencephalographic effects of transcranial random noise stimulation in the auditory cortex. Brain Stimul, 7(6), 807-812. doi: 10.1016/j.brs.2014.08.007
Vanneste, S., Plazier, M., Ost, J., van der Loo, E., Van de Heyning, P., & De Ridder, D. (2010). Bilateral dorsolateral prefrontal cortex modulation for tinnitus by transcranial direct current stimulation: a preliminary clinical study. Exp Brain Res, 202(4), 779-785. doi: 10.1007/s00221-010-2183-9
Ward, L. M., Doesburg, S. M., Kitajo, K., MacLean, S. E., & Roggeveen, A. B. (2006). Neural synchrony in stochastic resonance, attention, and consciousness. Can J Exp Psychol, 60(4), 319-326.
Williams, J. A., Pascual-Leone, A., & Fregni, F. (2010). Interhemispheric modulation induced by cortical stimulation and motor training. Phys Ther, 90(3), 398-410. doi: 10.2522/ptj.20090075
Winter, D. A., Patla, A. E., Ishac, M., & Gage, W. H. (2003). Motor mechanisms of balance during quiet standing. Journal of Electromyography and Kinesiology, 13(1), 49-56. doi: 10.1016/s1050-6411(02)00085-8
Zhang, X., Woolley, D. G., Swinnen, S. P., Feys, H., Meesen, R., & Wenderoth, N. (2014). Changes in corticomotor excitability and intracortical inhibition of the primary motor cortex forearm area induced by anodal tDCS. PLoS One, 9(7), e101496. doi: 10.1371/journal.pone.0101496
Zhu, F. F., Yeung, A. Y., Poolton, J. M., Lee, T. M., Leung, G. K., & Masters, R. S. (2015). Cathodal Transcranial Direct Current Stimulation Over Left Dorsolateral Prefrontal Cortex Area Promotes Implicit Motor Learning in a Golf Putting Task. Brain Stimul. doi: 10.1016/j.brs.2015.02.005
Zwergal, A., Linn, J., Xiong, G., Brandt, T., Strupp, M., & Jahn, K. (2012). Aging of human supraspinal locomotor and postural control in fMRI. Neurobiol Aging, 33(6), 1073-1084. doi: 10.1016/j.neurobiolaging.2010.09.022
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-07-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-07-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw