進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1706201908421400
論文名稱(中文) 高效率變角度百葉窗鰭片與電液動技術之熱增強之最佳化分析
論文名稱(英文) Heat Transfer Enhancement and Optimization Analysis of High Performance Variable Louver Angle and Electrohydrodynamic Technology
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 陳俊忠
研究生(英文) Chun-Chung Chen
電子信箱 chen1204@nkust.edu.tw
學號 N18991071
學位類別 博士
語文別 中文
論文頁數 148頁
口試委員 指導教授-張錦裕
口試委員-陳寒濤
口試委員-吳志陽
口試委員-吳明勳
口試委員-陳建信
口試委員-張仲卿
口試委員-劉國基
中文關鍵字 百葉窗鳍片  最佳化  熱交換器  熱傳  電液動 
英文關鍵字 louver fin  optimization  heat exchanger  heat transfer  EHD 
學科別分類
中文摘要 本研究分為兩部分,首先以被動式熱傳增強方式對可變百葉窗鰭片式熱交換器進行研究;另一部分則以主動式電液動(EHD,electrohydrodynamic)技術在自然對流的情況下對平板表面熱增強之研究,此部分也分為線狀及針狀電極兩個方向,分述如下:
鰭片式熱交換器通常以空氣為工作流體,且利用鰭片兩側表面進行散熱,但因散熱表面平坦,熱邊界層容易增厚,熱阻增加,造成散熱效果較差。因此,為了有效改善熱傳效益,改變鰭片表面形狀,迫使空氣衝擊鰭片表面以減少熱邊界層厚度,提升熱傳效果。而常用於增強熱傳的鰭片形狀包括波浪型、百葉窗型及切口鰭片等形狀,其中百葉窗型鰭片是最常利用於增強表面熱傳的形狀,因為它兼有衝擊表面及切斷熱邊界層厚度的作用。而本研究保留上述優點,針對目前尚未研究之百葉窗鰭片連續變化角度進行最佳化探討。在此研究中,為了驗證數值模擬程序的可靠性,藉由放大比例實驗測試和數值模擬進行比較。其結果顯示,放大比例百葉窗鰭片之紅外熱像儀和數值模擬的溫度圖像在整個百葉窗鰭片有著相似的溫度分佈。且比對數值模擬和實驗的熱傳因子(Colburn factor)與摩擦因子(friction factor)之數據,其結果顯示模擬與實驗符合,差異在11%以內。本研究以百葉窗鰭片連續變角度(△θ)及初始百葉窗角度(θi)為參數,最大的面積縮減率設定為目標函數,即J=J(△θ,θi),利用共軛梯度法(Conjugate- Gradient Method, CGM)進行最佳化搜尋。搜尋範圍在△θ = +0° ~ +4° 和θi = 18° ~ 30°,且分別在不同入口速度條件下,搜索最佳位置的可變百葉窗角度(△θ)和初始百葉窗角度(θi)及最大面積縮減率的組合。其結果顯示,在ReH = 133~1199(Uin = 1.0~9.0 m / s)的範圍內,(△θ,θi)的最大面積減小率為48.5~55.2%。
針狀電極電液動(EHD)對熱傳增強的影響之研究,在自然對流的情形下,假設三維的流動,紊流和穩態之數值模擬分析。本研究建構針狀電極實驗設備量測電壓與電流的關係式(V-I curve),並同時驗證實驗與數值模擬的準確性。利用實驗獲得的V-I曲線,以數值疊代求解電極表面電荷密度,此結果發現電荷密度與電極節距變化影響較小,僅在15%以內,但在針狀電極高度變化上有很明顯的差異,最大可高達7.8倍,因此忽略電極節距變化,且電荷密度值以ρc0=ρc0(H)關係式表示,並配合共軛梯度法進行最佳化搜尋。定義每單位功率損耗的淨傳熱增強量作為評估熱傳增強的基準,並設定為最佳化目標函數,而電極間距(SL)和高度(H)是搜尋最佳化的兩個參數。其搜尋範圍分別為50 mm <SL <200 mm和15 mm <H <55 mm,且在特定的電壓V0(14、16、18和20 kV)及溫差ΔT(33、53和73K)的情形下進行。結果顯示,在指定的施加電壓V0及溫差ΔT下,可獲得最大的單位功率損耗淨傳熱增強量及最佳的電極位置。
水平封閉空間內安裝線狀電極施加高電壓產生離子風衝擊熱傳表面增加散熱效益之研究。此研究以固定長寬比(Ar = 12)的條件下,於水平封閉空間內對線狀電極高度(HEHD = 10-25 mm)、電極節距(N = 2-7)、施加電壓(V0 = 15-17 kV)及溫度差(ΔT = 5-30 K,Ra=23743-136807)四項參數進行探討及研究。因為EHD是屬於主動式熱傳增強方式,故必須考慮熱傳增強量所造成的功率損耗,於是定義符合實際需求的單位功耗淨熱傳增強量(QEHD- Q0)/Power作為評估熱傳增強的標準。其研究結果顯示,熱傳增強率(NuEHD/Nu0)隨著線狀電極高度的降低而增加,當線狀電極高度HEHD=25mm時,熱傳增強率接近1(NuEHD/Nu0 ≈ 1),這表示熱傳效果沒有明顯增加,僅增加功率損耗。另在單位功率損耗的淨傳熱增強量(QEHD- Q0)/Power方面,其結果呈現,在指定的ΔT和V0的條件下(ΔT = 5-30 K及V0 = 15-17 kV),可獲得最佳電極位置(HEHD及N)之組合。
延伸上述的研究,本文亦對兩無限長平板進行施加EHD線狀電極之增強熱傳最佳化研究。最佳化方法是利用共軛梯度法進行最佳化搜尋,而單位功耗的淨傳熱增強量(QEHD- Q0)/Power定義為最佳化的目標函數,藉由電極間距(SL)和高度(HEHD)兩參數的變化,搜尋目標函數最大化。其搜尋範圍分別為60 mm <SL <120 mm和10mm < HEHD <25mm,在特定的施加電壓V0(15-17 kV)及上下板溫差ΔT(10-30 K)的情形下進行研究。其結果顯示,在特定的溫差ΔT及施加電壓V0情況下,可獲得最佳的單位功耗的淨熱傳增強量及電極位置(SL和HEHD)。
英文摘要 The paper study is divided into two parts. Firstly, the influence of the variable louver angle of the louvered fin heat exchanger on the heat transfer enhancement is discussed, which is a passive heat transfer enhancement method. The other part is a active type heat transfer enhancement method with the electrohydrodynamic (EHD) technique, and this part is divided into two directions of wire and needle electrodes to explore on the influence of heat transfer enhancement of plate surface in the case of natural convection. Which are described as follows:
The optimization of the variable louver angle (Δθ) and initial louver angle (θi)for a louvered-fin heat exchanger was determined numerically using the conjugate gradient method. The area reduction ratio relative to a plain surface was the objective function to be maximized. A search for the optimal variable louver angle (Δθ) and initial louver angle (θi), in the ranges of +0°<Δθ<+4° and 18° < θi < 30°, respectively, was performed. The results show that the maximum area reduction ratios are 48.5~55.2% for the optimal design of (Δθ, θi) at ReH = 133~1199 (Uin = 1.0 ~ 9.0 m/s).
EHD is an active heat transfer enhancement method, so it is necessary to consider the power loss that occurs during heat transfer enhancement. Therefore, the net heat transfer enhancement per unit power consumption is defined to confirm the actual demand for an evaluated standard of heat transfer enhancement. An optimal analysis was carried out along with the conjugate-gradient method, where the objective function was defined as the heat transfer enhancement per input power, which is maximized by searching for the optimum electrode pitch (SL) and height (H) combination. A search for the optimum electrode pitch (SL) and electrode height (H), ranging from 50 mm< SL < 200 mm and 15 mm < H < 55 mm, respectively, with V0 (14, 16, 18 and 20 kV) and ΔT (33, 53 and 73 K), was performed, respectively. This result shows that the maximum heat transfer enhancement per power consumption as well as the optimal electrode position are obtained.
論文目次 摘  要 I
Abstract IV
誌  謝 XII
目  錄 XIII
表 目 錄 XVI
圖 目 錄 XVII
符號說明 XXI
第一章 緒論 1
1.1前言 1
1.2文獻回顧 2
1.2-1熱交換器熱傳增強技術 2
1.2-2 EHD熱傳增強技術 5
1.3研究動機與目的 13
1.3-1連續可變百葉窗角度鰭片式熱交換器最佳化分析 13
1.3-2 EHD針狀及線狀電極系統熱傳增強最佳化分析 13
第二章 連續可變百葉窗角度之最佳化分析 16
2.1 物理模型 16
2.1-1 統御方程式 16
2.1-2 性能因子的參數定義 18
2.1-3 邊界條件 19
2.1-4 性能評價方法 20
2.2 最佳化方法與數值分析 24
2.2-1 最佳化方法 24
2.2-2 共軛梯度法 24
2.2-3 數值方法 34
2.4-4 最佳化搜尋步驟 43
2.4-5 格點測試 46
2.3實驗設備及方法 48
2.3-1實驗設備架構及量測 48
2.3-2實驗不確定性分析 53
2.4結果與討論 56
第三章 針狀與線狀電極系統之熱傳最佳化分析 70
3.1 物理模型 70
3.1-1 統御方程式 71
3.1-2性能因子的參數定義 75
3.1-3 邊界條件 76
3.1-4性能評價方法 80
3.2最佳化方法與數值分析 85
3.2-1最佳化方法 85
3.2-2 數值方法 88
3.2-3 電荷密度 88
3.2-4格點測試 89
3.3實驗設備及方法 96
3.3-1實驗設備架構及量測 96
3.3-2實驗不確定性分析 99
3.4結果與討論 100
3.4-1 EHD針狀電極系統熱傳增強最佳化分析 100
3.4-2 EHD線狀電極系統於兩平板間之熱傳增強分析 115
第四章 結論 138
參考文獻 141
參考文獻 [1] Webb, R.L., “Principles of enhanced heat transfer”, John Wiley and Sons, Hoboken, USA, 1994.
[2] Bergles, A.E., “Heat transfer enhancement: The encouragement and accommodation of high heat fluxes”, ASME Journal of Heat Transfer, Vol. 119, pp.8-19, 1997.
[3] Kays, W.M., London, A.L., “Heat transfer and flow friction characteristics of some compact heat exchanger surfaces-part I: test system and procedure”, Transactions of the ASME, Vol. 72, pp.1075-1085, 1950.
[4] Davenport, C.J., “Correlations for heat transfer and flow friction characteristics of louvred fin”, AIChE Symposium Series, pp.19-27, 1983.
[5] Achaichia, A., Cowell, T.A., “Heat transfer and pressure drop characteristics of flat tube and louvered plate fin surfaces”, Experimental Thermal and Fluid Science, Vol. 1, pp.147-157, 1988.
[6] Sahnoun, A., Webb, R.L., “Prediction of heat transfer and friction for louver fin geometry”, ASME Journal of Heat Transfer, Vol. 114, pp.893-900, 1992.
[7] Sunden, B., Svantesson, J., “Correlation of j- and f- factors for multilouvered heat transfer surfaces”, In proceedings of the 3rd UK National Heat Transfer Conf., pp.805-811, 1992.
[8] Wang, C.C., Chi, K.Y., Chang, Y.J., “An experimental study of heat transfer and friction characteristics of typical louver finned-tube heat exchangers”, Int. J. Heat Mass Transfer, Vol. 41, pp.817-822, 1998.
[9] Wang, C.C., Chi, K.Y., Chang, C.J., “Heat transfer and friction characteristics of plain finned-tube heat exchangers, part II: correlation”, International Journal of Heat and Mass Transfer, Vol. 43, pp.2693-2700, 2000.
[10] Cowell, T.A., Heikal, M.R., Achaichia, A., “Flow and heat transfer in compact louvered fin surfaces”, Exp. Thermal Fluid Sci., Vol. 10, pp.192–199, 1995.
[11] Suga, K., Aoki, H., Shinagawa, T., “Numerical analysis on two dimensional flow and heat transfer of louvered fins using overlaid grids”, JSME Int. J. Ser. II, Vol. 33 pp.122-127, 1990.
[12] Suga, K., Aoki, H., “Numerical study on heat transfer and pressure drop in multilouvered fins”, In Proceed. of ASME/JSME Thermal Eng. Joint Conf., Vol. 4, pp.361-368, 1991.
[13] Hiramatsu, M., Ishimaru, T., Matsuzaki, K., “Research on fins for air conditioning heat exchangers”, JSME Int. J. Ser. II, Vol. 33, pp.749-756, 1990.
[14] Ikuta, S., Sasaki, Y., Tanaka, K., Takagi, M., Himeno, R., “Numerical analysis of heat transfer around louver assemblies”, Int. Congress & Exposition Tech., Detroit, Michigan, USA, 1990.
[15] Jang, J.Y., Shieh, K.P., Ay, H., “3-D thermal-hydraulic analysis in convex louver finned -tube heat exchangers”, ASHRAE Annual Meeting, Cincinnati, OH, USA, June 22-27, pp.501-509, 2001.
[16] Jang, J.Y., Wu, M.C., Chang, W.J., “Numerical and experimental studies of treedimensional plate-fin and tube heat exchangers”, International Journal of Heat and Mass Transfer, Vol. 39, pp.3057-3066, 1996.
[17] Jang, J.Y., Chen, L.K., “Numerical analysis of heat transfer and fluid flow in a three-dimensional wavy-fin and tube heat exchanger”, International Journal of Heat and Mass Transfer, Vol. 40, pp.3981-3990, 1997.
[18] Hsieh C.T., Jang J.Y., “3-D thermal-hydraulic analysis for louver fin heat exchangers with variable louver angle”, Appl. Thermal Eng., Vol. 26, pp.1629–1639, 2006.
[19] Hsieh, C.T., Jang, J.Y., “Parametric study and optimization of louver finned-tube heat exchangers by Taguchi method”, Applied Thermal Engineering, Vol. 42, pp.101-110, 2012.
[20] Jang, J.Y., and Tsai, Y.C., “Optimum louver angle design for a louvered fin heat exchanger”, International Journal of Physical Sciences, Vol. 6, pp.6422-6438, 2011.
[21] Chang, Y.J., Wang, C.C., “A generalized heat transfer correlation for louver fin geometry”, Int. J. Heat Mass Transfer Vol. 40, pp.533–544, 1997.
[22] Atkinsona, K.N., Drakulic, R., Heikal, M.R., Cowell, T.A., “Two- and three-dimensional numerical models of flow and heat transfer over louvered fin arrays in compact heat exchangers”, International Journal of Heat and Mass Transfer, vol. 41, pp. 4063-4080, 1998.
[23] Lin, C. N., Jang, J.Y., “Conjugate heat transfer and fluid flow analysis in fin-tube heat exchangers with wave-type vortex generators”, Journal of Enhanced Heat Transfer, Vol.9, pp.132-136, 2002.
[24] Ay, H., Jang, J.Y., Yeh, J. N., “Local heat transfer measurements of plate finned-tube heat exchangers by infrared thermography”, International Journal of Heat and Mass Transfer, Vol.45, pp. 4069-4078, 2002.
[25] Vaisi, A., Esmaeilpour, M., Taherian, H., “Experimental investigation of geometry effects on the performance of a compact louvered heat exchanger”, Applied Thermal Engineering, Vol.31, pp. 3337-3346, 2011.
[26] Ryu, K., Yook, S. J., Lee, K. S., “Optimal design of a corrugated louvered fin”, Applied Thermal Engineering, Vol.68, pp. 76-79, 2014.
[27] Springer, M. E., Thole, K. A., “Entry region of louvered fin heat exchangers”, Experimental Thermal and Fluid Science, Vol.19, pp. 223-232, 1999.
[28] Chandrasekher, S., “Hydrodynamic and hydromagnetic stability”, Oxford University Press, London, 1961.
[29] Drazin, P.G. and Reid, W.H., “Hydrodynamic stability”, Cambridge University Press, Cambridge, 1981.
[30] Yin S. H., Wung T. Y. and Chen K., “Natural convection in an air layer enclosed within rectangular cavity”, Int. J. Heat Mass Transfer, vol.21, pp.307-315, 1979.
[31] Koutsoheras, W. and Charters, W. S., “Natural convection phenomena in inclined cells with finite side-walls—A numerical solution”, Solar Energy, Vol. 19, No. 5, pp. 433-438, 1977.
[32] Shaw, H. J., Chen, C. K. and Jang, J. Y., “Natural convection in an enclosure heated from below with a conductive horizontal partition”, AIAA, Journal of Thermophysics and Heat Transfer, Vol. 2, No. 4, pp. 335-342,1988.
[33] Jang, J. Y. and Tsai, W. L., “Thermal instability of two horizontal porous layers with a conductive partition”, International Journal of Heat and Mass Transfer, Vol. 31, No. 5, pp. 993-1003,1988.
[34] Jang, J. Y., Chou, W. C. and Leu, J.S., “Natural convection in fluid/porous region heated from below with conductive partition”, Journal of Thermophysics and Heat Transfer, Vol. 26, No. 2, pp. 367-373,2012.
[35] Ngo, C. C. and Lai, F. C., “Effects of electric field on natural convection in an enclosure heated from below”, Proceedings of the 35th National Heat Transfer Conference (NHTC2001-20200, CD-ROM), Anaheim, California, June 10-12, 2001.
[36] Huang, M., and Lai F. C., ”Effects of joule heating on electrohydrodynamics-enhanced natural convection in an enclosure”, Journal of Thermophysics and Heat Transfer, Vol. 20, No. 4, pp. 939-945, 2006.
[37] Lai, F.C., “Electrohydrodynamic-Enhanced Natural Convection in an Enclosure by a Nonsymmetric Electric Field”, Journal of Thermophysics and Heat Transfer, Vol. 33, pp.441-448, 2019. DOI: 10.2514/1.T5391
[38] Marco, S.M. and Velkoff, H.R., “Effect of electrostatic fields on free convection heat transfer from flat plate”, ASME, Paper No. 63-HT-9, 1963.
[39] O’Brien, R.J. and Shine, A.J., “Some effects of an electric field on heat transfer from a vertical plate in free convection”, Journal of Heat Transfer, Vol.89, pp.114-116, 1967.
[40] Kibler, K. and Carter, H., “Electrocooling in gases”, Journal of Applied Physics, Vol.45, no.10, pp.4436-4440, 1974.
[41] Owsenek, B.L. and Seyed-Yagoobi, J., “Theoretical and experimental study of electrohydrodynamic heat transfer enhancement through wire-plate corona discharge”, Journal of Heat Transfer, Vol. 119, pp. 604-610, 1997.
[42] Bhattacharyya, S. and Peterson, A., “Corona wind-augmented natural convection-part1: single electrode studies”, Journal of Enhanced Heat Transfer, Vol. 9, pp. 209-219, 2002.
[43] Zhao, L. and Adamiak, K., “EHD flow in air produced by electric corona discharge in pin-plate configuration”, Journal of electrostatics, Vol. 63, pp. 337-352, 2005.
[44] Go, D.B., Garimella, S.V., Fisher, T.S. and Mongia, R.K., “Ionic winds for locally enhanced cooling”, Journal of Applied Physics, Vol.102, no.7, 053302-053302-8, 2007.
[45] Go, D.B., Maturana, R.A., Fisher, T.S. and Garimella, S.V., “Enhancement of external forced convection by ionic wind”, International journal of heat and mass transfer, Vol.51, no.25-26, pp. 6047-6053, 2008.
[46] Jewell-Larsen, E.N., Ran, H., Zhang, Y., Schwiebert, M. K. and Honer Tessera, K.A., “Electrohydrodynamic (EHD) cooled laptop”, IEEE 25th SEMI-THERM, pp. 261-266, 2009.
[47] Moayedi, H., Amanifard, N., Deylami, H.M., Dolati, F., “Numerical investigation of using micropolar fluid model for EHD flow through a smooth channel”, Journal of Electrostatics, Vol. 87, pp.51-63, 2017.
[48] Ohadi, M., Nelson, D. and Zia, S., “Heat transfer enhancement of laminar and turbulent pipe flow via corona discharge”, International journal of heat and mass transfer, Vol.34, pp. 1175-1187, 1991.
[49] Kasayapanand, N. and Kiatsiriroat, T., “EHD enhanced heat transfer in wavy channel”, International Communications in Heat and Mass Transfer, Vol. 32, pp. 809-821, 2005.
[50] Lin, C.W. and Jang, J.Y., “3D Numerical heat transfer and fluid flow analysis in plate-fin and tube heat exchangers with electrohydrodynamic enhancement”, Heat Mass Transfer, Vol.41, pp. 583-593, 2005.
[51] Ahmedou, S.O. and Havet, M., “Analysis of the EHD enhancement of heat transfer in a flat duct”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol.16:No. 2, pp. 489-494, 2009.
[52] Shakouri Pour, M. and Esmaeilzadeh, E., “Experimental investigation of convective heat transfer enhancement from 3D-shape heat sources by EHD actuator in duct flow”, Experimental Thermal and Fluid Science, Vol. 35, pp.1383-1391, 2011.
[53] Lakeh, R. B. and Molki, M., “Enhancement of convective heat transfer by electrically-induced swirling effect in laminar and fully-developed internal flows”, Journal of Electrostatics, Vol. 71, pp.1086-1099, 2013.
[54] Dantchi, K., Philippe, T. and Hubert, R., “Numerical study of the heat transfer and electro- thermos-convective flow patterns in dielectric liquid layer subjected to unipolar injection”, Journal of Electrostatics, Vol.71, pp. 970-975, 2013.
[55] Deylami, H. M., Amanifard, N., Dolati, F., Kouhikamali, R. and Mostajiri, K., “Numerical investigation of using various electrode arrangements for amplifying the EHD enhanced heat transfer in a smooth channel”, Journal of Electrostatics, Vol. 71, pp. 656-665, 2013.
[56] Peng, M., Wang, T.H., and Wang X.D., “Effect of longitudinal electrode arrangement on EHD-induced heat transfer enhancement in a rectangular channel”, International Journal of Heat and Mass Transfer, Vol. 93, pp. 1072–1081, 2016.
[57] Alaminia, A. and Campo, A., “Experimental study on EHD heat transfer enhancement from flush-mounted ribbons with different arrangements of wire electrodes in a channel”, Heat Mass Transfer, Vol. 52, pp. 2823-2831, 2016.
[58] Taghavi Fadaki, S.S., Amanifard, N., Deylami, H. M. and Dolati, F., “Numerical analysis of the EHD driven flow with heat transfer in a smooth channel using multiple collectors”, Heat and Mass Transfer, Vol. 52, pp. 2445 – 2460, 2017.
[59] Huang, R.T., Sheu, W.J. and Wang, C.C., “Heat transfer enhancement by needle-arrayed electrodes-An EHD integrated cooling system”, Energy Conversion and Management, Vol. 50:no. 7, pp.1798-1796, 2009.
[60] Tsui, Y.Y., Huang, Y.X., Lan, C.C. and Wang, C.C., “A study of heat transfer enhancement via corona discharge by using a plate corona electrode”, Journal of Electrostatics, Vol. 87, pp. 1-10, 2017.
[61] Sheu, W.J., Hsiao, J.J. and Wang, C.C., “Effect of oscillatory EHD on the heat transfer performance of a flat plate”, International Journal of Heat and Mass Transfer, Vol. 61, pp. 419–424, 2013.
[62] Chen, I.Y., Chen, C.J. and Wang, C.C., “Influence of electrode configuration on the heat transfer performance of a LED heat source”, International Journal of Heat and Mass Transfer, Vol. 77 pp. 795–801, 2014.
[63] Zhang, Y., Liu, L., Chen, Y., Ouyang, J., “Characteristics of ionic wind in needle-to-ring corona discharge”, Journal of Electrostatics, Vol. 74, pp.15-20,2015.
[64] Wang, J., Cai, Y.X., Bao, W.W., Li, H.X., Liu, Q., “Experimental study of high power LEDs heat dissipation based on corona discharge”, Applied Thermal Engineering, Vol. 98, pp.420-429, 2016.
[65] Wang, J., Cai, Y.X., Li, X.H., Shi,Y.F., Bao, Y.C., “Electrically-induced ionic wind flow distribution and its application for LED cooling”, Applied Thermal Engineering, Vol. 138, pp.346–353, 2018.
[66] Lai, F.C. and Sharma, R.K., “EHD-enhanced drying with multiple needle electrode”, Journal of Electrostatics, Vol. 63, pp. 223-237, 2005.
[67] Heidarinejad, G. and Babaei, R., “Numerical investigation of electro hydrodynamics (EHD) enhanced water evaporation using Large Eddy Simulation turbulent model”, Journal of Electrostatics, Vol. 77, pp. 76-87, 2015.
[68] Leu, J.S., Jang, J.Y. and Wu, Y.H., “Optimization of the wire electrode height and pitch for 3-D electrohydrodynamic enhanced water evaporation”, International Journal of Heat and Mass Transfer, Vol. 118, pp. 976–988, 2018.
[69] Quarteroni, A., Sacco, R., Saleri, F., “Numerical Mathematics”, Springer, New York, 2007.
[70] Cheng, C.H., Chang, M.H., “A simplified conjugate-gradient method for shape identification based on thermal data”, Numerical Heat Transfer Part B, Vol.43, 489–507, 2003.
[71] CFD-ACE(U); CFD Research Corporation: Huntsville, AL, USA, 2013.
[72] Owsenek, B.L., Seyed-Yagoobi, J., Page, R.H., “Experimental investigation of corona wind heat transfer enhancement with a heated horizontal flat plate”, Journal of Heat Transfer, Vol.117, pp.309-315, 1995.
[73] Franke, M., Hogue, L., “Electrostatic cooling of a horizontal cylinder”, ASME Transactions Journal of Heat Transfer, Vol.113, pp.544-548, 1991.
[74] Chen, Y.S., Kim, S.W., “Computation of turbulent flows using an extended Κ - ε turbulence closure model”, NASA CR-179204, Oct., 1987.
[75] Wang, T.S., Chen, Y.S., “Unified Navier-Stokes flowfield and performance analysis of liquid rocket engines”, AIAA Journal, Vol.9, pp.678-685, 1993.
[76] Liakopoulos, A., “Explicit representation of the complete velocity profile in a turbulent boundary layer”, AIAA Journal, Vol.22, pp.844-846, 1984.
[77] Launder, B.E., Spalding, D.B., “The numerical computation of turbulent flows”, computer methods in applied mechanics and engineering, Vol.3, pp.269–289, 1974.
[78] Van Doormaal, J.P., Raithby, F.D., “Enhancements of the SIMPLE method for predicting incompressible fluid flows”, Journal of Heat Transfer, Vol. 7, pp.147-163, 1984.
[79] Hestenes, M.R., Stiefel, E., “Methods of conjugate gradients for solving linear systems”, Journal of Research of the National Bureau of Standards, Vol. 49, No. 6, pp. 409–436, 1952.
[80] Fletcher, R., Reeves, C.M., “Function minimization by conjugate gradients”, Computer Journal, Vol. 7, No. 2, pp. 149–154, 1964.
[81] Fried, I., Metzler, J., “Sor vs. conjugate gradients in a finite element discretization”, International Journal for Numerical Methods in Engineering, Vol. 12, pp. 1329–1342, 1978.
[82] Kline, S.J., McClintock, F.A., “Describing uncertainties single-sample experiments”, ASME Mech. Eng., Vol.75, pp.3–8, 1953.
[83] De Graaf, J. G. A., and Van Der Held, E. F. M., “The relation between the heat transfer and the convection phenomena in enclosed plane air layers”, Appl. Sci. Res., Vol.3 , 1952, pp.393-409.
[84] Wang, T.H., Peng, M., Wang, X.D., Yan, W.M., “Investigation of heat transfer enhancement by electrohydrodynamics in a double-wall-heated channel”, Int. J. Heat Mass Transf., Vol.113, pp.373–383, 2017.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw