進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1707201310243000
論文名稱(中文) 製程參數與伽瑪射線對鈣基骨水泥取代物的結構、性質影響之研究
論文名稱(英文) Investigation of the effects of process parameters and γ-radiation on structure and properties of a calcium-based cement bone substitute material
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系碩博士班
系所名稱(英) Department of Materials Science and Engineering
學年度 101
學期 2
出版年 102
研究生(中文) 陳長庚
研究生(英文) Chang-Keng Chen
學號 n58971362
學位類別 博士
語文別 中文
論文頁數 176頁
口試委員 指導教授-陳瑾惠
指導教授-朱建平
口試委員-李經維
口試委員-林立民
口試委員-尹相姝
中文關鍵字 鈣基骨水泥  硬化劑  抗壓強度  硬化時間  細胞毒性  伽瑪射線  微結構 
英文關鍵字 Calcium-based cement  setting solution  compressive strength  setting time  cytotoxicity  γ-ray  microstructure 
學科別分類
中文摘要 鈣磷系骨水泥(CPC)由於具有優異的生物相容性及引骨性,因此在牙科及外科手術上常用來當作填充修補材料。本論文的主要目的是在研究製程參數及伽瑪射線對實驗室自製的一系列鈣基骨水泥取代物的結構、性質之影響。
本論文的第一部分是著重於硬化溶液對磷酸鈣骨水泥的性質影響,如工作時間/硬化時間、機械性質、結構及細胞毒性等性質。第二部分則是探討γ-ray照射劑量對鈣基骨水泥浸泡人工體液後之結構、性質的影響。
實驗結果顯示工作/硬化時間會隨著硬化溶液的濃度增加而有下降的趨勢。XRD繞射分析可發現此磷酸鈣骨水泥浸泡人工體液1天或更久,HA相為其主要相。浸泡人工體液1天的抗壓強度皆高於浸泡30分鐘及7天的抗壓強度。隨著硬化溶液濃度增加至C3,其1天的抗壓強度達到最大值(約59MPa),而濃度繼續增加,其強度降低仍維持在47-54MPa間。磷酸鈣骨水泥的磷灰石轉換率與抗壓強度的變化趨勢是相似的。細胞毒性測試結果指出細胞培養液、氧化鋁萃取液之光吸收值為相近的,分別為0.80與0.78。隨著硬化溶液的濃度增加,其磷酸鈣骨水泥樣品的萃取液之光吸收值有下降的趨勢。C1、C2與C3的光吸收值分別為0.78、0.67及0.66,值得一提的是,當硬化溶液的濃度超過C3時,光吸收值急遽地下降至0.47左右。
在研究γ-ray照射劑量對結構與性質影響的部分,其實驗結果顯示γ-ray劑量為25 kGy時,其鈣基骨水泥的工作及硬化時間並無明顯變化。隨著劑量提升至50 kGy或更高時,其鈣基骨水泥的工作及硬化時間有明顯縮短的現象,工作時間從5.5分鐘縮短至4.0分鐘,硬化時間從7.0分鐘縮短至5.5分鐘。浸泡人工體液1天後,施以不同劑量γ-ray照射的骨水泥其pH值變化都落在一個狹窄的區間中,區間pH值的範圍為7.6-8.0。經25 kGy的γ-ray劑量照射後,其鈣基骨水泥之抗壓強度有明顯地降低,約15%;隨著γ-ray劑量再增加,抗壓強度並無隨著不同的照射劑量而變化。經過不同劑量的γ-ray照射後不會改變鈣基骨水泥原始粉末的相,對原始粉末的結構亦無任何影響,甚至當照射劑量到達100 kGy時也有相同的結果。未經γ-ray照射的鈣基骨水泥之磷灰石轉換率較經γ-ray照射後的來得高。不同劑量的γ-ray對於此鈣基骨水泥的重量損失與孔隙度均無明顯的影響。經γ-ray照射後的試片佈滿磷灰石結晶及微孔的珊瑚狀結構,而未經γ-ray照射後的試片,其破斷面較為平滑且緻密。
英文摘要 Due to its superior biocompatibility and osteoconductivity, calcium phosphate cement (CPC) has been suggested for use as a bone void filling material in dental and orthopedic applications. Primary purposes of this research are to investigate the effects of process parameters and γ-radiation on the structure and properties of a series of in-house developed calcium-based cement bone substitute materials. The first part of the study focuses on investigating the effects of concentration of the setting solution on properties, such as working/setting time, mechanical strength, structure and cytotoxicity, of these bone substitute materials. Emphasis of the second part of the study has been placed on the investigation of γ-radiation effect on structure and properties of one of such materials immersed in Hanks’ solution.
Experimental results indicated that working/ setting time of the cement paste decreased with increasing concentration of the setting solution. After being immersed in Hanks’ solution for 1d or longer, the XRD intensities of HA phase became dominant. Compressive strength of the cement immersed for 1d was consistently higher than that immersed for 30 min or 7d. After being immersed for 1d, the average CS value reached a maximal value (59 MPa) as concentration was increased to C3, beyond that the cement strength decreased and maintained in a relatively high range of 47-54 MPa. Apatite conversion ratio of the present CPC had a similar trend to that in compressive strength. Cells incubated with conditioned medium of Al2O3 powder and with blank medium exhibited similar average viability values (0.80 and 0.78, respectively). The O.D. value with extractions of cement decreased with increasing concentration of the setting solution. The average C1, C2 and C3-O.D. values were 0.78, 0.67 and 0.66, respectively. When setting solution concentration was greater than C3, the O.D. value sharply declined to 0.47.
Regarding the γ-ray effect on the structure and properties, the results indicate that, at a dosage of 25 kGy, the working and setting times of the cement paste derived from γ-ray-sterilized calcium-based cement powder did not change significantly. At 50 kGy or higher, however, both significantly decreased. After immersion for 1 day, the pH values of all non-sterilized and sterilized samples were in the range of 7.6-8.0. A dose of 25 kGy caused the 1-d compressive strength of the cement to decrease by 15%. Further increases in γ-ray dose did not further change the strength. The XRD patterns of non-sterilized and sterilized powders were substantially similar. The non-sterilized sample had a significantly higher HA conversion ratio than those of γ-ray-sterilized samples. The average 1-d porosity values of all sterilized and non-sterilized samples were similar (31-33%). The γ-ray-sterilized cement samples had coralline type morphology with numerous tiny apatite crystals and micropores. Compared to the sterilized samples, the non-sterilized cement showed a smoother and denser morphology.
論文目次 中文摘要 1
Abstract 3
誌謝 5
總目錄 6
表目錄 9
圖目錄 10
第一章 總緒論 13
1-1 生醫材料的定義 13
1-2 生醫材料之歷史發展 13
1-3 生醫材料之分類 15
1-3-1 依材料種類分類 15
1-3-2 依活性分類 18
1-4 骨科植入材之性質要求 20
1-5 人體硬組織結構成分及性質簡介 22
1-6氫氧基磷灰石性質簡介 29
第二章 理論基礎與文獻回顧 42
2-1 鈣磷系骨水泥的發展與簡介 42
2-1-1 前言 42
2-1-2 磷酸鈣鹽類生醫陶瓷分類與發展 43
2-1-3 鈣磷系鹽類的溶解相圖 44
2-1-4 鈣磷系鹽類水解形成氫氧基磷灰石 46
2-1-5 鈣磷系骨水泥的優點及應用 49
2-1-6 理想的骨填充材 50
2-2 鈣磷系骨水泥的測試 51
2-2-1 體外測試 (in vitro test) 51
2-2-2 鈣磷系骨水泥浸泡人工體液之體外測試 51
2-2-3 影響體外測試機械性質之因素 51
2-2-4 生物相容性評估(Biocompatibility evaluation) 52
2-3 硫酸鈣的發展與簡介 55
2-3-1 硫酸鈣的發展 55
2-3-2 硫酸鈣的性質簡介 56
2-3-3 硫酸鈣骨水泥的優點及缺點 57
2-4 磷酸鈣鹽與硫酸鈣鹽形成之多相複合生醫材料 58
2-4-1 CaSO4・1/2H2O/ HA composite 58
2-4-2 CaSO4・1/2H2O/α-TCP composite 60
2-4-3 CaSO4・2H2O/α-TCP composite 61
2-5消毒滅菌方法的發展與簡介 62
2-5-1 消毒滅菌的發展史 62
2-5-2 消毒滅菌方法的分類 63
2-5-3 消毒滅菌方法對生醫植入材性質的影響 69
2-6 研究動機及目的 73
第三章 材料與實驗方法 92
3-1 硬化溶液濃度對磷酸鈣骨水泥之性質、結構影響之實驗方法 92
3-1-1 抗壓強度測試 92
3-1-2 工作及硬化時間的測量 92
3-1-3 X光繞射分析及磷灰石相轉換率的計算 93
3-1-4 掃描式電子顯微鏡分析 94
3-1-5 細胞毒性測試(Cytotoxicity Assay) 94
3-2 γ-ray消毒滅菌法對鈣基骨水泥性質影響之實驗方法 100
3-2-1 鈣基骨水泥材料製備 100
3-2-2 抗壓強度測試 100
3-2-3 工作及硬化時間的測量 101
3-2-4 硬化期間及浸泡人工體液之pH值分析 101
3-2-5 X光繞射分析及磷灰石相轉換率的計算 102
3-2-6 孔隙度及重量損失量測 103
3-2-7 掃描式電子顯微鏡分析 104
第四章 結果與討論 108
4-1 硬化溶液濃度對磷酸鈣骨水泥之性質、結構影響 108
4-1-1工作及硬化時間測量結果 108
4-1-2 抗壓強度分析 109
4-1-3 XRD繞射分析及磷灰石相轉換率計算 110
4-1-4 細胞毒性測試結果 111
4-1-5 SEM 微結構觀察 112
4-2 γ-ray消毒滅菌法對鈣基骨水泥之性質、結構影響 119
4-2-1工作及硬化時間測量結果 119
4-2-2 pH值的變化 120
4-2-3 抗壓強度分析 121
4-2-4 XRD繞射分析及磷灰石相轉換率計算 121
4-2-5 重量損失及孔隙度量測結果 122
4-2-6 SEM 微結構觀察 122
第五章 總結論 133
參考文獻 137
作者簡介及論文著作 150
附錄I:鈣基骨水泥取代物生物相容性測試 152
附錄II:鈣基骨水泥取代物崩解性測試及與商用類似產品之比較 166
附錄III:磷酸鈣骨水泥浸泡於模擬人工體液中之性質變化 170
參考文獻 Al-Sanabani JS, Madfa AA, Al-Sanabani FA. Application of calcium phosphate materials in dentistry. Int J Biomater. 876132, 2013.
Ambard AJ, Mueninghoff L. Calcium phosphate cement: review of mechanical and biological properties. J Prosthodont. 15: 321-328, 2006.
Apelt D, Theiss F, El-Warrak AO, Zlinszky K, Bettschart-Wolfisberger R, Bohner M, Matter S, Auer JA, von Rechenberg B. In vivo behavior of three different injectable hydraulic calcium phosphate cements. Biomaterials 25:1439-1451, 2004.
Bai B, Jazrawi L, Kummer F, Spivak J. The use of an injectable, biodegradable calcium phosphate bone substitute for the prophylactic augmentation of osteoporotic vertebrae and management of vertebral compression fractures. Spine 24: 1521-1526, 1999.
Barralet J, Akao M, Aoki H, Aoki H. Dissolution of dense carbonate apatite subcutaneously implanted in Wistar rats. J Biomed Mater Res 49:176-182, 2000.
Bohner M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury Int J Care Injured 31 Suppl 4: 37-47, 2000.
Brown GD, Mealey BL, Nummikoski PV, Bifano SL, Waldrop TC. Hydroxyapatite cement implant for regeneration of periodontal osseous defects in humans. J Periodontol 69:146-157, 1998.
Brown WE, Chow LC. Singular points in the chemistry of teeth. J Dent. Res 54:74, 1975.
Brown WE, Chow LC. A new calcium phosphate setting cement. J Dent Res Abs 207:62-672, 1983.
Brown WE, Chow LC. Dental resptorative cement pastes. US Patent 1985, No. 4518430.
Brown WE, Chow LC. Combinations of sparingly soluble calcium phosphates in slurries and paste as mineralizers and cements. US Patent 1986, No. 4612053.
Brown WE, Epstein EF. Crystallography of tetracalcium phosphate. J Res Natl Bur Stand Sect A: Phys Chem 69: 547–551, 1965.
Calafiori R, Di Marco AG, Martino AG, Marotta AM. Preparation and characterization of calcium phosphate biomaterials. J Mater Sci: Mater Med 18: 2331–2338, 2007.
Callaghan JJ. Current concerts review: The clinical results and basic science of total hip arthroplasty with porous-coated prostheses. J Bone Joint Surg Am 75: 299-310, 1993.
Campbell DG, Li P. Sterilization of HIV with irradiation: relevance to infected bone allografts. Aust N Z J Surg 69: 517-521, 1999.
Carvalho FG, Fucio SB, Pascon FM, Kantovitz KR, Correr-Sobrinho L, Puppin-Rontani RM. Effect of gamma irradiation on fluoride release and antibacterial activity of resin dental materials. Braz Dent J. 20:122-126, 2009.
Chen WC, Chern Lin JH, Ju CP. Transmission electron microscopic study on setting mechanism of TTCP/DCPA-based calcium phosphate cement. J Biomed Mater Res A. 64: 664–671, 2003.
Chen WC, Ju CP, Chern Lin JH. Variation in structure and properties of a non-dispersive TTCP/DCPA-derived calcium phosphate cement immersed in Hanks' solution. J Oral Rahab 34: 541-551, 2007.
Chen WC, Ju CP, Tien YC, Chern Lin JH. In vivo testing of nanoparticle-treated TTCP/DCPA-based ceramic surfaces. Acta Biomater 5: 1767-1774, 2009.
Chen WL, Fan NY, Lee JW, Lin RM, Ju CP, Chern Lin JH. Immersion-Induced Changes in Structure and Properties of a Calcium Sulfate Cement. Mater Trans 53(6): 1154-1158, 2012
Chern Lin JH, Ju CP, Chen WC, Lin KL, Wang IC. Tetracalcium phosphate (TTCP) having calcium phosphate whisker on surface. US Patent 2005, No. 6960249.
Chow LC. Development of self-setting calcium phosphate cement. The Centennial Memorial Issue 99: 954-964, 1991.
Chow LC. J Ceram Soc Japan Int Edn 99: 927, 1992.
Chow LC, Milenko Markovic, Stanislav A. Frukhtbeyn, Shozo Takagi. Hydrolysis of tetracalcium phosphate under a near-constant composition condition—effects of pH and particle size. Biomaterials 26: 393–401, 2005.
Chow LC, Takagi S. Calcium phosphate hydroxyapatite precursor and methosd for making and using the same. US Patent 1996, No.5542973.
Clemson Advisory Board for Biomaterials “Definition of the word biomaterial”, The 6th annal international biomaterial symposium. April: 20-24, 1974.
Comuzzi L, Ooms E, Jansen JA. Injectable calcium phosphate cement as a filler for bone defects around oral implants: an experimental study in goats. Clin Oral Implants Res 13: 304-311, 2002.
Doi Y, Shimizu Y, Moriwaki Y, Aga M, Iwanaga H, Shibutani T, Yamamoto K and Iwayama Y. Development of a new calcium phosphate cement that contains sodium calcium phosphate. Biomaterials 22: 847-854, 2001.
Dorozhkin SV. Bioceramics based on Calcium Orthophosphates. Biomaterials 31: 1465-1485, 2010.
Dorozhkin SV. Calcium orthophosphates: occurrence, properties, biomineralization, pathological calcification and biomimetic applications. Biomatter. 1:121-164, 2011.
Dorozhkin SV. Biphasic, triphasic and multiphasic calcium orthophosphates. Acta Biomater. 8:963-977, 2012.
Dorozhkin SV. Calcium orthophosphates and human beings: a historical perspective from the 1770s until 1940. Biomatter. 2: 53-70, 2012.
Dorozhkin SV. Calcium orthophosphates in dentistry. J Mater Sci Mater Med. 24:1335-63, 2013.
Driessens FCM, Verbeeck RMH. Relation between physico-chemical solubility and biodegradability of calcium phosphates. In: de Putter C, de Lange GL, de Groot K, Lee AJC. Implant materials in biofunction. Advances in Biomaterials. Amsterdam: Elsevier 105-112, 1988.
Driessens FCM, Verbeeck RMH. Biominerals. CRC Press, Boca Ration, Boston, 37-59, 1990.
Driskell TD, Heller AL, Koenigs J. Dental treatments. US Patent 1975, No. 3913229.
Dubok VA. Bioceramics - Yesterday, today, tomorrow. Powder Metall Met Ceram 39: 381-394, 2000.
Fernández E, Gil FJ, Ginebra MP, Driessens FCM, Planell JA. Calcium phosphate bone cements for clinical applications. Part II: precipitate formation during setting reactions. J Mater Sci Mater Med 10: 177-183, 1999.
Frankenburg EP, Goldstein SA, Bauer TW, Harris SA, Poser RD. Biomechanical and histological evaluation of a calcium phosphate cement. J Bone Joint Surg Am 80: 1112–1114, 1998.
Gbureck U, Probst J, Thull R. Surface properties of calcium phosphate particles for self setting bone cements. Biomol Eng 19: 51-55, 2002.
Geraci G, Lo Iacono G, Lo Nigro C, Cannizzaro F, Cajozzo M, Modica G. Asymptomatic bone cement pulmonary embolism after vertebroplasty: case report and literature review. Case Rep Surg. 2013:591432, 2013.
Ginebra MP, Espanol M, Montufar EB, Perez RA, Mestres G. New processing approaches in calcium phosphate cements and their applications in regenerative medicine. Acta Biomater 6: 2863-2873, 2010.
Hamanishi C, Kitamoto K, Ohura K, Tanaka S, Doi Y. Self-setting, bioactive, and biodegradable TTCP-DCPD apatite cement. J Biomed Mater Res 32: 383-389, 1996.
Hao H, Amizuka N, Oda K, Fujii N, Ohnishi H, Okada A, Nomura S, Maeda T. A histological evaluation on self-setting α-tricalcium phosphate applied in the rat bone cavity Biomaterials 25: 431-442, 2004.
Harving S, Soballe K, Bunger C. A method for bone cement interface thermometry. Acta Orthop Scand 62: 546-548, 1991.
Heini PF, Berlemann U, Kaufmann M, Lippuner K, Fankhauser CH, van Landuyt P. Augmentation of mechanical properties in osteoporotic vertebral bones-a biomechanical investigation of vertebroplasty efficacy with different bone cements. Eur Spine J 10: 164-171, 2001.
Heini PF, Walchli B, Berlemann U. Percutaneous transpedicular vertebroplasty with PMMA: operative technique and early result. A prospective study for the treatment of osteoporotic compression fractures. Eur Spine J 9: 445-450, 2009.
Hench LL, Ethridge EC. Biomaterials: An interfacial approach. Academic press, New York, 1982.
Hench LL, Bioceramics: from concept to clinic. J Am Ceram Soc 1991; 74:1487-1510.
Hing KA, Wilson LE, Buckland T. Comparative performance of three ceramic bone graft substitute. Spine J 7: 475-490, 2007.
Hockin HK Xua, Lisa E Carey, Carl G Simon Jr, Takagi S, Chow LC. Premixed calcium phosphate cements: Synthesis, physical properties, and cell cytotoxicity. Dent Mater 23: 433–441, 2007.
Hulbert SF, Hench LL, Forbers D, Bowman LS. History of bioceramics. Ceram Internat 8:131-140, 1982.
Hyakuna K, Yamamuro T, Kotoura Y, Oka M, Nakamura T, Kitsugi T, Kokubo T, Kushitani H. Surface reactions of calcium phosphate ceramics to various solutions. J Biomed Mater Res 24: 471-488, 1990.
Ishikawa K, Asaoka K. Estimation of ideal mechanical strength and critical porosity of calcium phosphate cement. J Biomed Mater Res 29: 1537-1543, 1995.
Ishikawa K, Takagi S, LC. Chow, Ishikawa Y. Properties and mechanisms of fast-setting calcium phosphate cements. J Mater Sci Mater Med 6: 528-533, 1995.
Jarcho M. CaP ceramics as hard tissue prosthetics. Clin Orthop 157: 259-278, 1981.
Jarcho M. Hydroxyapatite synthesis and characterization in dense polycrystalline forms. J Mater Sci 11: 2027-2035, 1976.
Jarcho M, Kay J, Gumaer K, Doremus R, Drobeck H. Tissue, cellular and subcellular events at a bone-ceramic hydroxyapatite interface. J Bioengineering 1:79-92, 1977.
Jarcho M, Salsburry RL, Thomas MB. Synthetic and fabrication of β-TCP ceramic for potential prosthesis application. Mater Sci 1979;14:142.
Karpukhin IA, Vladimirov VS, Moizis SE. A mechanism for phosphate hardening and prospects for the use of metal, phosphate materials (a review). Part I. The nature of hydrogen bonding and its function in the mechanism of phosphate hardening. Refract Ind Ceram; 46: 180-186.
Kay MI, Young RA, Posner AS. Crystal structure of hydroxyapatite. Nature 204:1050-1052, 1964.
Kitsugi T, Yamamuro T, Nakamura T, Oka M. Transmission electron microscopy observation at the interface of bone and four types of calcium phosphate ceramics with different calcium/phosphorus molar ratios. Biomaterials 16: 1101-1107, 1995.
Knaack D, Goad MEP, Aiolova M, Rey C, Tofighi A, Chakravarthy P, Duke Lee D. Resorbable calcium phosphate bone substitute. J Biomed Mater Res Part B: Appl Biomater 11: 399-409, 1998.
Kuemmerle JM, Oberle A, Oechslin C, Bohner M, Frei C, Boecken I, von Rechenberg B. Assessment of the suitability of a new brushite calcium phosphate cement for cranioplasty-an experimental study in sheep. J Cranio Maxill Surg 33: 37-44, 2005.
LeGeros RZ. Properties of osteoconductive biomaterials: Calcium phosphates. Clin Orthop Relat R 395: 81-98, 2002.
LeGeros RZ, Orly I, Gregoire M, Daculsi G. Substrate surface dissolution and interfacial biological mineralization. University of Toronto Press, Toronto, Canada, 76-88, 1991.
Lin KL, Chern Lin JH, Ju CP. Transmission Electron Microscopic Study of Whisker Formation on Tetracalcium Phosphate in Hydrochloric Acid. Mater Trans 45: 3039-3043, 2004.
Lin KL, Ju CP, Chern Lin JH. Effect of heat treatment on setting behavior and compressive strength of tetracalcium phosphate cement. J Mater Sci 40:2631-2634, 2005.
Lisa E. Carey, Hockin H.K. Xu, Carl G. Simon Jr., Shozo Takagi, Laurence C. Chow. Premixed rapid-setting calcium phosphate composites for bone repair. Biomaterials 26: 5002–5014, 2005.
Liu CS, Shao HF, Chen FY, Zheng HY. Effects of the granularity of raw materials on the hydration and hardening process of calcium phosphate cement. Biomaterials 24: 4103–4113, 2003.
Liu CS, Wei S and Chen J. Solution property of calcium phosphate cement hardening body. Mater Chem Phys 58: 78-82, 1999.
Liu FJ, Ren H, Shen Y, Ding WY, Wang LF. Pulmonary embolism caused by cement leakage after percutaneous kyphoplasty: a case report. Orthop Surg. 4:263-265, 2012.
Manoj KomaTH, Varma H K and Sivakumar R. On the development of an apatitic calcium phosphate bone cement. Bull Mater Sci 23: 135-140, 2000.
Mears DC. Metals in medicine and surgery Int Met Rev 22: 119-155, 1977.
Miyamoto Y, Ishikawa K, Fukao H, Sawada M, Nagayama M, Kon M, Asaoka K. In vivo setting behaviour of fast-setting calcium phosphate cement. Biomaterials. 16: 855-860, 1995.
Monma H. Materials chemistry of calcium phosphate cement. J Jpn Soc Biomaterials 15:24–30, 1997.
Moon MH, Jo KH, Kim HW. Cardiac perforation caused by bone cement embolism. Arch Cardiovasc Dis. 106:413-4, 2013.
Neo M, Kotani S, Fujita Y, Nakamura T, Yama T, Bando Y, Ohtsuki C, Kokubo T. Differences in ceramic-bone interface between surface-active ceramics and resorbable ceramics: A study by scanning and transmission electron microscopy. J Biomed Mater Res 26: 255-267, 1992.
Nguyen H, Morgan DA, Forwood MR. Sterilization of allograft bone: is 25 kGy the gold standard for gamma irradiation? Cell Tissue Bank. 8: 81-91, 2007.
Nilsson M, Ferna´ndez E, Sarda S, Lidgren L, Planell JA. Characterization of a novel calcium phosphate/sulphate bone cement. J Biomed Mater Res 61: 600–607, 2002.
Nilsson M, Wielanek L, Wang JS, Tanner KE, Lidgren L. Factors influencing the compressive strength of an injectable calcium sulfate-hydroxyapatite cement. J Mater Sci Mater Med 14: 399-404, 2003.
Nomoto T, Haraguchi K, Yamaguchi S, Sugano N, Nakayama H, Sekino T, Niihara K. Hydrolyses of calcium phosphates-allografts composite in physiological solutions. J Mater Sci: Mater Med 17: 379–385, 2006.
Oguchi H, Ishikawa K, Mizoue K, Seto K, Eguchi G. Long-term histological evaluation of hydroxyapatite ceramics in humans. Biomaterials 16: 33-38, 1995.
Ohura K, Bohner M, Hardouin P, Lemaitre J, Pasquier G, Flautre B. Resorption of and bone formation from, new betatricalcium phosphate-monocalcium phosphate cements: an in vivo study. J Biomed Mater Res 30: 193–200, 1996.
Park JB. Biomaterials science and engineering. Plenum Press, New York and London, 1985.
Park JB, Bronzino JD. Biomaterials principles and applications. CRC Press, New York, 2003.
Parsons JR, Ricci JL, Alexander H, Bajpai PK. Osteoconductive composite grouts for orthopedic use. Ann N Y Acad Sci 523: 190-207, 1988.
Pinchuk ND and Ivanchenko LA. Making Calcium Phosphate Biomaterials. Powder Metall Met Ceram 42: 7-8, 2003.
Putlyaev1 VI and Safronova TV. A New Generation of Calcium phosphate Biomaterials: The Role of Phase and Chemical Compositions. Glass Ceram 63: 3-4, 2006.
Rangavittal N, Landa-Ca´novas AR, Gonza´lez-Calbet JM, Vallet-Regı´ M. Structural study and stability of hydroxyapatite and β-tricalcium phosphate: Two important bioceramics. J Biomed Mater Res 51: 660-668, 2000.
Ravaglioli A and Krajewski A Bioceramics: materials, properties, applications. Chapman & Hall Press, London, 44-45, 1992.
Rebeca Alvarez, Louise A. Evans, Paul J. Milham, Michael A. Wilson. Effects of humic material on the precipitation of calcium phosphate. Geoderma 118: 245–260, 2004.
Romeo HE and Fanovich A MA. Synthesis of tetracalcium phosphate from mechanochemically activated reactants and assessment as a component of bone cements. J Mater Sci Mater Med 19: 2751–2760, 2008.
Roy D, Linnehan S. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 247: 220-222, 1974.
Sariibrahimoglu K, Leeuwenburgh SC, Wolke JG, Yubao L, Jansen JA. Effect of calcium carbonate on hardening, physicochemical properties, and in vitro degradation of injectable calcium phosphate cements. J Biomed Mater Res A. 100: 712-719, 2012.
Sigaux J, Guignard S, Tuilier T, Eymard C, Gaston A, Chevalier X. Efficacity and feasibility of vertebroplasty for severe vertebral fracture: a retrospective study of 12 vertebroplasties. Joint Bone Spine. 80: 328-331, 2013.
Soballe K. Hydroxyapatite ceramic coating for bone implant fixation. ACTA Orthopaed Scandin Supplem 64: 1-58, 1993.
Song HY, Esfakur Rahman AHM, Lee BT Fabrication of calcium phosphate-calcium sulfate injectable bone substitute using chitosan and citric acid. J Mater Sci: Mater Med 20: 935–941, 2009.
Takagi S, Chow LC, Ishikawa K. Formation of hydroxyapatite in new calcium phosphate cements. Biomaterials 19: 1593-1599, 1998.
Takagi S, Chow LC. Formation of macropores in calcium phosphate cement implants. J Mater Sci Mater Med12: 135-9, 2001.
Takezawa Y, Doi Y, Shibata S, Wakamatsu N, Kamemizu H, Goto T, Iijima M, Moriwaki Y, Uno K, Kubo F, Haeuchi Y. Self-setting apatite accelerator, hydroxyapatite as setting accelerator. J Jpn Soc Dent Mat 6:426-431, 1988.
Tanahashi M. Fibrous hydroxyapatite grown in the gel system: effects of pH of the solution on the growth rate and morphology. J Mater Sci Mater Med 3:48-53, 1992.
TenHuisen KS, Brown PW. Variations in solution chemistry during calcium-deficient and stoichiometric hydroxyapatite formation from CaHPO4.2H2O and Ca4(PO4)2O. J Biomed Mater Res 36: 233-241, 1997.
Thomas MV, Puleo DA. Calcium Sulfate: Properties and Clinical Applications. J Biomed Mater Res B Appl Biomater 88: 597-610, 2009.
Thordarson D, Hedman T, Yetkinler D, Eskander E, Lawrence T, Poser R. Superior compressive strength of a calcaneal fracture construct augmented with remodelable cancellous bone cement. J Bone Joint Surg 81A:239-246, 1999.
Toworfe GK, Composto RJ, Shapiro IM, Ducheyne P. Nucleation and growth of calcium phosphate on amine-, carboxyl- and hydroxyl-silane self-assembled monolayers. Biomaterials 27: 631–642, 2006.
Tsai CH, Chern Lin JH, Ju CP. Gamma radiation-induced changes in structure and properties of tetracalcium phosphate and its derived calcium phosphate cement. J Biomed Mater Res B Appl Biomater 80B: 244-252, 2007.
Tsai CH, Ju CP, Chern Lin JH. Bioresorption behavior of tetracalcium phosphate-derived calcium phosphate cement implanted in femur of rabbits. Biomaterials 29: 984-993, 2006.
Tsai CH, Ju CP and Chern Lin JH. Morphology and mechanical behavior of TTCP-derived calcium phosphate cement subcutaneously implanted in rats. J Mater Sci Mater Med 19: 2407–2415, 2008.
Uwe Gbureck, Sofia Dembski, Roger Thull, Jake E. Barralet. Factors influencing calcium phosphate cement shelf-life. Biomaterials 26: 3691–3697, 2005.
Van der Stok J, Van Lieshout EM, El-Massoudi Y, Van Kralingen GH, Patka P. Bone substitutes in the Netherlands - a systematic literature review. Acta Biomater 7: 739-750, 2011.
Vereecke G, Lemaitre J. Calculation of the solubility diagrams in the system Ca(OH)2-H3PO4-KOH-HNO3-CO3-H2O. J Cryst Growth 104: 820-832, 1990.
Wang IC, Ju CP, Chern Lin JH. Gamma-radiation effect on morphology and properties of TTCP/DCPA-derived calcium phosphate cement. Mater Trans 46: 1-5, 2005.
Wang IC, Chern Lin JH, Ju CP. Transmission electron microscopy study of surface treated tetracalcium phosphate. Mater Trans 46: 885-890, 2005.
Wang JC, Ko CL, Hung CC, Tyan YC, Lai CH, Chen WC, Wang CK. Deriving fast setting properties of tetracalcium phosphate/dicalcium phosphate anhydrous bone cement with nanocrystallites on the reactant surfaces. J Dent 38: 158-165, 2010.
Xie L, Monroe EA. Calcium phosphate dental cements. Mater Res Soc Symp Proc. 179: 25-39, 1997; 2002..
Xinde Cao, Willie G. Harris, Manohardeep S. Josan, Vimala D. Nair. Inhibition of calcium phosphate precipitation under environmentally-relevant conditions. Sci Total Environ 383: 205–215, 2007.
Xiong Lu, Yang Leng. Theoretical analysis of calcium phosphate precipitation in simulated body fluid. Biomaterials 26: 1097–1108, 2005.
Yamamoto H, Niwa S, Hori M, Hattori T, Sawai K, Aoki S, Hirano M. Takeuchi H. Mechanical strength of calcium phosphate cement in vivo and in vitro. Biomaterials 19: 1587-1591, 1998.
Yamada S, Heymann D, Bouler JM, Daculsi G. Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/ b-tricalcium phosphate ratios. Biomaterials 18: 1037–1041, 1997.
Yokoyama A, Yamamoto S, Kawasaki T, Kohgo T, Nakasu M. Development of calcium phosphate cement using chitosan and citric acid for bone substitute materials. Biomaterials 23: 1091–1101, 2002.
darkwing.uoregon.edu/ ~louiso/
www.suntex.com.tw
www.gec.jp/CTT_DATA/WMON/CHAP_4/html/Wmon-094.html
盧光舜,消毒學,南山堂出版社,1985。
張炳龍,ROSS 組織學, 合記圖書出版社, 1991。
王貴譽,微生物學,中華攝影,1993。
汪建民, 材料分析, 中國材料科學學會, 1998。
梁智仁,骨質疏鬆致骨折專治生物材料的研製與市場化,京港學術交流第五十四期,2002。
王盈錦、林峰輝、胡孝光、黃玲惠、黃義侑、蔡瑞瑩、闕山璋,生物醫學材料,合記圖書出版社,2002。
黃裕斌,生醫材料市場概況,工研院IEK, 2013。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-12-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw