進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1707201213583300
論文名稱(中文) 戴奧辛生成機制、廢氣氣固相分布及多環境介質間流佈相關性研究
論文名稱(英文) A study on the formation of dioxins, gas/particle-phase partition of dioxins in the flue gas, and their fates in different environmental media
校院名稱 成功大學
系所名稱(中) 環境醫學研究所
系所名稱(英) Institute of Environmental and Occupational Health
學年度 100
學期 2
出版年 101
研究生(中文) 郭昱杰
研究生(英文) Yu-Chieh Kuo
學號 S78941129
學位類別 博士
語文別 英文
論文頁數 125頁
口試委員 指導教授-蔡朋枝
指導教授-廖寶琦
口試委員-吳聰能
口試委員-李文智
口試委員-牟金祿
口試委員-王琳麒
中文關鍵字 de novo再合成反應  鐵礦燒結  關能基  氣固相分布  去除效率  環境命運  戴奧辛類化合物 
英文關鍵字 de novo synthesis  iron ore sintering  functional forms  gas and particle partitioning  removal efficiency  environmental fate  dioxin-like compounds 
學科別分類
中文摘要 多氯聯苯戴奧辛及呋喃 (PCDD/Fs) 已被認定為環境及人類重要的危害物。對於PCDD/Fs從污染源到受體間的傳輸了解有助於控制其對環境的衝擊。本研究著眼於污染源傳輸至受體的不同階段,針對(1) PCDD/Fs在工業製程中的生成機制、(2) 空氣污染防治設備對於降低PCDD/Fs自污染源逸散的有效性及 (3) PCDD/Fs逸散至大氣中後的環境命運三個重要的議題進行探討。
有鑑於廢棄物焚化廠戴奧辛的排放近年來受到愈來愈嚴格的排放標準規範而下降,鋼鐵冶鍊業鐵礦燒結製程的戴奧辛排放對環境影響之貢獻度就相對提高不少。因此如何有效降低燒結製程的戴奧辛排放就變得格外重要。理論上,透過製程中抑制生成的方式來降低戴奧辛的排放被認為是最佳的方式。然而到目前為止,燒結製程中戴奧辛的生成機制仍然尚未清楚,無法有效發展製程中抑制戴奧辛的方法。一般而言,由於燒結原料中的鐵礦砂、細焦炭、助熔劑及回收的廢雜料中都無可避免含有氯及其他有機物成分,即提供了de novo反應所需之反應物,如巨碳分子、氯源、及做為催化劑之金屬。此外由燒結床緩慢移動之溫度剖面可知,在燒結製程後段風箱中的廢氣溫度可高達 400-500 C 間,因此燒結製程後段風箱的環境相當符合de novo反應進行所需的條件。然而,風箱內粉塵再合成之機制至今亦尚無明確之佐證。因此本研究第一部份針對燒結工場進行實場後段風箱 (燒透點) 粉塵採樣並直接測量粉塵中離子濃度、金屬元素含量及有機官能基種類,以提出可能的de novo再合成PCDD/Fs生成途徑。結果顯示風箱中含量豐富的氯化鉀及氯化鈉可能提供適合進行 de novo 反應的環境。風箱粉塵中含量最高的五種金屬分別為鋁、鐵、鉀、鈣及鉛,然而這些金屬共存狀況下是否在PCDD/Fs生成過程中扮演角色仍有待後續研究的探討。雖然粉塵中僅有分析到相對低含量的銅,但仍相當可能在風箱PCDD/Fs生成過程中扮演重要的催化角色。此外,在風箱粉塵中共鑑認出29種化合物,其中數種含氧的有機化合物可能與PCDD/Fs生成過程的先期反應有關,然而上述含氧的芳香族化合物在PCDD/Fs生成過程所扮演的角色仍有待進一步的探討。根據上述結果,本研究推論可能的風箱 de novo 合成反應生成PCDD/Fs的可能機制,但仍需後續研究驗證以供將來相關抑制PCDD/Fs生成的方法開發。
除了製程中抑制生成的方式外,利用尾氣處理(廢氣處理裝置)來降低PCDD/Fs的排放是現今廣為採用的方法。然而,利用現行煙道氣固相戴奧辛採樣方式來評估廢氣處理裝置之戴奧辛去除效率存在潛在誤差而錯估去除效率,可能導致PCDD/Fs非預期的逸散至環境中。因此本研究第二部份則著重於發展一適用於鐵礦燒結製程廢氣PCDD/Fs採樣之氣固相校正法來評估廢氣處理裝置的有效性。本研究選取一設置有靜電集塵器 (electrostatic precipitator, EP)和選擇性觸媒還原設備 (selective catalytic reduction, SCR) 的燒結廠做為研究對象。分別在EP前/後及 SCR後的煙道處進行廢氣採樣。所有樣本皆分析其氣相和固相的PCDD/Fs。此外,亦採集分析EP集塵灰的PCDD/Fs含量,並用於後續煙道廢氣氣固相PCDD/F同源物之校正。採樣分析結果顯示廢氣中PCDD/Fs主要存在氣相中。在進行氣固相校正前,EP對於氣、固相 PCDD/Fs的去除效率分別為 -58.1 及64.3%,SCR對於氣、固相 PCDD/Fs去除效率分別為 39.4及83.9%。上述結果和預期的EP和SCR分別對於固相及氣相PCDD/Fs的高去除效率有明顯矛盾之處,顯示所有廢氣樣本的PCDD/Fs氣固相分佈皆需經過校正。校正後,EP對於氣、固相 PCDD/Fs的去除效率分別為4.22 和97.7%,SCR去除效率對於氣、固相 PCDD/Fs去除效率分別為 54.7及62.0%。經由校正後之去除效率皆較為合理,也印證本研究發展之校正方法的適用性。
一旦PCDD/Fs從污染源進入大氣中,這些污染物會進一步由大氣中進入到其他的環境受體中,最終進入食物鏈。因此了解這些污染物在環境中的傳輸就成為相當重要的議題。在本研究的第三部分,除了PCDD/Fs外,亦探討空氣中多種和PCDD/Fs相似的戴奧辛類污染物的濃度及其對植物和土壤的影響。研究中針對複合式工業區進行周圍的大氣、植物和土壤的採樣,並分析其PCDD/Fs、多氯聯苯 (coplanar PCBs)、溴化戴奧辛 (PBDD/Fs)及多溴聯苯醚 (PBDEs)的含量。利用主成分分析(Principal Comonents Analysis, PCA)來探討上述各種污染物在大氣、植物及土壤間的相關性。結果顯示大氣中PCDD/Fs、PBDD/Fs和PBDEs主要存在於固相中。植物和土壤中的PCDD/Fs分別來自於氣相和固相PCDD/Fs的貢獻。對於coplanar PCBs而言,植物和土壤中的coplanar PCBs則和氣相coplanar PCBs較為相關。相反的,植物和土壤中的PBDD/Fs則僅和固相PBDD/Fs較為相關。大氣中的氣及固相的PBDEs對於植物中PBDEs皆有貢獻,然而土壤中的PBDEs則僅來自於固相PBDEs的貢獻。本研究的結果與過去文獻中理論推估或是實際採樣分析的結果皆具有可比較性。
英文摘要 Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) have been widely considered as an important hazard to environment and human. Understanding of the fate of PCDD/Fs from source to receiver would be helpful for emission control and environmental impact reduction of PCDD/Fs. This study focuses on (1) the formation of PCDD/Fs in industrial process, (2) controlling PCDD/Fs emission from the potential sources through air pollution control devices (APCD), and (3) the environmental transportation of PCDD/Fs.
In recent year, owing to the strict emission regulation, PCDD/Fs emissions from waste incinerators has decreased. In this stage, the focus has shifted to iron ore sinter plant for PCDD/Fs emission. Theoretically, in process suppression of PCDD/Fs generation is the best way to reduce PCDD/Fs emission. However, the PCDD/Fs formation pathway in sintering process is still unconcluded and limits the development of suppression of PCDD/Fs generation in sintering process. Therefore, the first research subject is to study the formation of PCDD/Fs during sinter process was studied. Since the sinter raw mix, (such as iron ores, coke breeze, flux and return fine), which with chlorine, metals and other organic matters have favored de novo synthesis. Moreover, the temperature profile of sinter bed revealed that the temperature of flue gas in the windbox of the later phase of sintering process could reach 400 to 500 C, indicating that the atmosphere of the windbox could be favorable for the de novo synthesis. However, the evidences for the possible de novo synthesis of PCDD/Fs in the windbox are still limited. We took the windbox dust from a commercial sinter plant for direct measurement of ionic and chemical functional group constituents for predicting possible de novo synthesis pathways of dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). We discovered that the abundance in both KCl and NaCl may provide a favorable environment for de novo synthesis of PCDD/Fs in the WB. Al, Fe, K, Ca, and Pb were the top five contents in WB16 dusts, but the co-existence of the above five metal contents need further investigation on their roles in PCDD/F formation processes in the future. Although a low concentration of Cu was detected, it might be of importance to PCDD/Fs formation inside the WB. A total of 29 chemical compounds were identified. Among them, several oxygenated organic compound might be associated with PCDD/F formations at the beginning stage, but the roles of aromatic oxygenates on the formation of PCDD/Fs required further investigation. Finally, possible de novo synthesis pathways of PCDD/Fs were proposed based on the above findings. However, the above pathways are required further laboratory studies for validation before possible formation suppression approaches can be determined.
Besides direct suppression of PCDD/Fs generation, the end-of-pipe treatment (air pollution control devices, APCDs) is widely used as a major ways to reduce PCDD/Fs emission nowadays. However, using the data obtained by current flue gas sampling methods to evaluate the PCDD/Fs removal efficiencies of installed APCDs remains potential error. The misestimating of removal efficiencies might cause the unexpected emission of PCDD/Fs into the environment. Therefore, the second part of this study was aimed at developing an approach for correcting the gas and particle partitioning of PCDD/F congeners for samples collected from the flue gas of an iron ore sinter plant. An iron ore sinter plant equipped with an electrostatic precipitator (EP) and a selective catalytic reduction (SCR) was selected. Flue gas samples were collected at EP inlet (EPi), EP outlet (EPo) and SCR outlet (SCRo). Both particle- and gas-phase PCDD/Fs were analyzed for each collected sample. PCDD/F contents in EP ashs (EPash) were also analyzed and used to correct the gas and particle partitioning of PCDD/F congeners of the collected flue gas samples. Results show that PCDD/Fs in the flue gas were dominated by the gas-phase. Before correction, the removal efficiencies for the gas- and particle-phase PCDD/Fs for EP were -58.1% and 64.3%, respectively, and SCR were 39.4% and 83.9%, respectively. The above results were conflict with the expected results for both EP and SCR indicating the need for correcting the gas and particle partitioning of PCDD/F congeners for all collected flue gas samples. After correction, the removal efficiencies become more reasonable for EP (=4.22% and 97.7%, respectively), and SCR (=54.7% and 62.0%, respectively). The above results confirm the feasibility of correcting approach developed by this study.
Once PCDD/Fs as well as dioxin-like compounds have entered the atmosphere from the sources, they move from atmosphere to other environmental compartment and eventually entered the food chain. Therefore, understanding their fate in the terrestrial environment also became an important issue. In the third part of this study, the PCDD/Fs as well as dioxin-like compounds concentrations in the ambient air and their impact on vegetation and soil are investigated. Ambient air, vegetation, and soil samples were collected from the vicinity of an industrial complex. For each collected sample, the polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/F), coplanar polychlorinated biphenyls (coplanar PCB), brominated dibenzo-p-dioxins/ dibenzofurans (PBDD/F), and polybrominated diphenyl ethers (PBDE) concentrations are analyzed. Principal component analysis (PCA) is adopted to explore the relationships between the concentration of each POP type in the ambient air and those in soil and vegetation. Results showed that atmospheric PCDD/Fs, PBDD/Fs, and PBDEs are dominated by the particle phase. PCDD/Fs in vegetation and soil are contributed by gas-phase and particle-phase PCDD/Fs, respectively. For coplanar PCBs, only the gas-phase coplanar PCBs contribute to the content in vegetation and soil. For PBDD/Fs, both vegetation and soil are contributed by particle-phase PBDD/Fs. PBDEs in vegetation are contributed by both gas- and particle-phase PBDEs, while soil PBDEs are by particle-phase only. The above results are confirmed by comparing with those obtained from theoretical calculations and previous studies.
論文目次 Table of Contents

Abstract (Chinese)…………………………………………………………………………i
Abstract (English)…………………………………………………………………………iv
Acknowledgements………………………………………………………………………………viii
Dedication………………………………………………………………………………………………ix
Table of Contents……………………………………………………………………………x
List of Tables……………………………………………………………………………………xiv
List of Figures…………………………………………………………………………………xvi
Terminology……………………………………………………………………………………………xviii

1. Introduction…………………………………………………………………………………1
1.1 General……………………………………………………………………………………………1
1.2 Objectives and Significance………………………………………5
2. Literature review……………………………………………………………………6
2.1 Dibenzo-p-dioxins and dibenzofurans (PCDD/Fs)…………………6
2.2 The toxicity of dioxins & Toxicity Equivalence Factor (TEF) methodology………………………………………………………………………………………………………………………9
2.3 Iron ore sintering process and PCDD/Fs……………………………………12
2.3.1 Iron ore sintering process………………………………………………………………12
2.3.2 Formation of PCDD/Fs during iron ore sintering process…………………………………………………………………………………………………………………………………18
2.3.3 Emission of PCDD/Fs from iron ore sintering process…………………………………………………………………………………………………………………………………23
2.4 Gas/particle partitioning of PCDD/Fs in the flue gas……………………………………………………………………………………………………………………………………………26
2.4.1 Evaluation of gas/particle-phase partitioning of PCDD/Fs by field measurement…………………………………………………………………………27
2.4.2 Evaluation of gas/particle-phase partitioning of PCDD/Fs via theoretical and empirical approaches……………………29
2.5 Environmental Fate of PCDD/Fs……………………………………………………………33
2.5.1 Transport of PCDD/Fs in ambient air………………………………………33
2.5.2 Transport of PCDD/Fs in soil…………………………………………………………34
2.5.3 Transport of PCDD/Fs in vegetation…………………………………………35
3. Methodology………………………………………………………………………………………………………………37
3.1 Research Framework…………………………………………………………………………………………37
3.2 Experimental Section……………………………………………………………………………………41
3.2.1 Part-I Identification the Content of the Windbox Dust Related to the Formation of PCDD/Fs during the Iron Ore Sintering Process………………………………………………………………………………………………………41
3.2.1.1 Conducting WB Dust Sampling………………………………………………………41
3.2.1.2 Sample Analyses………………………………………………………………………………………44
3.2.2 Part-II Correcting the gas and particle partitioning of PCDD/F congeners in the flue gas of an iron ore sinter plant………………………………………………………………………………………………………………………………………46
3.2.2.1 Theoretical Background……………………………………………………………………46
3.2.2.2 Flue gas sampling…………………………………………………………………………………47
3.2.2.3 Sample Analyses………………………………………………………………………………………47
3.2.2.4 Data Analyses……………………………………………………………………………………………49
3.2.3 Part-III Concentrations of PCDD/Fs, coplanar PCBs, PBDD/Fs, and PBDEs in ambient air and their impact on vegetation and soil…………………………………………………………………………………………………51
3.2.3.1 Area for conducting environmental sampling………………51
3.2.3.2 Environmental sampling……………………………………………………………………51
3.2.3.3 Sample analysis………………………………………………………………………………………52
3.2.3.4 Instrumental analysis………………………………………………………………………53
3.2.3.5 Quality assurance and quality control……………………………54
3.2.3.6 Estimation of gas/particle partitioning for the studied pollutants in ambient air……………………………………………………………54
4. Results and discussion…………………………………………………………………………………57
4.1 Part-I Identification the Content of the Windbox Dust Related to the Formation of PCDD/Fs during the Iron Ore Sintering Process………………………………………………………………………………………………………57
4.1.1 Ionic Constituents Containing in WB Dusts………………………57
4.1.2 Elemental Constituents Containing in WB Dusts……………58
4.1.3 Chemical Compounds Containing in WB Dusts………………………61
4.1.4 Possible de novo Synthesis Pathways of Organic Chlorine Compounds……………………………………………………………………………………………………61
4.2 Part-II Correcting the gas and particle partitioning of PCDD/F congeners in the flue gas of an iron ore sinter plant………………………………………………………………………………………………………………………………………69
4.2.1 Measured concentrations and characteristics of PCDD/Fs for samples collected from the flue gas of the EP inlet, EP outlet and SCR outlet, and in EPash………………………………………………………69
4.2.2 The removal efficiencies of PCDD/Fs for the installed EP and SCR based on the measured data…………………………………………………71
4.2.3 Correcting the partitions of gas/particle phase PCDD/Fs…………………………………………………………………………………………………………………………………72
4.2.4 The removal efficiencies of PCDD/Fs for EP and SCR based on corrected data………………………………………………………………………………………73
4.3 Part-III Concentrations of PCDD/Fs, coplanar PCBs, PBDD/Fs, and PBDEs in ambient air and their impact on vegetation and soil…………………………………………………………………………………………………81
4.3.1 Levels and congener profiles of pollutants in the ambient air………………………………………………………………………………………………………………………81
4.3.2 Levels and congener profiles of pollutants in vegetation…………………………………………………………………………………………………………………………83
4.3.3 Levels and congener profiles of pollutants in soil…………………………………………………………………………………………………………………………………………84
4.3.4 Relationship of chlorinated persistent organic pollutant content in ambient air to those in local soil and vegetation…………………………………………………………………………………………………………………………85
4.3.5 Relationship of brominated persistent organic pollutant content in the ambient air to those in local soil and vegetation………………………………………………………………………………………………………………87
5. Conclusions and Directions for Future Research…………………95
5.1 Conclusions……………………………………………………………………………………………………………95
5.1.1 Conclusions for Part-I Study…………………………………………………………95
5.1.2 Conclusions for Part-II Study………………………………………………………95
5.1.3 Conclusions for Part-III Study……………………………………………………96
5.2 Future Directions……………………………………………………………………………………………97
5.2.1 Future Direction for Part-I Study……………………………………………97
5.2.2 Future Direction for Part-II Study…………………………………………97
5.2.3 Future Direction for Part-III Study………………………………………97
6. References…………………………………………………………………………………………………………………98
Supporting information…………………………………………………………………………………………117
S.1 Quality assurance and quality control (QA/QC)…………………117
S.2 Calculating the soil/air fugacity quotients (fS/fA) of individual coplanar PCB congeners……………………………………………………………121
S.3 Calculating the contributions of gas- and particle-phase deposition of PBDEs to vegetation……………………………………………………………123
S.4 References………………………………………………………………………………………………………………125


List of Tables

2-1 Number of 2,3,7,8-substituted and non 2,3,7,8-substituted PCDD/F congener with different chlorine substitutions…………………………………………………………………………………………………………………7
2-2 Physicochemical properties of PCDD/Fs……………………………………8
2-3 Summary of I-TEF and WHO2005-TEF values………………………………10
2-4 The air pollution controlling devices (APCDs) for controlling gas- and particle-phase PCDD/Fs…………………………………………………………………………………………………………………………………26
2.5 Summery of regression parameters for log Kp vs log PL0 for PCDD/Fs in atmosphere…………………………………………………………………………………32
2-6 The parameters m and c used for empirical model developed for predicting PCDD/F gas/particle partitioning in flue gas by Chi and Chang (2005)………………………………………………………………32
2-7 The proportion of gas/particle phase PCDD/Fs in the atmosphere…………………………………………………………………………………………………………………………36
3-1 The characteristics of the flue gases at the EP inlet, EP outlet and SCR outlet……………………………………………………………………………………50
4-1 Mean concentrations and their SDs of ionic contents containing in the WB16 dust……………………………………………………………………………64
4-2 Amount of alkali chlorides (served as catalysts and chlorine sources) added in PCDD/Fs formation experimental studies and the ionic contents of K+, Na+ and Cl- found in the present study………………………………………………………………………………………………………64
4-3 Mean concentrations and their SDs of elemental constituents containing in WB16 dusts…………………………………………………65
4-4 Comparisons of Cu contents containing in the investigated WB dusts of the selected iron ore sinter plant and those in the stack flue gas dust of an iron ore sinter plant, and in the fly ash of thermal power plants, MSWIs and hazard waste incinerator……………………………………………………………………………………66
4-5 Comparison of the chemical classes found in this study and the functional groups found in a study conducted by Tsubouchi et al. (2006)………………………………………………………………………………………67
4-6 The measured concentrations of Cg, Cp, Ct, Ct-PCDD, Ct-PCDF, and Ct-I-TEQ for samples collected from the EP inlet, EP outlet and SCR outlet and their corresponding mean removal efficiencies for EP and SCR………………………………………………………75
4-7 Contents of seventeen 2,3,7,8-substituted PCDD/Fs in EPash and particle collected from the three sampling sites………………………………………………………………………………………………………………………………………76
4-8 The corrected concentrations of Cg’, Cp’, Ct’, Ct-PCDD’, Ct-PCDF’, and Ct-I-TEQ’ of the EP inlet, EP outlet and SCR outlet and their corresponding mean removal efficiencies for EP and SCR……………………………………………………………………………77
4-9 Raw and TEQ concentrations (GM±GSD) of PCDD/Fs, coplanar PCBs, PBDD/Fs, and PBDEs for samples collected from the ambient air, vegetation, and soil in the vicinity of an industrial complex……………………………………………………………………………………………………90
4-10 Gas/particle concentrations (GM ± GSD) of PCDD/Fs, coplanar PCBs, PBDD/Fs, and PBDEs and the fractions of the particle-phase (Φ) of the collected ambient air samples…91
S1 Recoveries of standards, and their corresponding criteria………………………………………………………………………………………………………………………………119
S2 Summary of soil quality guidelines for PCDD/Fs………………120




List of Figures

2-1 Basic structures of PCDD/Fs………………………………………………………………6
2-2 Overall picture of iron ore sintering process………………14
2-3 The temperature profile and possible reactions occurred during sintering process……………………………………………………………………………………15
2-4 The cross-section of raw mix layer and their corresponding temperature profiles during sintering process…………………………………………………………………………………………………………………………………16
2-5 The exhaust gas temperature and the gas velocity form windboxs………………………………………………………………………………………………………………………………21
2-6 A schema describing the formation of PCDD/Fs during sintering process………………………………………………………………………………………………………21
2-7 Functional forms of unburned carbon estimated by the TPD/TPO methods……………………………………………………………………………………………………………22
2-8 PCDD/Fs emissions to atmosphere from sinter plants for different countries during years 1995 to 1998 and 2004 to 2011…………………………………………………………………………………………………………………………………………25
2-9 The congener profiles of PCDD/Fs in the flue gas of iron ore sinter plants with different combination of APCDs………………………………………………………………………………………………………………………………………25
2-10 The sketch of sampling train for USEPA Method 23………28
3-1 The research flow chart of part-I of the present study………………………………………………………………………………………………………………………………………38
3-2 The research flow chart of part-II of the present study………………………………………………………………………………………………………………………………………39
3-3 The research flow chart of part-III of the present study………………………………………………………………………………………………………………………………………40
3-4 Simplified schema of sinter machine, windboxes, and sampling location, i.e. WB 16………………………………………………………………………42
3-5 The picture of valve installed on the windbox for sampling and the simplified schema of the sampling spot in the WB……………………………………………………………………………………………………………………………………43
3-6 Air stream diagram and the three PCDD/Fs sampling sites………………………………………………………………………………………………………………………………………50
3-7 Sixteen sampling sites in the vicinity of an industrial complex for conducting ambient air, vegetation, and soil sampling………………………………………………………………………………………………………………………………56
4-1 The possible de novo synthesis pathway of organic chlorine compound………………………………………………………………………………………………………68
4-2 The congener profiles of PCDD/Fs in the flue gases for samples collected from the EP inlet, EP outlet and SCR outlet (fraction of total PCDD/F mass concentration)…………78
4-3 The mean contents of 17 PCDD/F congeners containing in EPash, and particles collected from the flue gas of the EP inlet, EP outlet & SCR outlet………………………………………………………………………79
4-4 Ratios of gas-phase PCDD/Fs to the total PCDD/Fs for samples collected at the EP inlet, EP outlet and SCR outlet calculated based on measured data and corrected data…………80
4-5 The contributions of gas- and particle-phases for PCDD/F, coplanar PCB, PBDD/F, and PBDE congeners in ambient air……………………………………………………………………………………………………………………………………………92
4-6 Congener profiles of PCDD/Fs, coplanar PCBs, PBDD/Fs, and PBDEs for samples collected from the ambient air, vegetation and soil samples in the vicinity of an industrial complex…………………………………………………………………………………………………………………………………93
4-7 PCA plots of four studied pollutants in gas/particle-phase of ambient air, vegetation, and soil in different sampling sites………………………………………………………………………………………………………………94
S1 Calculated soil/air fugacity quotients of coplanar PCB congeners……………………………………………………………………………………………………………………………122
S2 Contribution of particle deposition of each PBDE congener (30 congeners) to total PBDEs content in vegetation…………………………………………………………………………………………………………………………124
參考文獻 Addink R., Drijver D., Olie K. Formation of polychlorinated dibenzo-p-dioxins/dibenzofurans in the carbon/fly ash system. Chemosphere. 23 (1991) 1205-1211.
Alcock R.E., Behnisch P.A., Jones K.C., Hagenmaier H. Dioxin-like PCBs in the environment - human exposure and the significance of sources. Chemosphere. 31 (1998) 1457-1472.
Alcock R.E., Gemmill R., Jones K.C. Improvements to the UK PCDD/F and PCB atmospheric emission inventory following an emissions measurement programme. Chemosphere 38 (1999) 759-770.
Anderson D.R., Fisher R. Sources of dioxins in the United Kingdom: the steel industry and other sources. Chemosphere. 46 (2002) 371-381.
Aries E., Anderson D.R., Fisher R., Fray T.A.T., Hemfrey D. PCDD/F and "dioxin-like" PCB emissions from iron ore sintering plants in the UK. Chemosphere 65 (2006) 1470-1480.
ATSDR, Toxicological Profile for Chlorinated Dibenzo-p-Dioxins (with updated policy guideline in Appendix B for residential soil, September 2008); Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA. 1998.
Aunela-Tapolaa L.A., Frandsen1 F.J., Häsänen E.K. Trace metal emissions from the estonian oil shale fired power plant. Fuel Process. Technol. 57 (1998) 1-24.
Backe C., Cousins I.T., Larsson P. PCB in soils and estimated soil-air exchange fluxes of selected PCB congeners in the south of Sweden. Environ. Pollut. 128 (2004) 59-72.
Baker R.T.K., Chludzinski JJ. Jr. Catalytic gasification of graphite by chromium and copper in oxygen. Carbon 19 (1981) 75-82.
Bidleman T.F. Atmospheric processes. Wet and dry deposition of organic compounds are controlled by their vapor-particle partitioning. Environ. Sci. Technol. 22 (1988) 361-367.
BMU, Federal Soil Protection and Contaminated Sites Ordinance (BBodSchV); Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU): Germany. 1999.
Buekens A., Stiegliz L., Hell K., Huang H., Segers P., Dioxins from thermal and metallurgical processes: recent studies for the iron and steel industry. Chemosphere 42 (2001) 729-735.
Cains P.W., Mccausland L.J., Fernandes A.R., Patrick D. Polychlorinated dibenzo-p-dioxins and dibenzofurans formation in incineration: Effects of fly ash and carbon source. Environ. Sci. Technol. 31 (1997) 776-785.
CCME, Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health; Polychlorinated biphenyls (total); Canadian Environmental Quality Guidelines; Canadian Council of Ministers of the Environment: Hull, QC, Canada. 1999.
CCME, Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health; Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs); Canadian Environmental Quality Guidelines; Canadian Council of Ministers of the Environment: Hull, QC, Canada. 2002.
Cetin B., Yatkin S., Bayram A., Odabasi M. Ambient concentrations and source apportionment of PCBs and trace elements around an industrial area in Izmir, Turkey. Chemosphere 69 (2007) 1267-1277.
Cetin B., Odabasi M. Particle-phase dry deposition and air-soil gas-exchange of polybrominated diphenyl ethers (PBDEs) in Izmir, Turkey. Environ. Sci. Technol. 41 (2007) 4986-4992.
Chang H.J., Wang S., Wang Y.F., Li H.W., Wang L.C. Contributions of dry and wet depositions of polychlorinated dibenzo-p-dioxins and dibenzofurans to a contaminated site resulting from a penetachlorophenol manufacturing process. Environ. Monit. Assess. 175 (2011) 475-485.
Chao M.R., Hu C.W., Chen Y.L., Chang-Chien G..P., Lee W.J., Chang L.W., Lee W.S., Wu K.Y. Approaching gas-particle partitioning equilibrium of atmospheric PCDD/Fs with increasing distance from an incinerator: Measurements and observations on modeling. Atmos. Environ. 38 (2004) 1501-1510.
Chen J., Zhao H., Gao L., Henkelmann B., Schramm K.W. Atmospheric PCDD/F and PCB levels implicated by pine (Cedrus deodara) needles at Dalian, China. Environ. Pollut. 144 (2006) 510-515.
Chen L.G., Mai B.X., Bi X.H., Chen S.J., Wang X.M., Ran Y., Luo X.J., Sheng G.Y., Fu J.M., Zeng E.Y. Concentration levels, compositional profiles, and gas-particle partitioning of polybrominated diphenyl ethers in the atmosphere of an urban city in South China. Environ. Sci. Technol. 40 (2006) 1190-1196.
Chen W.S., Shen Y.H., Hsieh T.Y., Lin C.W., Wang L.C., Chang-Chien G.P. Fate and distribution of polychlorinated dibenzo-p-dioxins and dibenzofurans in a woodchip-fuelled boiler. Aerosol Air Qual. Res. 11 (2011) 282-289.
Chen Y.C., Tsai P.J., Mou J.L. Determining optimal operation parameters for reducing PCDD/F emissions (I-TEQ values) from the iron ore sintering process by using the Taguchi experimental design. Environ. Sci. Technol. 42 (2008) 5298-5303.
Chen Y.C., Tsai P.J., Wang L.C., Shih M., Lee W.J. An integrated approach for identification of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) pollutant sources based on human blood contents. Environ. Sci. Pollut. Res. Int. 17 (2010) 759-769.
Cheng P.S., Hsu M.S., Ma E., Chou U., Ling Y.C. Levels of PCDD/FS in ambient air and soil in the vicinity of a municipal solid waste incinerator in Hsinchu. Chemosphere. 52 (2003) 1389-1396.
Chi K.H. and Chang M.B. Evaluation of PCDD/F congener partition in vapor/solid phases of waste incinerator flue gases. Environ. Sci. Technol. 39 (2005) 8023-8031.
Chiang Y.M., Kuo Y.H. Two New Isoflavones from the Bark of Ficus microcarpa. J. Nat. Prod. 60 (1997) 292–293.
Chiu J.C., Shen Y.H., Li H.W., Lin L.F., Wang L.C., Chang-Chien G.P. Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from an electric arc furnace, secondary aluminium smelter, crematory and joss paper incinerators. Aerosol Air Qual. Res. 11 (2011) 13-20.
Choi S.D., Baek S.Y., Chang Y.S. Atmospheric levels and distribution of dioxin-like polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in the vicinity of an iron and steel making plant. Atmos. Environ. 42 (2008) 2479-2488.
Chuang S.C., Chen S.J., Huang K.L., Wu E.M.Y., Chang-Chien G.P., Wang L.C. Gas/Particle partitioning of dioxins in exhaust gases from automobiles. Aerosol Air Qual. Res. 10 (2010a) 489-496.
Chuang S.C., Chen S.J., Huang K.L., Chang-Chien G.P., Wang L.C., Huang Y.C. Emissions of polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran from motorcycles. Aerosol Air Qual. Res. 10 (2010b) 533-539.
Cieplik M.K., Carbonell J.P., Munõz C., Baker S., Krüger S., Liljelind P., Marklund S., Louw R. On dioxin formation in iron ore sintering. Environ. Sci. Technol. 37 (2003) 3323-3331.
Cobo M., Gálvez A., Conesa J.A., Montes de Correa C. Characterization of fly ash from a hazardous waste incinerator in Medellin, Colombia. J. Hazard. Mater. 168 (2009) 1223–1232.
Coles D.G., Ragaini R.C., Ondov J.M. Chemical studies of stack fly ash from a coal-fired power plant. Environ. Sci. Technol. 4 (1979) 455-459.
Cousins I.T., Jones K.C. Air-soil exchange of semi-volatile organic compounds (SOCs) in the UK. Environ. Pollut. 102 (1998)105-118.
Dannelly J.R., Munslow W.D., Mitchum R.K., Sovocool G.W. Correlation of structure with retention index for chlorinated dibenzo-p-dioxins. J. Chromatogr. 392 (1987) 51-63.
Debrincat D., Loo C.E. Factors influencing particulate emissions during iron ore sintering. ISIJ Int. 47 (2007) 652-658.
DEH National Dioxins Program: Technical Report No. 3, Inventory of dioxin emissions in Australia. Department of Environment and Hertige (DEH), 2004.
Eitzer B.D., Hites R.A. Polychlorinated dibenzo-p-dioxins and dibenzofurans in the ambient atmosphere of Bloomington, Indiana. Environ. Sci. Technol. 23 (1989) 1389-1395.
Falconer R.L., Bidleman T.F. Vapor pressures and predicted particle/gas distributions of PCB congeners as functions of temperature and ortho-chlorine substitution. Atmos. Environ. 28 (1994) 547-554.
Ferreira C., Ribeiro A., Ottosen, L. Heavy metals in MSW incineration fly ashes. J. Phys. IV France. 107 (2003) 463-466.
Fujii T., Murakawa T., Maeda N., Kondo H., Nagai K., Hama T., Ota K., Removal technology of PCDDs/PCDFs in flue gas from MSW incinerators by fabric filter and SCR system. Organohalogen Compd. 12 (1993) 49-52.
Fujimori T., Takaoka M., Takeda N. Influence of Cu, Fe, Pb, and Zn chlorides and oxides on formation of chlorinated aromatic compounds. Environ. Sci. Technol. 43 (2009) 8053–8059.
Gajewicz A., Haranczyk M., Puzyn T. Predicting logarithmic values of the subcooled liquid vapor pressure of halogenated persistent organic pollutants with QSPR: How different are chlorinated and brominated congeners? Atmos. Environ. 44 (2010) 1428-1436.
Guerriero E., Guarnieri A., Mosca S., Rossetti G., Rotatori M. PCDD/Fs removal efficiency by electrostatic precipitator and wetfine scrubber in an iron ore sintering plant. J. Hazard. Mater. 172 (2009) 1498-1504.
Gullett B.K., Bruce K.R., Beach L.O., Drago A.M. Mechanistic steps in the production of PCDD and PCDF during waste combustion. Chemosphere 25 (1992) 1387-1392.
Hagenmaier H., Krauss P. Attempts to balance transport and fate of polychlorinated dibenzo-p-dioxins and dibenzofurans for Baden-Württemberg. Organohalogen Compds. 12 (1993) 81-84.
Hale M.D., Hileman F.D., Mazer T., Shell T.L., Noble R.W., Brooks J.J. Mathematical modeling of temperature programmed capillary gaschromatographic retention indexes for polychlorinated dibenzofurans. Anal. Chem. 57 (1985) 640-648.
Hanari N., Horii Y., Okazawa T., Falandysz J., Bochentin I., Orlikowska A., Puzyn T., Wyrzykowska B., Yamashita N. Dioxin-like compounds in pine needles around Tokyo Bay, Japan in 1999. J. Environ. Monit. 6 (2004) 305-312.
Hayakawa K., Takatsuki H., Watanabe I., Sakai S. Polybrominated diphenyl ethers (PBDEs), polybrominated dibenzo-p-dioxins/dibenzofurans (PBDD/Fs) and monobromo-polychlorinated dibenzo-p-dioxins/dibenzofurans (MoBPXDD/Fs) in the atmosphere and bulk deposition in Kyoto, Japan. Chemosphere 57 (2004) 343-356.
Hinton W.S., Lane A.M. Characteristics of municipal solid waste incinerator fly ash promoting the formation of polychlorinated dioxins. Chemosphere 22 (1991) 473-483.
Horstmann M., McLachlan M.S. Atmospheric deposition of semivolatile organic compounds to two forest canopies. Atmos. Environ. 32 (1998) 1799-1809.
Hu C.Q., Zhang C.X., Han X.W., Yin R.Y. Sulfur flow analysis for new generation steel manufacturing process. J. Iron. Steel Res. Int. 37 (2008) 12-15.
Hu M.T., Chen S.J., Lai Y.C., Huang K.L., Chang-Chien G.P., Tsai J.H. Characteristics of polychlorinated dibenzo-p-dioxins/dibenzofuran from joss paper burned in Taiwanese temples. Aerosol Air Qual. Res. 9 (2009) 369-377.
Hung H., Blanchard P., Poole G., Thibert B., Chiu C.H. Measurement of particle-bound polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in Arctic air at Alert, Nunavut, Canada. Atmos. Environ. 36 (2002) 1041-1050.
Huang H., Buekens A. De novo synthesis of polychlorinated dibenzo-p-dioxins and dibenzofurans: Proposal of a mechanistic scheme. Sci. Total Environ. 193 (1996) 121-141.
Hums E., Joisten M., Müller R., Sigling R., Spielmann H., Innovative lines of SCR catalysis: Nox reduction for stationary diesel engine exhaust gas and dioxin abatement for waste incineration facilities. Catal. Today 27 (1996) 29-34.
Ismo H., Kari T., Juhani R. Formation of aromatic chlorinated compounds catalyzed by copper and iron. Chemosphere 34 (1997) 2649-2662.
Japan Ministry of the Environment. (2005). Dioxins Emissions Inventory.
Jay K., Stieglitz L. Identification and quantification of volatile organic components in emissions of waste incineration plants. Chemosphere 30 (1995) 1249-1260.
Jones K.C. Observations on long-term air-soil exchange of organic contaminants. Environ. Sci. Pollut. Res. Int. 1 (1994) 171-177.
Kao J.H., Chen K.S., Chang-Chien G.P., Chou I.C. Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from various stationary sources. Aerosol Air Qual. Res. 6 (2006) 170–179.
Karademir A., Bakoglu M., Ayberk S. PCDD/F removal efficiencies of electrostatic precipitator and wet scrubbers in izaydas hazardous waste incinerator. Fresenius Environ. Bull. 12 (2003) 1228-1232.
Karademir A., Bakoglu M., Taspinar F., Ayberk S. Removal of PCDD/Fs from flue gas by a fixed-bed activated carbon filter in a hazardous waste incinerator. Environ. Sci. Technol. 38 (2004) 1201-1207.
Kasai E., Aono T., Tomita Y., Takasaki M., Shiraishi N., Kitano S. Macroscopic behaviors of dioxins in the iron ore sintering plants. ISIJ Int. 41 (2001a) 86-92.
Kasai E., Hosotani Y., Kawaguchi T., Nushiro K., Aono T. Effect of additives on the dioxins emissions in the iron ore sintering process. ISIJ Int. 41 (2001b) 93-97.
Kasama S., Yamamura Y., Watanabe K. Investigation on the dioxin emission from a commercial sintering plant. ISIJ Int. 46 (2006) 1014-1019.
Kaupp H., McLachlan M.S. Gas/particle partitioning of PCDD/Fs, PCBs, PCNs, and PAHs. Chemosphere. 38 (1999) 3411-3421.
Khare P., Baruah B.P. Chemometric analysis of trace elements distribution in raw and thermally treated high sulphur coals. Fuel Process. Technol. 91 (2010) 1691-1701.
Kim K.S., Masunaga S. Behavior and source characteristic of PCBs in urban ambient air of Yokohama, Japan. Environ. Pollut 138 (2005) 290-298.
Kulkarni P.S., Crespo J.G., Afonso C.A.M. Dioxins sources and current remediation technologies -- A review. Environ. Int. 34 (2008) 139-153.
Kuzuhara S., Sato H., Kasai E., Nakamura T. Influence of metallic chlorides on the formation of PCDD/Fs during low-temperature oxidation of carbon. Environ. Sci. Technol. 37 (2003) 2431–2435.
Lahl U. Sintering plants of steel industry – The most important terminal PCDD/F source in industrialized regions. Organohalogen Compd. 11 (1993) 311–314.
Lahl U. Sintering plants of steel industry-PCDD/F emission status and perspectives. Chemosphere 29 (1994) 1939–1945.
Lasagni M., Collina E., Tettamanti M., Pitea D. Kinetics of MSWI fly ash thermal degradation. 1. Empirical rate equation for native carbon gasification. Environ. Sci. Technol. 34 (2000) 130-136.
Lee C.C., Chen H.L., Su H.J., Guo Y.L., Liao P.C. Evaluation of PCDD/Fs patterns emitted from incinerator via direct ambient sampling and indirect serum levels assessment of Taiwanese. Chemosphere 59 (2005) 1465-1474.
Lee R.G.M., Jones K.C. Gas-particle partitioning of atmospheric PCDD/Fs: Measurements and observations on modeling. Environ. Sci. Technol. 33 (1999) 3596-3604.
Lee W.S., Chang-Chien G.P., Wang L.C., Lee W.J., Tsai P.J., Wu K.Y., Lin C. Source Identification of PCDD/Fs for Various atmospheric environments in a highly industrialized city. Environ. Sci. Technol. 38 (2004) 4937-4944.
Lee W.S., Chang-Chien G.P., Wang L.C., Lee W.J., Wu K.Y., Tsai P.J. Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from stack flue gases of electric arc furnaces and secondary aluminum smelters. J. Air Waste Manag. Assoc. 55 (2005) 219-226.
Li H., Feng J., Sheng G., Lü S., Fu J., Peng P., Man R. The PCDD/F and PBDD/F pollution in the ambient atmosphere of Shanghai, China. Chemosphere. 70 (2008) 576-583.
Li H.W., Wang L.C., Chen C.C., Yang X.Y., Chang-Chien G.P., Wu E.M.Y. Influence of memory effect caused by aged bag filters on the stack PCDD/F emissions. J. Hazard. Mater. 185 (2011) 1148-1155.
Liljelind P., Unsworth J., Maaskant O., Marklund S. Removal of dioxins and related aromatic hydrocarbons from flue gas streams by adsorption and catalytic destruction. Chemosphere. 42 (2001) 615-623.
Lin L.F., Lee W.J., Li H.W., Wang M.S., Chang-Chien G.P. Characterization and inventory of PCDD/F emissions from coal-fired power plants and other sources in Taiwan. Chemosphere. 68 (2007) 1642-1649.
Lin L.F., Shih S.I., Su J.W., Shih M., Lin K.C., Wang L.C., Chang-Chien G.P. Dry and wet deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans on the drinking water treatment plant. Aerosol Air Qual. Res. 10 (2010a) 231-244.
Lin W.Y., Wu Y.L., Tu L.K., Wang L.C., Lu X. The emission and distribution of pcdd/fs in municipal solid waste incinerators and coal-fired power plant. Aerosol Air Qual. Res. 10 (2010b) 519-532.
Lohmann R., Harner T., Thomas G.O., Jones K.C. A comparative study of the gas-particle partitioning of PCDD/Fs, PCBs, and PAHs. Environ. Sci. Technol. 34 (2000) 4943-4951.
Ma J., Addink R., Yun S., Cheng J., Wang W., Kannan K. Polybrominated dibenzo-p-dioxins/dibenzofurans and polybrominated diphenyl ethers in soil, vegetation, workshop-floor dust, and electronic shredder residue from an electronic waste recycling facility and in soils from a chemical industrial complex in Eastern China. Environ. Sci. Technol. 43 (2009) 7350-7356.
Mader B.T., Pankow J.F. Study of the effects of particle-phase carbon on the gas/particle partitioning of semivolatile organic compounds in the atmosphere using controlled field experiments. Environ. Sci. Technol. 36 (2002) 5218-5228.
Mamane Y., Pueschel R.F. Oxidation of SO2 on the surface of fly ash particles under low relative humidity conditions. Geophys. Res. Lett. 6 (1979) 109-112.
Mari M., Nadal M., Schuhmacher M., Domingo J.L. Monitoring PCDD/Fs, PCBs and metals in the ambient air of an industrial area of Catalonia, Spain. Chemosphere 73 (2008) 990-998.
McCann G., Strezov V., Lucas J.A., Evans T., Strezov L. Iron ore characterization during high temperature thermal processing. Dev. Chem. Eng. Mineral Process. 12 (2004) 1-14.
McKay G. Dioxin characterization, formation and minimization during municipal solid waste (MSW) incineration: Review. Chem. Eng. J. 86 (2002) 348-368.
McKee D.W. Metal oxide as catalysts for the oxidation of graphite. Carbon. 8 (1970) 8623-8635.
McLachlan M. A simple model to predict accumulation of PCDD/Fs in an agricultural food chain. Chemosphere. 34 (1997) 1263-1276.
McLachlan M.S. Framework for the interpretation of measurements of SOCs in Plant. Environ. Sci. Technol. 33 (1999) 1799-1804.
Meneses M., Schuhmacher M., Domingo J.L. A design of two simple models to predict PCDD/F concentrations in vegetation and soils. Chemosphere 46 (2002) 1393-1402.
MOE, Informational Brochure – Dioxins; Ministry for the Environment: Tokyo, Japan. 2005.
Nakamura M., Suda R., Matsueda T., Kurokawa Y., Takada S., Fukamachi K. Uptake of PCDDs and PCDFs by radish plant. Organohalogen Compd. 24 (1995) 497-500.
Nakano M., Hosotani Y., Kasai E. Observation of behavior of dioxin and some relating elements in iron ore sintering bed by quenching pot test. ISIJ Int. 45 (2005) 609-617.
Nganai S., Lomnicki S., Dellinger B. Ferric oxide mediated formation of PCDD/Fs from 2- monochlorophenol. Environ. Sci. Technol. 43 (2009) 368-373.
Ning Z., Sioutas C. Atmospheric processes influencing aerosols generated by combustion and the inference of their impact on public exposure: A review. Aerosol Air Qual. Res. 10 (2010) 43-58.
Olie K., Vermeulen P.L., Hutzinger O. Chlorodibenzo-p-dioxins and chlorodibenzofurans are trace components of fly ash and flue gas of some municipal incinerators in The Netherlands. Chemosphere. 6 (1977) 455-459.
Olie K., Addink R., Schoonenboom M. Metal as catalysts during the formation and decomposition of chlorinated dioxins and furans in incineration processes. J. Air Waste Manage. Assoc. 48 (1998) 101-105.
Ooi T.C., Lu L., Formation and mitigation of PCDD/Fs in iron ore sintering. Chemosphere. 85 (2011) 291-299.
Pankow J.F. Review and comparative analysis of the theories on partitioning between the gas and aerosol particulate phases in the atmosphere. Atmos. Environ. 21 (1987) 2275-2283.
Pankow J.F. Common y-intercept and single compound regressions of gas-particle partitioning data vs 1/T. Atmos. Environ. 25 (1991) 2229-2239.
Pankow J.F. An absorption model of gas/particle partitioning of organic compounds in the atmosphere. Atmos. Environ. 28 (1994) 185-188.
Paustenbach D.J., Wenning R.J., Lau V., Harrington N.W., Rennix D.K., Parsons A.H. Recent developments on the hazards posed by 2,3,7,8-tetrachlorobenzo-p-dioxin in soil: implications for setting risk-based cleanup levels at residential and industrial sites. J. Toxicol. and Environ. Health 36 (1992) 103-149.
Qian Y., Zheng M., Liu W., Ma X., Zhang B. Influence of metal oxides on PCDD/Fs formation from pentachlorophenol. Chemosphere 60 (2005) 951-958.
Quaß U., Fermann M.W., Bröker G. Steps towards a European Dioxin Emission Inventory. Chemosphere 40 (2000) 1125-1129.
Rordorf B.F. Prediction of vapor pressures, boiling points and enthalpies of fusion for twenty-nine halogenated dibenzo-p-dioxins and fifty-five dibenzofurans by a vapor pressure correlation method. Chemosphere. 18 (1989) 783-388.
Rordorf B.F., Sama L.P., Webster G.R.B., Safe S.H., Safe L.M., Lenoir D., Schwind K.M., Hutzinger O. Vapor pressure measruements on halogenated dibenzo-p-dioxins and dibenzofurans an extended data set for a correlation method. Chemosphere. 20 (1990) 1603-1609.
Ryan S., Touati A., Wikström E., Gullett B. Gas and solid phase partitioning of PCDD/Fs on MWI fly ash and effects of sampling. Organohalogen Compd. 63 (2003) 45-48.
Sammut M.L., Noack Y., Rose J., Hazemann J.L., Proux O., Depoux M., Ziebel A., Fiani E. Speciation of Cd and Pb in dust emitted from sinter. Chemosphere 78 (2010) 445-450.
Schecter A., Birnbaum L., Ryan J.J., Constable J.D. Dioxins: An overview. Environ. Res. 101 (2006) 419-428.
Schuhmacher M., Domingo J.L., Xifró A., Granero S., Llobet J.M., deKok H.A.M. Presence of dioxins and furans in vegetation samples collected in the neighborhood of a municipal solid waste incinerator. J. Environ. Sci. Health A. 33 (1998) 195-212.
Schuhmacher M., Jones K.C., Domingo J.L. Air-vegetation transfer of PCDD/PCDFs: An assessment of field data and implications for modeling. Environ. Pollut. 142 (2006) 143-150.
Shih M., Lee W.J., Shih T.S., Huang S.L., Wang L.C., Chang-Chien G.P., Tsai P.J. Characterization of dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the atmosphere of different workplaces of a sinter plant. Sci. Total Environ. 366 (2006) 197-205.
Shih T.S., Lee W.J., Shih M., Chen Y.C., Huang S.L., Wang L.C., Chang-Chien G.P., Tsai P.J. Exposure and health risk assessment of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) for sinter plant workers. Environ. Int. 34 (2008) 102-107.
Shih T.S., Shih M., Lee W.J., Huang S.L., Wang L.C., Chen Y.C., Tsai P.J. Particle size distributions and health-related exposures of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) of sinter plant workers. Chemosphere 74 (2009) 1463-1470.
Shiu W.Y., Doucette W., Gobas F.A.P.C. Physical-chemical properties of chlorinated dibenzo-p-dioxins. Environ. Sci. Technol. 22 (1988) 651-658.
Smichowski P., Polla G., Gómez D., Fernández Espinosa A.J., López A.C. A three-step metal fractionation scheme for fly ashes collected in an argentine thermal power plant. Fuel 87 (2008) 1249-1258.
Smith K.E.C., Jones K.C. Particles and vegetation: implications for the transfer of particle-bound organic contaminants to vegetation. Sci. Total Environ. 246 (2000) 207-236.
Smołka-Danielowska D. Heavy metals in fly ash from a coal-fired power station in Poland. Pol. J. Environ. Stud. 6 (2006) 943-946.
St-Amand A.D., Mayer P.M., Blais J.M. Modeling atmospheric vegetation uptake of PBDEs using field measurements. Environ. Sci. Technol. 41 (2007) 4234-4239.
Strandberg B., Dodder N.G., Basu I., Hites R.A. Concentrations and spatial variations of polybrominated diphenyl ethers and other organohalogen compounds in Greak Lakes air. Environ. Sci. Technol. 35 (2001) 1078-1083.
Sushil S., Batra V.S. Analysis of fly ash heavy metal content and disposal in three thermal power plants in India. Fuel 85 (2006) 2676-2679.
Suzuki K., Kasai E., Aono T., Yamazaki H., Kawamoto K. De novo formation characteristics of dioxins in the dry zone of an iron ore sintering bed. Chemosphere 54 (2004) 97-104.
Taiwan Environmental Protection Administration. (2008). The project of emission investigation and draft control strategy of air toxic pollutants (dioxins and heavy metals) from the stationary sources.
Takeda M., Ueda A., Hashimoto H., Yamada T., Suzuki N., Sato M., Tsubouchi N., Nakazato Y., Ohtsuka Y. Fate of the chlorine and fluorine in a sub-bituminous coal during pyrolysis and gasification. Fuel 85 (2006) 235-242.
Totten G.E. (Eds.) (2006). Handbook of Lubrication and Tribology, Vol. 1, 2nd ed., Taylor & Francis, Boca Raton.
Trapp S., Matthies M. Modeling volatilization of PCDD/F from soil and uptake into vegetation. Environ. Sci. Technol. 31 (1997) 71-74.
Tsai J.H., Lin K.H., Chen C.Y., Ding J.Y., Choa C.G., Chiang H.L. Chemical constituents in particulate emissions from an integrated iron and steel facility. J. Hazard. Mater. 147 (2007) 111-119.
Tsubouchi N., Kuzuhara S., Kasai E., Hashimoto H., Ohtsuka Y. Properties of dust particles sampled from windboxes of an iron ore sintering plant: Surface structures of unburned carbon. ISIJ Int. 46 (2006) 1020-1026.
Tysklind M., Fängmark I., Marklund S., Lindskog A., Thaning L., Rapple C. Atmospheric transport and transformation of polychlorinated dibenzo-p-dioxins and dibenzofurans. Environ. Sci. Technol. 27 (1993) 2190-2197.
U.S. EPA Determination of Polychlorinated, Polybrominated and Brominated/ Chlorinated Dibenzo-p-dioxins and Dibenzofurans in Ambient Air. Compendium Method TO-9A; U.S. Environmental Protection Agency: Cincinnati, Ohio. 1999.
U.S. EPA Modified Method 23: Determination of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans from stationary sources. In Code of federal regulations; U.S. Environmental Protection Agency: Washington, D.C., 2001; Title 40, Part 60, Appendix A.
U.S. EPA National Primary Drinking Water Standards. Office of Water; U.S. Environmental Protection Agency, 2003; EPA816-F-03-016.
Vallack H.W., Bakker D.J., Brandt I., Brostrom-Lunden E., Brouwer A., Bull K.R., Gough C., Guardans R., Holoubek I., Jansson B., Koch R., Kuylenstierna J., Lecloux A., Mackay D., McCutcheon P., Mocarelli P., Taalman R.D.F. Controlling persistent organic pollutants-what next? Environ. Toxicol. Pharmacol. 6 (1998) 143-175.
Van den Berg M., Birnbaum L., Bosveld A.T., Brunstrom B., Cook P., Feeley M., Giesy J.P., Hanberg A., Hasegawa R., Kennedy S.W., Kubiak T., Larsen J.C., van Leeuwen R.F.X., Liem A.K., Nolt C., Peterson R.E., Poellinger L., Safe S., Schrenk D., Tillitt D., Tysklind M., Younes M., Waern F., Zacharewski T. Toxic equivalency factors (TEFs) for PCBs, PCDDs, and PCDFs for humans and wildlife. Environ. Health Persp. 106 (1998) 775-792.
Wang M.S., Chen S.J., Huang K.L., Lai Y.C., Chang-Chien G.P., Tsai J.H., Lin W.Y., Chang K.C., Lee J.T. Determination of levels of persistent organic pollutants (PCDD/Fs, PBDD/Fs, PBDEs, PCBs, and PBBs) in atmosphere near a municipal solid waste incinerator. Chemosphere. 80 (2010) 1220-1226.
Wang L.C., Lee W.J., Chang-Chien G.P., Lin B.T., Tsai P.J. Effects of chlorine content in feeding wastes of incineration on the emission of polychlorinated dibenzo-p-dioxins/dibenzofurans. Sci. Total Environ. 302 (2003a) 185-198.
Wang L.C., Lee W.J., Tsai P.J., Lee W.S., Chang-Chien G.P. Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from stack flue gases of sinter plants. Chemosphere. 50 (2003b) 1123-1129.
Wang L.C., Chang-Chien G.P. Characterizing the emissions of polybrominated dibenzo-p-dioxins and dibenzofurans from municipal and industrial waste incinerators. Environ. Sci. Technol. 41 (2007) 1159-1165.
Wang L.C., Tsai C.H., Chang-Chien G.P., Hung C.H. Characterization of polybrominated dibenzo-p-dioxins and dibenzofurans in different atmospheric environments. Environ. Sci. Technol. 42 (2008) 75-80.
Wang L.C., Lee W.J., Lee W.S., Chang-Chien G.P. Emission estimation and congener-specific characterization of polybrominated diphenyl ethers from various stationary and mobile sources. Environ. Pollut. 158 (2010) 3108-3115.
Wang L.C., Wang Y.F., Hsi H.C., Chang-Chien G.P. Characterizing the emissions of polybrominated diphenyl ethers (PBDEs) and polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) from metallurgical processes. Environ. Sci. Technol. 44 (2010) 1240-1246.
Weber R., Sakurai T., Hagenmaier H. Low temperature decomposition of PCDD/PCDF, chlorobenzenes and PAHs by TiO2-based V2O5-WO3 catalysts. Appl. Catal. B Environ. 20 (1999) 249-256.
Welsch-Pausch K., McLachlan M.S., Umlauf G. Determination of the principal pathways of polyclorinated dibenzo-p-dioxins and dibenzofurans to Lolium multiflorum (Welsh Rye grass). Environ. Sci. Technol. 29 (1995) 1090-1098.
Wiater I., Louw R. Reactoins of diphenyl ether with chlorine and bromine atoms around 750 K – Relevance for gas-phase “dioxin” formaton. Eur. J. Org. Chem. 1 (1999) 261-265.
Wiles C.C. Municipal Solid Waste Combustion Ash: State-of-the-knowledge. J. Hazard. Mater. 47 (1996) 325-344.
Wu Y.L., Li H.W., Chien C.H., Lai Y.C., Wang L.C. Monitoring and identification of polychlorinated dibenzo-p-dioxins and dibenzofurans in the ambient central Taiwan. Aerosol Air Qual. Res. 10 (2010) 463-471.
Xhrouet C., Pirard C., De Pauw E. De Novo Synthesis of polychlorinated dibenzo-p-dioxins and dibenzofurans on fly ash from a sintering process. Environ. Sci. Technol. 35 (2001) 1616-1623.
Yamasaki H., Kuwata K., Miyamoto H. Effects of ambient temperatrue on aspects of airbone polycyclic aromatic hydrocarbons. Environ. Sci. Technol. 16 (1982) 189-194.
Yanders A.F., Orazio C.E., Puri R.K., Kapila S. On translocation of 2,3,7,8-tetrachlorodibenzo-p-dioxin: time dependent analysis at the Times Beach experimental site. Chemosphere 19 (1989) 429-432.
Yokohama N., Otaka H., Nakata M. Evaluation of gas-particle partition of dioxins in flue gas II: Estmation of gas-particle partition of dioxins in dust-rich flue gas by parallel sampling with different conditions. J. Hazard. Mater. 153 (2008) 404-411.
Yu K.M., Lee W.J., Tsai P.J., Fang K., Lin M. Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from both of point and area sources of an electric-arc furnace-dust treatment plant and their impacts to vicinity environments. Chemosphere 80 (2010) 1131-1136.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-07起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw