進階搜尋


下載電子全文  
系統識別號 U0026-1705201909345200
論文名稱(中文) 二氧化鈦/砷化鎵薄膜退火前後之奈米壓痕行為及微觀結構變化之研究
論文名稱(英文) Nanoindentation Behaviour and Microstructure of TiO2/GaAs Thin Film with and without Annealing
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 張詠翔
研究生(英文) Yung-Hsiang Chang
學號 N16061367
學位類別 碩士
語文別 中文
論文頁數 69頁
口試委員 指導教授-李偉賢
口試委員-黃永茂
口試委員-施士塵
中文關鍵字 二氧化鈦  砷化鎵  退火  奈米壓痕  裂痕 
英文關鍵字 Nanoindentation  GaAs  Microstructural  evolution  Annealing  Thin films 
學科別分類
中文摘要 本研究主要探討二氧化鈦/砷化鎵薄膜系統奈米壓痕行為,以及退火
前後機械性質、表面形貌和微觀結構之變化。首先利用共濺鍍機於砷化
鎵基板上沈積200nm 及300nm 之二氧化鈦薄膜,分別對薄膜厚度200nm
試片進行150nm 和250nm 深度之壓痕試驗,以及薄膜厚度300nm 試片進行250nm 和350nm 深度之壓痕試驗,以了解壓痕深度與膜厚對機械性質及為結構之影響。此外也對另一組試片進行300℃持溫3 小時之加熱,同樣進行上述之量測,以比較退火前後機械性質與微觀結構之差異。實驗結果顯示,退火後之負載-深度曲線有pop-in 之現象,經退火後硬度及楊氏模數皆上升,與一般材料退火處理後,硬度與彈性模數之降低有所不同。利用TEM 照射薄膜的結構,發現經退火製程,薄膜從非晶系轉變結晶系,造成機械性質上升之結果。觀察試片表面形貌及剖面微觀結構可發現,退火後硬度及脆性提升,壓痕表面產生裂痕,而剖面結構則觀察到產生分離之現象,這是薄膜硬度遠高於基板硬度所造成之
buckling現象。
英文摘要 The mechanical properties of TiO2/GaAs thin films with and without annealing indented at room temperatures of different depth were measured by using a nanoindentation technique. The specimens were annealed at the temperature 300℃ for 3 hours. The result show that the pop-in effect appeared at the load-depth curve randomly for the annealed specimen indented at room temperature. The delamination of the thin film from the substrate were also observed. After annealing,the load-depth curve become not smooth and both the hardness and Young’s modulus were found to increase. Furthermore,dislocations density increased significantly as the indentation depth is increased. The changes in microstructure and mechanical properties were also discussed in terms of annealing, indentation depth and thickness of the thin film
論文目次 總目錄
中文摘要 I
Nanoindentation Behaviour and Microstructure of TiO2/GaAs Thin Film with and without Annealing II
致謝 IX
總目錄 X
圖目錄 XIII
符號說明 XVIII
第一章 前言 1
第二章 理論與文獻回顧 3
2-1 砷化鎵性質與應用理論介紹 3
2-1-1 砷化鎵性質與應用理論介紹 3
2-1-2 二氧化鈦薄膜光觸媒應用與理論 3
2-2 奈米壓痕理論 4
2-2-1 奈米壓痕數學模型 4
2-2-2 初始卸載勁度與接觸面積之量測 6
2-2-3 奈米壓痕數學模型的修正 7
2-3 影響薄膜測量之因素 8
2-3-1 壓痕尺寸效應(Indentation size effect, ISE) 8
2-3-2 表面粗糙效應(Surface roughness) 9
2-3-3 擠出和沉陷效應(Pile-up & sink-in effect) 9
2-3-4 基材效應(Substrate effect) 9
2-3-5 儀器撓度(Instrument Compliance) 10
2-4 奈米壓痕試驗之實驗校正 10
2-4-1 五點定位校正 10
2-4-2 熱漂移(thermal drift)校正 10
2-4-3 靜電力之校正 10
2-4-4 探針面積函數校正 11
第三章 實驗方法與步驟 16
3-1 實驗流程 16
3-2 實驗儀器與設備 16
3-2-1 射頻式濺鍍機(RF-Sputtering Deposition System) 17
3-2-2 電子束微影光罩製作系統(Electron beam lithography system, EBL) 17
3-2-3 雙面對準/UV光感奈米壓印機 18
3-2-4 奈米壓痕試驗機(Nano-Indentation System) 18
3-2-5 退火處理設備(Thermal annealing) 18
3-2-6 前瞻聚焦離子束系統(Advanced focused ion beam, FIB) 18
3-2-7 高解析穿透式電子顯微鏡(High resolution transmission electron microscope, HR-TEM) 19
3-3 試片製備 19
3-3-1 濺鍍材料與試片製備 20
3-3-2 微影蝕刻製程 20
3-4 實驗方法與步驟 21
3-4-1 奈米壓痕試驗 21
3-4-2 對試片進行退火處理 22
3-4-3 微觀結構的觀察 22
第四章 實驗結果與討論 31
4-1 薄膜機械性質討論 31
4-1-1 負載曲線分析 31
4-1-2 硬度曲線分析 32
4-1-3 楊氏模數曲線分析 33
4-2 壓痕表面形貌討論 34
4-2-1 退火前後壓痕表面形貌分析 34
4-2-2 膜厚差異之壓痕表面形貌分析 35
4-2-3 壓痕深度差異之壓痕表面形貌分析 36
4-3 壓痕剖面微觀結構討論 36
4-3-1 退火前後壓痕剖面微觀結構分析 37
4-3-2 膜厚差異之壓痕剖面微觀結構分析 38
4-3-3 壓痕深度差異之剖面微觀結構分析 38
第五章 結論 63
參考文獻 65


圖目錄
圖2 1 壓痕載重-位移曲線圖[34] 12
圖2 2 探針壓痕示意圖[34] 12
圖2 3 奈米壓痕器示意圖[34] 13
圖2 4 尺寸效應剖面示意圖[34] 13
圖2 5 表面粗糙度效應示意圖[34] 14
圖2 6 擠出和沉陷效應示意圖[34] 14
圖2 7儀器撓度 15
圖3 1實驗流程圖 23
圖3 2 RF-濺鍍機示意圖 24
圖3 3奈米壓痕器示意圖[33] 24
圖3 4退火爐管示意[33] 25
圖3 5搜尋壓痕位置(Step 1) 25
圖3 6調整電子束並使其在正面聚焦至壓痕表面(Step 2) 26
圖3 7調整電子束並使其在52度掠角下聚焦至表面(Step3) 26
圖3 8鍍上碳層以保護離子束切割區域(Step 4) 27
圖3 9以離子束製備穿透式電子顯微鏡試片的薄區(Step 5) 27
圖3 10以離子束切割穿透式電子顯微鏡試片的薄區(Step 6) 28
圖3 11穿透式電子顯微鏡試片製備完成(Step 7) 28
圖3 12電子束成像示意圖[33] 29
圖3 13光罩特徵圖形尺寸說明 30
圖4 1膜厚200nm壓痕深度150 nm (未退火處理) 之壓痕深度-負載曲線 40
圖4 2膜厚200nm壓痕深度250 nm (未退火處理) 之壓痕深度-負載曲線 40
圖4 3膜厚300nm壓痕深度150 nm (未退火處理) 之壓痕深度-負載曲線 41
圖4 4膜厚300nm壓痕深度350 nm (未退火處理) 之壓痕深度-負載曲線 41
圖4 5膜厚200nm壓痕深度150 nm (經退火處理) 之壓痕深度-負載曲線 42
圖4 6膜厚200nm壓痕深度250 nm (經退火處理) 之壓痕深度-負載曲線 42
圖4 7膜厚300nm壓痕深度150 nm (經退火處理) 之壓痕深度-負載曲線 43
圖4 8膜厚300nm壓痕深度350 nm (經退火處理) 之壓痕深度-負載曲線 43
圖4 9膜厚200nm壓痕深度150 nm (未退火處理) 壓痕深度與硬度曲線 44
圖4 10膜厚200nm壓痕深度250 nm (未退火處理) 壓痕深度與硬度曲線 44
圖4 11膜厚300nm壓痕深度150 nm (未退火處理) 壓痕深度與硬度曲線 45
圖4 12膜厚300nm壓痕深度350 nm (未退火處理) 壓痕深度與硬度曲線 45
圖4 13膜厚200nm壓痕深度150 nm (經退火處理) 壓痕深度與硬度曲線 46
圖4 14膜厚200nm壓痕深度250 nm (經退火處理) 壓痕深度與硬度曲線 46
圖4 15膜厚300nm壓痕深度150 nm (經退火處理) 壓痕深度與硬度曲線 47
圖4 16膜厚300nm壓痕深度350 nm (經退火處理) 壓痕深度與硬度曲線 47
圖4 17膜厚200nm壓痕深度150 nm (未退火處理) 壓痕深度與楊氏模數曲線 48
圖4 18膜厚200nm壓痕深度250 nm (未退火處理) 壓痕深度與楊氏模數曲線 48
圖4 19膜厚300nm壓痕深度150 nm (未退火處理) 壓痕深度與楊氏模數曲線 49
圖4 20膜厚300nm壓痕深度350 nm (未退火處理) 壓痕深度與楊氏模數曲線 49
圖4 21膜厚200nm壓痕深度150 nm (經退火處理) 壓痕深度與楊氏模數曲線 50
圖4 22膜厚200nm壓痕深度250 nm (經退火處理) 壓痕深度與楊氏模數曲線 50
圖4 23膜厚300nm壓痕深度150 nm (經退火處理) 壓痕深度與楊氏模數曲線 51
圖4 24膜厚300nm壓痕深度350 nm (經退火處理) 壓痕深度與楊氏模數曲線 51
圖4 25膜厚200nm壓痕深度150 nm (未退火處理)壓痕表面形貌 52
圖4 26膜厚200nm壓痕深度150 nm (經退火處理)壓痕表面形貌 52
圖4 27膜厚200nm壓痕深度250 nm (未退火處理)壓痕表面形貌 53
圖4 28膜厚200nm壓痕深度250 nm (經退火處理)壓痕表面形貌 53
圖4 29膜厚300nm壓痕深度150 nm (未退火處理)壓痕表面形貌 54
圖4 30膜厚300nm壓痕深度150 nm (經退火處理)壓痕表面形貌 54
圖4 31膜厚300nm壓痕深度350 nm (未退火處理)壓痕表面形貌 55
圖4 32膜厚300nm壓痕深度350 nm (經退火處理)壓痕表面形貌 55
圖4 33砷化鎵基材X光繞射圖 56
圖4 34二氧化鈦非晶系薄膜X光繞射圖 56
圖4 35二氧化鈦非晶薄膜區域之High-solution圖 57
圖4 36二氧化鈦多晶系薄膜X光繞射圖 57
圖4 37二氧化鈦多晶薄膜區域之High-solution圖 58
圖4 38膜厚200nm壓痕深度150nm(未退火處理)壓痕剖面微觀結構 58
圖4 39膜厚200nm壓痕深度150nm(經退火處理)壓痕剖面微觀結構 59
圖4 40膜厚200nm壓痕深度250nm(未退火處理)壓痕剖面微觀結構 59
圖4 41膜厚200nm壓痕深度250nm(經退火處理)壓痕剖面微觀結構 60
圖4 42膜厚300nm壓痕深度150nm(未退火處理)壓痕剖面微觀結構 60
圖4 43膜厚300nm壓痕深度150nm(經退火處理)壓痕剖面微觀結構 61
圖4 44膜厚300nm壓痕深度350nm(未退火處理)壓痕剖面微觀結構 61
圖4 45膜厚300nm壓痕深度350nm(經退火處理)壓痕剖面微觀結構 62
圖4 46 bucking之空孔現象(hard filim/soft substrate) 62


參考文獻 [1] J. G. Swadener, E. P. Georgea, and G. M. Pharra, "The correlation of the indentation size effect measured with indenters of various shapes," Journal of the Mechanics and Physics of Solids, vol. 50, pp. 681-694, 2002.
[2] G. M. Pharr, "Measurement of mechanical properties by ultra-low load indentation," Materials Science and Engineering, vol. A253, pp. 151-159, 1998.
[3] M. Sakai, N. Hakiri, and T. Miyajima, "Instrumented indentation microscope: A powerful tool for the mechanical characterization in microscales," Journal of materials research, vol. 21, no. 9, pp. 2298-2303, 2006.
[4] S. Rajagopalan and R. Vaidyanathan, "Nano-and microscale mechanical characterization using instrumented indentation," JOM, vol. 54, no. 9, pp. 45-48, 2002.
[5] T. P. Rao and M. Santhoshkumar, "Effect of thickness on structural, optical and electrical properties of nanostructured ZnO thin films by spray pyrolysis," Applied Surface Science, vol. 255, no. 8, pp. 4579-4584, 2009.
[6] T. P. Rao and M. Santhoshkumar, "Effect of thickness on structural, optical and electrical properties of nanostructured ZnO and operation temperature on ZnO: Al thin film CO gas sensor," Sensors and actuators B: Chemical, vol. 84, no. 2-3, pp. 258-264, 2002.
[7] H. Kim et al., "Effect of film thickness on the properties of indium tin oxide thin films," Journal of Applied Physics, vol. 88, no. 10, pp. 6021-6025, 2000.
[8] C.-Y. Yen et al., "Influence of annealing temperature on the structural, optical and mechanical properties of ALD-derived ZnO thin films," Applied Surface Science, vol. 257, no. 17, pp. 7900-7905, 2011.
[9] O. Lupan et al., "Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium, " Applied Surface Science, vol. 256, no. 6, pp. 1895-1907, 2010.
[10] S.-K. Wang, T.-C. Lin, S.-R. Jian, J.-Y. Juang, J. S.-C. Jang, and J.-Y. Tseng, "Effects of post-annealing on the structural and nanomechanical properties of Ga-doped ZnO thin films deposited on glass substrate by rf-magnetron sputtering, " Applied Surface Science, vol. 258, no. 3, pp. 1261-1266, 2011.
[11] Houman Yaghoubi,Nima Taghavinia, Eskandar Keshavarz Alamdari, "Self cleaning TiO2 coating on polycarbonate:Surface treatment, photocatalytic and nanomechanical properties, "Surface & Coatings Technology, vol.204, no9-10, pp1562-1568, 2010
[12] Kaihong Qi, John H.Xin, andWalid A.Daoud, "Function Polyester Fiber with a Self-Cleaning Property Using Anatase TiO2 and Low-Temperature Plasma Treatment,"Cream Technology, vol4, no.6, pp554-563, 2007
[13]蕭達慶, "高頻通訊用半導體基板材料發展現況,"工業材料雜誌, vol.381
[14] B. L and B. Roberto, "The scaling challenges of CMOS and the impact on high-density non-volatile memories, " Microsystem Technologies, vol. 13, pp. 133-138, 2006.
[15]R. Ludeke and G. Landgren, "Electronic properties and chemistry of Ti/GaAs and Pd/GaAs interfaces," Physical Review B, vol. 33, no. 8, pp. 5526-5535, 1986.
[16] S. Ashok and J. M. Borrego, "Electrical characteristics of GaAs MIS Schottky diodes, " Solid-State Electronics, vol. 22, pp. 621-631, 1979.
[17] T. Nakamura, "Mars Rover power system for solar and laser beam Utilization, " Concepts and Approaches for Mars Exploration, 2012.
[18] Kayano Sunada, Yoshihiko Kikuchi, Kazuhito Hashimoto,and Akira Fujishima, "Bactericidal and Detoxification Effects of TiO2 Thin Film Photocatalysts, "Environmental science &Technology, vol.32, no.5, pp726-728, 1998
[19] C. Anthony and C. Fischer, "Nanoindentation, " 2nd ed. Springer, N. Y., 2004.
[20] S. Timoshenko and J. N. Goodier, "Theory of Elasticity," 2nd ed. McGraw-Hill, N. Y., 1951.
[21] G. M. Pharr, W. C. Oliver, and F. R. Brotzen, "On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation," Journal of Materials Research, vol. 7 No.3, 1992.
[22]M. Martin and M. Troyon," Fundamental relations used in nanoindentation: Critical examination based on experimental measurements, " Journal of Materials Research, vol.17 ,no.9, pp. 2227-2234, 2002.
[23] W. C. Oliver and G. M. Pharr, "An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, " Journal of Materials Research, vol. 7, no. 6, pp. 1564-1583, 1992.
[24] R.B.King, " Elastic analysis of some punch problems for a layered medium, " International Journal of Solids and Structures, vol 23, no. 12, pp1657-1664, 1987.
[25] M. Qasmi, P. Delobelle, F. Richard, and A. Bosseboeuf, "Effect of the residual stress on the determination through nanoindentation technique of the Young's modulus of W thin film deposit on SiO2/Si substrate," Surface and Coatings Technology, vol. 200, no. 14-15, pp. 4185-4194, 2006.
[26] I. Manika and J. Maniks, "Size effects in micro- and nanoscale indentation," Acta Materialia, vol. 54, no. 8, pp. 2049-2056, 2006.
[27] K.-D. Bouzakis, N. Michailidis, S. Hadjiyiannis, G. Skordaris, and G. Erkens, "The effect of specimen roughness and indenter tip geometry on the determination accuracy of thin hard coatings stress–strain laws by nanoindentation, " Materials characterization, vol. 49, no. 2, pp. 149-156, 2002.
[28] M. Bobji and S. Biswas, "Deconvolution of hardness from data obtained from nanoindentation of rough surfaces, " Journal of materials research, vol. 14, no. 6, pp. 2259-2268, 1999.
[29] A. Bolshakov and G. Pharr, "Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques, " Journal of materials research, vol. 13, no. 4, pp. 1049-1058, 1998.
[30] K. MIYAKE, S. FUJISAWA, and A. KORENAGA, "The Effect of Pile-Up and Contact Area on Hardness Test by Nanoindentation," Japanese Journal of Applied Physics, vol. 43, no. 4602-4605, 2004.
[31] R. Saha and W. D. Nix, "Effects of the substrate on the determination of thin film mechanical properties by nanoindentation, "Acta materialia, vol. 50, no. 1, pp. 23-38, 2002.
[32] D. Kramer, A. Volinsky, N. Moody, and W. Gerberich, "Substrate effects on indentation plastic zone development in thin soft films, " Journal of Materials Research, vol. 16, no. 11, pp. 3150-3157, 2001.
[33] B. Bokhonov and M. Korchagin, "In situ investigation of stage of the formation of eutectic alloys in Si–Au," Journal of Alloys and Compounds, vol. 312, pp. 238-250, 2000.
[34] Y.-L. Chuang, "Effect of annealing temperature on nanoindented microstructure of CuSi thin films," 2009.
[35] X. Li and B. Bhushan, "A review of nanoindentation continuous stiffness measurement technique and its applications," Materials characterization, vol. 48, no. 1, pp. 11-36, 2002.
[36] K. Wasmer, R. Gassilloud, J. Michler, and C. Ballif, "Analysis of onset of dislocation nucleation during nanoindentation and nanoscratching of InP, " Journal of Materials Research, vol. 27, no. 01, pp. 320-329, 2011.
[37] S J Bull," Nanoindentation of coatings, "Applied Physics, vol.38, no.24, pp.394-395, 2005.
[38] T.OhsakaS,YamaokaO,Shimomura, " Effect of hydrostatic pressure on the Raman spectrum of anatase (TiO2), " Solid State Communications, Vol. 30, pp. 345-347
[39] K. Durst, B. Backes, and M. Göken, "Indentation size effect in metallic materials: Correcting for the size of the plastic zone, " Scripta Materialia, vol. 52, no. 11, pp. 1093-1097, 2005.
[40] Y. Cao, S. Allameh, D. Nankivil, S. Sethiaraj, T. Otiti, and W. Soboyejo, "Nanoindentation measurements of the mechanical properties of polycrystalline Au and Ag thin films on silicon substrates: Effects of grain size and film thickness, "Materials Science and Engineering: A, vol. 427, no. 1-2, pp. 232-240, 2006.
[41] Gaillard, Yves; Rico, Victor J.; Jimenez-Pique, Emilio; González-Elipe, Agustín R,"Nanoindentation of TiO2 thin films with different microstructures," Applied Physics, vol. 42, pp.2-4, no.14,2009.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-06-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-06-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw