進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1706201910245700
論文名稱(中文) 以兩階段法建構直覺式模糊迴歸模式
論文名稱(英文) Formulating Intuitionistic Fuzzy Regression Models by a Two-Stage Method
校院名稱 成功大學
系所名稱(中) 工業與資訊管理學系
系所名稱(英) Department of Industrial and Information Management
學年度 107
學期 2
出版年 108
研究生(中文) 李育誠
研究生(英文) Yu-Cheng Lee
學號 R36061055
學位類別 碩士
語文別 中文
論文頁數 93頁
口試委員 指導教授-陳梁軒
口試委員-王泰裕
口試委員-謝中奇
中文關鍵字 直覺式模糊集合  模糊迴歸  兩階段法  解模糊化  αβ-截集 
英文關鍵字 Intuitionistic fuzzy regression  two-stage method  αβ-cut  Defuzzification 
學科別分類
中文摘要 迴歸分析是一種統計學上分析數據的方法,建立解釋變數與反應變數之間的關聯性。由於現實環境中,所獲得的資料並非都是明確的數值(crisp value),有些資料本身是模糊的(fuzzy),致使傳統的分析方法難以使用。為了處理這類型的資料,Zadeh學者在1965年提出模糊理論(Fuzzy set theory),將不確定性表達於資料型態上,許多學者遂將迴歸分析方法擴展至模糊環境中,做更廣泛的應用。此外,直覺式模糊集合(Intuitionistic fuzzy sets, IFS)為模糊理論之延伸,在歸屬度函數外,加入非歸屬度函數來衡量,因此直覺式模糊集合能表達更多資訊,較貼近於現實環境。本研究根據直覺式模糊集合與模糊迴歸理論,建立直覺式模糊迴歸模型,並利用兩階段法進行求解。
本研究採用迴歸係數為明確值、解釋變數與反應變數為直覺式模糊數(Intuitionistic fuzzy number, IFN)的迴歸估計式。由於所求解的迴歸係數為明確數值,可以獲得解釋變數與反應變數之間的確切關係,提供決策者更明確的決策資訊。本研究在前置階段會先取得直覺式模糊資料。然後是求解階段,採用兩階段法,第一階段先對原始直覺式模糊資料做解模糊化(defuzzified),轉換成一組明確資料,接著將該資料做傳統最小平方法,求得一組明確的迴歸係數估計值;第二階段,在最小化總誤差量的目標下,根據距離測度建立一個數學規劃(mathematical programming)模型,並使用Arefi and Taheri學者在2015年所提出之範例,在反應變數觀察值與估計值差距最小的目標下,求解直覺式模糊調整變數(Intuitionistic fuzzy adjustment variable),以減少模糊估計誤差。模式建構完成後,進行誤差值的分析評估,相較於舊有文獻之方法,本研究模型的誤差衡量指標有更理想的表現;而在模型的穩健度上,本研究之模式透過交叉驗證(cross-validation)後所得的結果,可以驗證明此方法之合理性。
英文摘要 Regression analysis is one of the most widely used decision-making tools. It allows decision-makers to determine the relationship between input variables and output variables. In the complex real-world environment, data may be uncertain, written in linguistic terms, or based on personal subjective attitudes. Therefore, fuzzy set theory was developed to deal with this datatype. To express the essence of uncertainty better, scholars proposed the concept of intuitionistic fuzzy sets (IFS) as a generalization of fuzzy set theory. In addition to positive information, it also includes negative information.
In this study, the regression coefficients are crisp values, and the input variables and output variable are intuitionistic fuzzy numbers (IFN). IFN multiplied with each other will lead to an over-increase in the spread of IFN. In other words, the fuzziness of the numbers will be over-increased. Differing from previous studies on intuitionistic fuzzy regression (IFR), this study proposes a two-stage approach to construct IFR model based on the distance concept. In the first stage, the fuzzy observations are defuzzified so that the classical least-squares method can be applied to find a crisp regression line. In the second stage, the adjustment variable of the model, which represents the fuzziness of the data, is determined to give the model the best explanatory power and the smaller estimation error between the observed and estimated values.
The predictive ability of the obtained models is evaluated using similarity and distance measures. The results indicate that the model proposed in this study has better performance than those in previous studies. As for the robustness of the model, the cross-validation of the model also proves that the rationality of this method is sufficient. Furthermore, this study demonstrates the applicability of the proposed two-stage approach in handling a problem with asymmetric intuitionistic fuzzy numbers.
論文目次 摘要 i
Abstract ii
致謝 vii
目錄 viii
表目錄 xi
圖目錄 xii
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 3
第三節 研究限制 3
第四節 研究流程 4
第五節 論文架構 5
第二章 文獻探討 6
第一節 直覺式模糊集合 6
一、模糊理論 6
二、直覺式模糊集合之性質 8
三、直覺式模糊數 10
四、直覺式模糊數運算 14
五、直覺式模糊數解模糊化 17
第二節 模糊迴歸 18
一、數學規劃法 19
二、最小平方法 22
三、兩階段法 24
四、估計誤差 27
第三節 直覺式模糊迴歸 31
第四節 模型評估 37
一、平均相似測度 37
二、平均平方誤差 38
第五節 本章小結 40
第三章 模式建構 41
第一節 研究構想 41
一、相關模式建構方法探討 41
二、模型建構流程 44
第二節 模型建構方法 45
一、符號定義 46
二、前置資料處理 48
三、模式建構與求解 50
四、模型配適度 55
第三節 本章小結 56
第四章 模式應用與分析 57
第一節 範例演練 57
一、前置資料處理 57
二、模式的建構與求解 58
三、模型配適度 59
第二節 數值分析 60
一、展幅探討 60
二、截集數量討論 62
三、離群值影響 63
四、模式比較 66
五、非對稱資料模擬 68
六、模型交叉驗證 69
第五章 結論與建議 71
第一節 研究結論 71
第二節 未來研究方向 72
參考文獻 73
附錄一 Arefi and Taheri (2015)之範例資料 77
附錄二 原始資料於不同模型之MSM與MSE比較 78
附錄三 剔除離群值後於不同模型之MSM與MSE比較 79
附錄四 產出變數直覺式模糊估計值 80
附錄五 不同λ下產出變數直覺式模糊估計值 84
附錄六 交叉驗證平方誤差結果 93
參考文獻 【中文部分】

邱清爐(民 91):模糊迴歸分析中最小平方法之求解與應用。國立成功大學工業管理研究所博士論文
薛展青(民 99):利用距離測度建構模糊迴歸模式。國立成功大學工業與資訊管理研究所博士論文
蔡侑達(民 106):以數學規劃法建構直覺式模糊迴歸模型。國立成功大學工業與資訊管理研究所碩士論文
廖崇智(民 103):提綱挈領學統計第五版。鼎茂圖書出版股份有限公司

【英文部分】

Arefi, M. and Taheri, S. M. (2015). Least-Squares Regression based on Atanassov's intuitionistic fuzzy inputs-outputs and Atanassov's intuitionistic fuzzy parameters. IEEE Transactions on Fuzzy Systems, 23(4), 1142-1154.
Atanassov, K. and Gargov, G. (1989). Interval valued intuitionistic fuzzy-sets. Fuzzy Sets and Systems, 31(3), 343-349.
Atanassov, K. T. (1986). Intuitionistic Fuzzy-sets. Fuzzy Sets and Systems, 20(1), 87-96.
Chachi, J. and Taheri, S. M. (2013). A unified approach to similarity measures between intuitionistic fuzzy sets. International Journal of Intelligent Systems, 28(7), 669-685.
Chakraborty, D., Jana, D. K. and Roy, T. K. (2016). Expected value of intuitionistic fuzzy number and its application to solve multi-objective multi-item solid transportation problem for damageable items in intuitionistic fuzzy environment. Journal of Intelligent & Fuzzy Systems, 30(2), 1109-1122.

Chang, P. T. and Lee, E. S. (1996). A generalized fuzzy weighted least-squares regression. Fuzzy Sets and Systems, 82(3), 289-298.
Chang, Y. H. O. and Ayyub, B. M. (2001). Fuzzy regression methods - a comparative assessment. Fuzzy Sets and Systems, 119(2), 187-203.
Chen, C. B. and Klein, C. M. (1997). A simple approach to ranking a group of aggregated fuzzy utilities. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 27(1), 26-35.
Chen, L. H. and Hsueh, C. C. (2007). A mathematical programming method for formulating a fuzzy regression model based on distance criterion. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 37(3), 705-712.
Chen, L. H. and Hsueh, C. C. (2009). Fuzzy regression models using the least-squares method based on the concept of distance. IEEE Transactions on Fuzzy Systems, 17(6), 1259-1272.
Chen, L. H., Hsueh, C. C. and Chang, C. J. (2013). A two-stage approach for formulating fuzzy regression models. Knowledge-Based Systems, 52, 302-310.
Chen, L. H. and Lu, H. W. (2001). An approximate approach for ranking fuzzy numbers based on left and right dominance. Computers & Mathematics with Applications, 41(12), 1589-1602.
Chen, S. M. (1995). Measures of similarity between vague sets. Fuzzy Sets and Systems, 74(2), 217-223.
Cook, R. D. (1979). Influential observations in linear regression. Journal of the American Statistical Association, 74(365), 169-174.
Diamond, P. (1988). Fuzzy least-squares. Information Sciences, 46(3), 141-157.
Diamond, P. and Korner, R. (1997). Extended fuzzy linear models and least squares estimates. Computers & Mathematics with Applications, 33(9), 15-32.
Dubois, D. and Prade, H. (1978). Operations on fuzzy numbers. International Journal of Systems Science, 9(6), 613-626.
Hellendoorn, H. and Thomas, C. (1993). Defuzzification in fuzzy controllers. Journal of Intelligent & Fuzzy Systems, 1(2), 109-123.
Hojati, M., Bector, C. R. and Smimou, K. (2005). A simple method for computation of fuzzy linear regression. European Journal of Operational Research, 166(1), 172-184.
Kao, C. and Chyu, C. L. (2002). A fuzzy linear regression model with better explanatory power. Fuzzy Sets and Systems, 126(3), 401-409.
Kao, C. and Chyu, C. L. (2003). Least-squares estimates in fuzzy regression analysis. European Journal of Operational Research, 148(2), 426-435.
Kim, B. J. and Bishu, R. R. (1998). Evaluation of fuzzy linear regression models by comparing membership functions. Fuzzy Sets and Systems, 100(1-3), 343-352.
Klir, G. and Yuan, B. (1995). Fuzzy sets and fuzzy logic (Vol. 4). New Jersey: Prentice hall.
Li, D. F. (2010). A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems. Computers & Mathematics with Applications, 60(6), 1557-1570.
Li, Z. H. and Wei, F. Y. (2017). The logarithmic operational laws of intuitionistic fuzzy sets and intuitionistic fuzzy numbers. Journal of Intelligent & Fuzzy Systems, 33(6), 3241-3253.
Liang, Z. Z. and Shi, P. F. (2003). Similarity measures on intuitionistic fuzzy sets. Pattern Recognition Letters, 24(15), 2687-2693.
Mahapatra, G. and Roy, T. (2009). Reliability evaluation using triangular intuitionistic fuzzy numbers arithmetic operations. World Academy of Science, Engineering and Technology, 50, 574-581.
Mahapatra, G. S. and Roy, T. K. (2012). Intuitionistic fuzzy number and its arithmetic operation with application on system failure. Journal of uncertain systems, 7(2), 92-107
Ming, M., Friedman, M. and Kandel, A. (1997). General fuzzy least squares. Fuzzy Sets and Systems, 88(1), 107-118.
Nagoorgani, A., Kavikumar, J. and Ponnalagu, K. (2015). The knowledge of expert opinion in intuitionistic fuzzy linear programming problem. Mathematical Problems in Engineering, 8.
Parvathi, R., Malathi, C., Akram, M. and Atanassov, K. T. (2013). Intuitionistic fuzzy linear regression analysis. Fuzzy Optimization and Decision Making, 12(2), 215-229.
Peters, G. (1994). Fuzzy linear-regression with fuzzy intervals. Fuzzy Sets and Systems, 63(1), 45-55.
Redden, D. T. and Woodall, W. H. (1994). Properties of certain fuzzy linear-regression methods. Fuzzy Sets and Systems, 64(3), 361-375.
Sakawa, M. and Yano, H. (1992). Multiobjective fuzzy linear-regression analysis for fuzzy input-output data. Fuzzy Sets and Systems, 47(2), 173-181.

Savic, D. A. and Pedrycz, W. (1991). Evaluation of fuzzy linear-regression models. Fuzzy Sets and Systems, 39(1), 51-63.
Sharma, P. K. (2011). (α,β) – Cut of Intuitionistic Fuzzy Groups. In International mathematical forum (Vol. 6, No. 53, pp. 2605-2614)
Szmidt, E. and Kacprzyk, J. (2000). Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems, 114(3), 505-518.
Tanaka, H. (1987). Fuzzy data-analysis by possibilistic linear-models. Fuzzy Sets and Systems, 24(3), 363-375.
Tanaka, H., Hayashi, I. and Watada, J. (1989). Possibilistic linear-regression analysis for fuzzy data. European Journal of Operational Research, 40(3), 389-396.
Tanaka, H., Uejima, S. and Asai, K. (1982). Linear-regression analysis with fuzzy model. IEEE Transactions on Systems Man and Cybernetics, 12(6), 903-907.
Tanaka, H. and Watada, J. (1988). Possibilistic linear-systems and their application to the linear-regression model. Fuzzy Sets and Systems, 27(3), 275-289.
Verma, M. and Shukla, K. K. (2016). Fuzzy metric space induced by intuitionistic fuzzy points and its application to the orienteering problem. IEEE Transactions on Fuzzy Systems, 24(2), 483-488.
Wang, W. Q. and Xin, X. L. (2005). Distance measure between intuitionistic fuzzy sets. Pattern Recognition Letters, 26(13), 2063-2069.
Wu, B. and Tseng, N. F. (2002). A new approach to fuzzy regression models with application to business cycle analysis. Fuzzy Sets and Systems, 130(1), 33-42.
Yang, M. S. and Lin, T. S. (2002). Fuzzy least-squares linear regression analysis for fuzzy input-output data. Fuzzy Sets and Systems, 126(3), 389-399.
Yen, K. K., Ghoshray, S. and Roig, G. (1999). A linear regression model using triangular fuzzy number coefficients. Fuzzy Sets and Systems, 106(2), 167-177.
Xu, R. (1991). A linear regression model in fuzzy environment. Advance in Modelling Simulation, 27(2), 31-40.
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353.
Zahedan and Shiraz. (2005). Intuitionistic fuzzy numbers and it’s applications in fuzzy optimization problem. In Proceedings of the 9th WSEAS International Conference on Systems (pp. 1-5)
Zeng, W. Y. and Guo, P. (2008). Normalized distance, similarity measure, inclusion measure and entropy of interval-valued fuzzy sets and their relationship. Information Sciences, 178(5), 1334-1342.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-05-24起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-05-24起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw