進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1705201421261700
論文名稱(中文) 低彈性模數Ti-7.5Mo合金製程設計微結構及機械性質之探討
論文名稱(英文) Investigation on processes, microstructure and mechanical properties of low modulus Ti-7.5Mo alloy
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 陳彥均
研究生(英文) Yen-Chun Chen
學號 N58001256
學位類別 博士
語文別 中文
論文頁數 282頁
口試委員 指導教授-朱建平
指導教授-陳瑾惠
召集委員-尹相姝
口試委員-李經維
口試委員-林立民
中文關鍵字 鈦合金  熱機處理  拉伸測試  疲勞測試  微結構分析 
英文關鍵字 titanium alloy  thermo-mechanical treatment  tensile test  fatigue test  microstructure 
學科別分類
中文摘要 本研究利用具有專利保護且不含鋁、釩等有害元素之Ti-7.5Mo合金作為研究材料,希望能將此合金應用於市面上常見之骨、外科用植入物。此合金需要具有高生物相容性,同時具有高强度及低彈性模數,可以大幅減少高彈性模數之骨科植入物造成的應力遮蔽效應。本研究以雙瑞精鑄鈦業所生產之Ti-7.5Mo合金為機械性質研究重點,並與商業用Ti-6Al-4V ELI合金比較,評估在材料在受力下使用的機械性質及應變控制之短週期疲勞行為,並藉顯微技術對合金的相組成、微結構、機械性質及受力後變形模式進行探討而後歸納出其力學行為的相依性,並從中找出適合做為骨科植入材料的製程參數。
實驗結果顯示,在VAR製程中Ti-7.5Mo合金有固溶原子分佈不均現象,須先經過均質化處理,使其固溶原子均勻散佈於合金,方能與實驗室小量製備之Ti-7.5Mo合金具有一致性。經過均質化之 Ti-7.5Mo合金利用熱軋、固溶、冷軋及時效等製程處理,改變合金相組成、晶粒大小、優選方向、織構及差取向角,得到一系列高強度、低彈性模數且具有一定延展性之Ti-7.5Mo合金,其中共有十幾組合金之平均強度/彈性模數比高於商業用的Ti-6Al-4V ELI合金,更有2組合金之強度/彈性模數比為商業用Ti-6Al-4V ELI合金的2倍以上。另外本研究以應變控制之低週期疲勞試驗來測試其中四組Ti-7.5Mo合金受循環應變作用的表現,發現在最大應變量7%的情況下,平均疲勞壽命均優於商業用Ti-6Al-4V ELI合金,其中最優異的疲勞壽命達到商業用Ti-6Al-4V ELI合金36倍。
第二部分研究為藉由固溶後之Ti-7.5Mo合金進行不同厚度變形量之冷軋,觀察研究α"相Ti-7.5Mo合金受到應力壓軋後導致微結構的改變,並深入了解其與不同冷軋變形量之間的關係。實驗結果顯示,在固溶Ti-7.5Mo合金之α”相細針狀晶體長約120μm,寬約1.1μm ~ 0.7μm,且合金織構會隨著冷軋變性量增加而由隨機分佈轉變為具有特定織構之合金,並得知在α"相Ti-7.5Mo合金中,應力誘發麻田散體為一對壓應力相當敏感之機制。
英文摘要 Although the binary Ti-7.5Mo alloy had low elastic modulus which is an advantageous for orthopedic applications from the viewpoint of stress-shielding effect, but α”-phase titanium alloy has a relatively low strength. The present study was an attempt to increase the strength level, decrease the elastic modulus and enhanced the fatigue life of the Ti-7.5Mo alloy by thermo-mechanical treatment. Furthermore, the study compares structure and tensile/fatigue properties of the Ti-7.5Mo samples under different thermo-mechanical treatment. The Ti-7.5Mo alloy plate used in this study which was prepared by VAR process. The as-received Ti-7.5Mo alloy samples were one-step hot-rolled, solution treated, multi-step cold-rolled, and aged. The highest strength-modulus ratio of Ti-7.5Mo alloy in this study was 13.67 which was much higher than control group, Ti-6Al-4V ELI alloy. And the best 7% strain-controlled of fatigue cycles in this study was 36 times than Ti-6Al-4V ELI alloy. Based on the strength-to-modulus ratio and fatigue properties of Ti-7.5Mo alloy which prepared with the above processes and compare with Ti-6Al-4V ELI alloy, the Ti-7.5Mo alloy prepared with 65% HR reduction followed by 30 min of solution treatment, 35% of cold rolling, and a final 12 hours aging is a potential implant material
論文目次 中文摘要 I
英文延伸摘要(English Extended Thesis Abstract) III
誌謝 VI
目錄 VIII
表目錄 XIII
圖目錄 XIV
第一章 緒論 1
1-1 研究背景 1
1-1-1 生醫材料簡介 1
1-1-2 生醫金屬發展 2
1-1-3 彈性模數之重要性 6
1-1-4 市場現況 6
1-1-5 研究現況 10
1-2 研究目的 11
第二章 基礎理論與文獻回顧 12
2-1 鈦合金基礎 12
2-1-1 鈦合金設計理論 12
2-1-2 Ti-7.5Mo合金的發展 19
2-1-3 α”鈦合金的性質及潛力 23
2-2 骨科金屬植入材料基礎 25
2-2-1 強度 26
2-2-2 彈性模數 28
2-2-3 生物相容性 31
2-2-4 腐蝕性質 34
2-2-4 磨耗性質 36
2-3 軋製加工製程 38
2-3-1 熱壓軋製程 43
2-3-2 冷壓軋製程 45
2-4 熱處理 47
2-4-1 固溶處理 50
2-4-2 時效處理 52
2-4-3 淬火處理 53
2-5 金屬材料的變形機構 55
2-5-1 差排的基本概念與特性 56
2-5-2 鈦合金形變模式 60
2-5-3 雙晶變形 63
2-6 金屬材料的強化機制 66
2-6-1 細晶強化 66
2-6-2 固溶強化 67
2-6-3 加工硬化 68
2-6-4 析出強化 69
2-7 鈦合金金相 75
2-8 X光分析 78
2-9 EBSD分析 84
2-10 金屬破壞機構 89
2-10-1 延性破斷 90
2-10-2 脆性破斷 93
2-10-3 疲勞破損 94
第三章 實驗步驟與方法(1) 101
3-1實驗流程 101
3-2材料之準備 102
3-3試片後處理 108
3-4微結構分析 - X光繞射相分析 111
3-5微結構分析 - 金相分析 113
3-6微結構分析 – EDS分析 114
3-7微結構分析 - EBSD分析 116
3-8力學分析 - 微硬度分析 (ASTM, 2011) 118
3-9拉伸及疲勞試片前處理 120
3-10力學分析 - 拉伸試驗 (ASTM, 2009) 122
3-11力學分析 – 低週期疲勞試驗(ASTM, 2012) 124
3-12破壞後分析 – 疲勞破斷面觀察 125
第四章 結果與討論(1) 126
4-1 As received (雙瑞) Ti-7.5Mo合金成份及性質確認 126
4-2 不同熱軋變形量之HR-ST5 Ti-7.5Mo合金 136
4-3 不同固溶時間之ST Ti-7.5Mo合金 158
4-4 不同冷軋變形量之CR Ti-7.5Mo合金 173
4-5 不同低溫時效時間之A Ti-7.5Mo合金 186
第五章 結論(1) 211
第六章 實驗步驟與方法(2) 215
6-1前言 215
6-2實驗流程 215
6-3材料之準備 216
6-4 固溶處理 218
6-5 冷軋不同變形量 218
6-6試片後處理 218
6-7微結構分析 – X光繞射相分析 219
6-8微結構分析 – 金相分析 219
6-9 微結構分析 – EBSD織構分析 219
6-10 微結構分析 – TEM微區繞射分析 219
第七章 結果與討論(2) 222
7-1 XRD分析 222
7-2 金相分析 227
7-3 EBSD織構分析 229
7-4 TEM選區繞射分析 232
第八章 結論(2) 241
第九章 總結 242
第十章 參考文獻 243
第十一章 附錄 269
附件1. ASTM Standard Specification for Wrought Titanium-15Mo Alloy for Surgical Implant Applications 270
附件2. 研究(1)中詳細機械性質數據列表 275
附件3. 研究(1)中降伏強度與最大拉伸強度之p value統計值列表 276
附件4. 研究(1)中彈性模數與延展性之p value統計值列表 277
附件5. 研究(1)中微硬度之p value統計值列表 278
附件6. 研究(1)中彈性模數及降伏強度比值 279
附件7. 研究(1)中疲勞試驗變形量對應之應力值與拉伸應力圖之比較表 280
第十二章 個人著作表 281
參考文獻 Abdel-Hady, M., K. Hinoshita and M. Morinaga. "General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters." Scripta Materialia 55(5): 477-480. (2006)
Ahmed, T. and H. J. Rack. "Phase transformations during cooling in alpha+beta titanium alloys." Mat. Sci. Eng. A-struct 243(1-2): 206-211. (1998)
Akahori, T., M. Niinomi, H. Fukui, M. Ogawa and H. Toda. "Improvement in fatigue characteristics of newly developed beta type titanium alloy for biomedical applications by thermo-mechanical treatments." Materials Science and Engineering: C 25(3): 248-254. (2005)
Anderson, T. L. Fracture mechanics: fundamentals and applications, CRC press. 640 pages. (2005)
Ankem, S. and C. A. Greene. "Recent developments in microstructure/property relationships of beta titanium alloys." Materials Science and Engineering: A 263(2): 127-131. (1999)
Ansel, D., I. Thibon, M. Boliveau and J. Debuigne. "Interdiffusion in the body cubic centeredβ-phase of Ta–Ti alloys." Acta Materialia 46(2): 423-430. (1998)
Antonysamy, A. A. "Microstructure, texture and mechanical property evolution during additive manufacturing of Ti6Al4V alloy for aerospace applications" (2012).
Ashby, N. "The factor of hardness in metals." New Zealand Engineering 6(1): 33. (1951).
ASTM. Standard Test Methods for Tension Testing of Metallic Materials. USA, ASTM. E8/E8M-09. (2009)
ASTM. Standard Test Method for Knoop and Vickers Hardness of Materials. USA, ASTM. E384-11e1. (2011)
ASTM. Standard Test Method for Strain-Controlled Fatigue Testing. USA, ASTM. E606/E606M-12. (2012)
ASTM. Standard Specification for Wrought Titanium-15 Molybdenum Alloy for Surgical Implant Applications. USA, ASTM. F2066-13. (2013)
ASTM. Standard Test Method for Analysis of Titanium and Titanium Alloys by Direct Current Plasma and Inductively Coupled Plasma Atomic Emission Spectrometry USA, ASTM. E2371-13. (2013)
Bagariatskii, I. A., G. I. Nosova and T. V. Tagunova. "Factors in the Formation of Metastable Phases in Titanium-Base Alloys." Sov Phys Dokl (Engl Transl) 3: 1014-1022. (1958)
Bahraminasab, M., B. B. Sahari, K. L. Edwards, F. Farahmand, M. Arumugam and T. S. Hong. "Aseptic loosening of femoral components - A review of current and future trends in materials used." Materials and Design 42: 459-470. (2012)
Bania, T. M. "Protostars and Planets .3. - Levy,Eh, Luinine,Ji." Science 262(5131): 261-262. (1993)
Bein, S. and J. Bechet. "Phase Transformation Kinetics and Mechanisms in Titanium Alloys Ti-6.2. 4.6, ß-CEZ and Ti-10.2. 3." Le Journal de Physique IV 6(C1): C1-99-C91-108. (1996)
Bobyn, J. D., A. H. Glassman, H. Goto, J. J. Krygier, J. E. Miller and C. E. Brooks. "The Effect of Stem Stiffness on Femoral Bone-Resorption after Canine Porous-Coated Total Hip-Arthroplasty." Clinical Orthopaedics and Related Research(261): 196-213. (1990)
Bolzoni, L., T. Weissgaerber, B. Kieback, E. M. Ruiz-Navas and E. Gordo. "Mechanical behaviour of pressed and sintered CP Ti and Ti-6Al-7Nb alloy obtained from master alloy addition powder." Journal of the Mechanical Behavior of Biomedical Materials 20: 149-161. (2013)
Bonnet, R., E. Cousineau and D. H. Warrington. "Determination of near-coincident cells for hexagonal crystals. Related DSC lattices." Acta Crystallographica Section A 37(2): 184-189. (1981)
Boyer, R. and E. Collings. Materials properties handbook: titanium alloys, ASM international, Metals Park, Ohio. (1993)
Boyer, R. W. G. C. E. W. A. S. f. M.. Materials properties handbook : titanium alloys. ASM International, Metals Park, Ohio. (1994)
Bozzolo, N., N. Dewobroto, T. Grosdidier and F. Wagner. "Texture evolution during grain growth in recrystallized commercially pure titanium." Materials Science and Engineering: A 397(1–2): 346-355. (2005)
Brooks, C. R. and A. Choudhury. Metallurgical failure analysis, McGraw-Hill New York. (1993)
Buehler. "VibroMet 2." from http://www.buehler.com/. (2004)
Cabibbo, M., S. Zherebtsov, S. Mironov, G. Salishchev. "Loss of coherency and interphase α/β angular deviation from the Burgers orientation relationship in a Ti–6Al–4V alloy compressed at 800 °C." Jorunal of Materials Science. 48: 1100-1110. (2013)
Carter, D. R., E. I. Gates and W. H. Harris. "Strain-controlled fatigue of acrylic bone cement." Journal of Biomedical Materials Research 16(5): 647-657. (1982)
Challa, V. S. A., S. Mali and R. D. K. Misra. "Reduced toxicity and superior cellular response of preosteoblasts to Ti-6Al-7Nb alloy and comparison with Ti-6Al-4V." Journal of Biomedical Materials Research Part A 101A(7): 2083-2089. (2013)
Chan, K. S., M. Koike, B. W. Johnson and T. Okabe. "Modeling of alpha-case formation and its effects on the mechanical properties of titanium alloy castings." Metallurgical and Materials Transactions A 39(1): 171-180. (2008)
Cheal, E. J., M. Spector and W. C. Hayes. "Role of Loads and Prosthesis Material Properties on the Mechanics of the Proximal Femur after Total Hip-Arthroplasty." Journal of Orthopaedic Research 10(3): 405-422. (1992)
Chen, L. J., H. He, Y. M. Li, T. Li, X. P. Guo and R. F. Wang. "Finite element analysis of stress at implant-bone interface of dental implants with different structures." Transactions of Nonferrous Metals Society of China 21(7): 1602-1610. (2011)
Chen, Y.C., C.P. Ju and J.H. Lin Chern. "Microstructural investigation of stress-assisted α"-α' phase transformation in cold-rolled Ti-7.5Mo alloy." Micron (in press). (2014)
Chen, Y. C., J. H. Chern Lin and C. P. Ju. "Effects of post-aging cooling condition on structure and tensile properties of aged Ti-7.5Mo alloy." Materials & Design 54(C): 5. (2014)
Cheng, J. and S. Nemat-Nasser. "A model for experimentally-observed high-strain-rate dynamic strain aging in titanium." Acta Materialia 48(12): 3131-3144. (2000)
Christen, P., K. Ito, I. Knippels, R. Müller, G. H. van Lenthe and B. van Rietbergen. "Subject-specific bone loading estimation in the human distal radius." Journal of Biomechanics 46(4): 759-766. (2013)
Chun, Y. B., S. H. Yu, S. L. Semiatin and S. K. Hwang. "Effect of deformation twinning on microstructure and texture evolution during cold rolling of CP-titanium." Mat. Sci. Eng. A-struct 398(1-2): 209-219. (2005)
Chung, C.-C., S.-W. Wang, Y.-C. Chen, C.-P. Ju and J.-H. C. Lin. "Effect of cold rolling on structure and tensile properties of cast Ti-7.5Mo alloy." Materials Science & Engineering: A (revised). (2014)
Cojocaru, V., D. Raducanu, T. Gloriant, D. Gordin and I. Cinca. "Effects of cold-rolling deformation on texture evolution and mechanical properties of Ti-29Nb-9Ta-10Zr alloy." Mat. Sci. Eng. A-struct. (2013)
Collings, E. W. The physical metallurgy of titanium alloys, American Society for Metals. (1984)
Committee, A. I. H. ASM Handbook: Fatigue and fracture, ASM International, Metals Park, Ohio. (1996)
Cook, J., J. E. Gordon, C. C. Evans and D. M. Marsh. "A Mechanism for the Control of Crack Propagation in All-Brittle Systems." Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 282(1391): 508-520. (1964)
Cooke, F. W. A. E. A. I. B. S.. Materials for reconstructive surgery : proceedings of the 6th Annual International Biomaterials Symposium; held at Clemson University, Clemson (S.C.), April 1974. Wiley-Interscience, New York. (1975)
Cottrell, A. and D. Hull. "Extrusion and intrusion by cyclic slip in copper." Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 242(1229): 211-213. (1957)
Couper, M., A. Neeson and J. Griffiths. "Casting defects and the fatigue behaviour of an aluminium casting alloy." Fatigue & Fracture of Engineering Materials & Structures 13(3): 213-227. (1990)
Dai, S. J., Y. Wang, F. Chen, X. Q. Yu and Y. F. Zhang. "Effects of cold deformation on microstructure and mechanical properties of Ti-35Nb-9Zr-6Mo-4Sn alloy for biomedical applications." Mat. Sci. Eng. A-struct 575: 35-40. (2013)
Davis, R., H. M. Flower and D. R. F. West. "Martensitic Transformations in Ti-Mo Alloys." Journal of Materials Science 14(3): 712-722. (1979)
DeGarmo, E. P., J. T. Black, R. A. Kohser and B. E. Klamecki. "Materials and process in manufacturing." Jolm Wiley and Sons, USA: 974. (2003)
Dirac, P. A. Note on exchange phenomena in the Thomas atom. Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge Univ Press. (1930)
Dobbs, R. D. "Mechanisms of Kidney Tubule Cell-Death in Chronic Pyelonephritis." Alabama Journal of Medical Sciences 17(1): 41-42. (1980)
Dobromyslov, A. V. and V. A. Elkin. "beta ->alpha ' and beta ->omega transformations in Ti-Os alloys." Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 30(1): 231-233. (1999)
Donachie, M. J. Titanium: A Technical Guide, ASM International, Metals Park, Ohio. (2000)
Duerig, T. and J. Williams. "Overview: microstructure and properties of beta titanium alloys." Beta Titanium Alloys in the 1980's: 19-67. (1983)
Duerig, T. W., J. Albrecht, D. Richter and P. Fischer. "Formation and Reversion of Stress-Induced Martensite in Ti-10v-2fe-3al." Acta Metallurgica 30(12): 2161-2172. (1982)
Dumbleton, J. H. "The clinical significance of wear in total hip and knee prostheses." J Biomater Appl 3(1): 3-32. (1988)
Ellis, D. E. and G. S. Painter. "Discrete Variational Method for the Energy-Band Problem with General Crystal Potentials." Physical Review B 2(8): 2887-2898. (1970)
Engh, C. A. and J. D. Bobyn. "The Influence of Stem Size and Extent of Porous Coating on Femoral Bone-Resorption after Primary Cementless Hip Arthroplasty." Clinical Orthopaedics and Related Research(231): 7-28. (1988)
Eylon, D. and B. Strope. "Fatigue Crack Initiation in Ti-6wt-Percent Al-4 Wt-Percent V Castings." Journal of Materials Science 14(2): 345-353. (1979)
Farthing, T. W. "The development of titanium and its alloys." Clinical Materials 2(1): 15-32. (1987)
Fedotov, S. G., K. M. Konstantinov, E. F. Sidorova and N. F. Krasova. "Transformation of Titanium-Molybdenum Martensite." Russian Metallurgy(5): 155-160. (1973)
Fragou, S. and T. Eliades. "Effect of Topical Fluoride Application on Titanium Alloys: A Review of Effects and Clinical Implications." Pediatric Dentistry 32(2): 99-105. (2010)
Freeman, M. A. R. and S. A. V. Swanson. The Scientific Basis of Joint Replacement, Wiley,U.S.A.. (1977)
Friedel, J. "Anomaly in the Rigidity Modulus of Copper Alloys for Small Concentrations." Philosophical Magazine 44(351): 444-448. (1953)
Froes, F. H., C. F. Yolton, J. M. Capenos, M. G. H. Wells and J. C. Williams. "The relationship between microstructure and age hardening response in the metastable beta titanium alloy Ti- 11.5 Mo-6 Zr-4.5 Sn (beta III)." Metallurgical and Materials Transactions A 11(1): 21-31. (1980)
Gall, K., J. Tyber, G. Wilkesanders, S. W. Robertson, R. O. Ritchie and H. J. Maier. "Effect of microstructure on the fatigue of hot-rolled and cold-drawn NiTi shape memory alloys." Materials Science and Engineering: A 486(1–2): 389-403. (2008)
Ganesh, B. K. C., N. Ramanaih and P. V. C. Rao. "Dry Sliding Wear Behavior of Ti-6Al-4V Implant Alloy Subjected to Various Surface Treatments." Transactions of the Indian Institute of Metals 65(5): 425-434. (2012)
Gazder, A. A., V. Q. Vu, A. A. Saleh, P. E. Markovsky, O. M. Ivasishin, C. H. J. Davies and E. V. Pereloma. "Recrystallisation in a cold drawn low cost beta titanium alloy during rapid resistance heating." Journal of Alloys and Compounds 585(0): 245-259. (2014)
Geetha, M., A. K. Singh, R. Asokamani and A. K. Gogia. "Ti based biomaterials, the ultimate choice for orthopaedic implants – A review." Progress in Materials Science 54(3): 397-425. (2009)
Gonçalves, N. S., J. A. Carvalho, Z. M. Lima and J. M. Sasaki. "Size-strain study of NiO nanoparticles by X-ray powder diffraction line broadening." Materials Letters 72: 36-38. (2012)
Goodman, S. B., V. L. Fornasier, J. Lee and J. Kei. "The histological effects of the implantation of different sizes of polyethylene particles in the rabbit tibia." Journal of Biomedical Materials Research 24(4): 517-524. (1990)
Goto, M., S. Z. Han, K. Euh, J. H. Kang, S. S. Kim and N. Kawagoishi. "Formation of a high-cycle fatigue fracture surface and a crack growth mechanism of ultrafine-grained copper with different stages of microstructural evolution." Acta Materialia 58(19): 6294-6305. (2010)
Grosskreutz, J. STP415 Fatigue Crack Propagation. 1916 Race Street, Philadelphia, Pa. 19103, ASTM International is a member of CrossRef.: 538. (1967)
Gupta, V. B., S. Anitha, M. L. Hegde, L. Zecca, R. M. Garruto, R. Ravid, S. K. Shankar, R. Stein, P. Shanmugavelu and K. S. J. Rao. "Aluminium in Alzheimer's disease: are we still at a crossroad?" Cellular and Molecular Life Sciences 62(2): 143-158. (2005)
Guu, Y. and H. Hocheng. "Improvement of fatigue life of electrical discharge machined AISI D2 tool steel by TiN coating." Materials Science and Engineering: A 318(1): 155-162. (2001)
Hanada, S., M. Ozeki and O. Izumi. "Deformation characteristics in Β phase Ti-Nb alloys." Metallurgical Transactions A 16(5): 789-795. (1985)
Hao, Y. L., S. J. Li, S. Y. Sun, C. Y. Zheng and R. Yang. "Elastic deformation behaviour of Ti–24Nb–4Zr–7.9Sn for biomedical applications." Acta Biomaterialia 3(2): 277-286. (2007)
Hardt, S., H. J. Maier and H. J. Christ. "High-temperature fatigue damage mechanisms in near-α titanium alloy IMI 834." International Journal of Fatigue 21(8): 779-789. (1999)
Ho, W.F. "A comparison of tensile properties and corrosion behavior of cast Ti–7.5 Mo with cp Ti, Ti–15Mo and Ti–6Al–4V alloys." Journal of Alloys and Compounds 464(1): 580-583. (2008)
Ho, W. F., C. P. Ju and J. H. C. Lin. "Structure and properties of cast binary Ti-Mo alloys." Biomaterials 20(22): 2115-2122. (1999)
Inman, I. A., S. Datta, H. L. Du, J. S. Burnell-Gray and Q. Luo. "Microscopy of glazed layers formed during high temperature sliding wear at 750 °C." Wear 254(5–6): 461-467. (2003)
Ivasishin, O. M., P. E. Markovsky, S. L. Semiatin and C. H. Ward. "Aging response of coarse- and fine-grained β titanium alloys." Materials Science and Engineering: A 405(1–2): 296-305. (2005)
Jaffee, R. I., N. E. Promisel, I. o. Metals, M. S. o. AIME. and A. S. f. Metals. The science, technology, and application of titanium: proceedings, Published for the organizing societies by Pergamon Press. (1970)
Jones, L. C. and D. S. Hungerford. "Cement Disease." Clinical Orthopaedics and Related Research 225: 192-206. (1987)
Karr, M., J. Coutinho and J. Ahlrichs. Determination of aluminum toxicity in Indiana soils by petri dish bioassay. Proceedings of the Indiana Academy of Science. (2013)
Khan, M. A., R. L. Williams and D. F. Williams. "In-vitro corrosion and wear of titanium alloys in the biological environment." Biomaterials 17(22): 2117-2126. (1996)
Koul, M. K. and J. F. Breedis. "Phase transformations in beta isomorphous titanium alloys." Acta Metallurgica 18(6): 579-588. (1970)
Kung, C. Y. and M. E. Fine. "Fatigue Crack Initiation and Microcrack Growth in 2024-T4 and 2124-T4 Aluminum-Alloys." Metallurgical Transactions a-Physical Metallurgy and Materials Science 10(5): 603-610. (1979)
Kuroda, D., M. Niinomi, M. Morinaga, Y. Kato and T. Yashiro. "Design and mechanical properties of new beta type titanium alloys for implant materials." Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 243(1-2): 244-249. (1998)
Lütjering, G. and J. C. Williams. Titanium, Springer, Germany. (2007)
Lampman, S. R. "ASM Handbook: Volume 19, Fatigue and Fracture." ASM International, Metals Park, Ohio. (1996)
Lee, C. M., C. P. Ju and J. H. C. Lin. "Structure-property relationship of cast Ti-Nb alloys." Journal of Oral Rehabilitation 29(4): 314-322. (2002)
Leica-microsystems. "DM2500P." from http://www.leica-microsystems.com/. (2002)
Li, S. J., T. C. Cui, Y. L. Hao and R. Yang. "Fatigue properties of a metastable β-type titanium alloy with reversible phase transformation." Acta Biomaterialia 4(2): 305-317. (2008)
Lin, D. J., C. C. Chuang, J. H. C. Lin, J. W. Lee, C. P. Ju and H. S. Yin. "Bone formation at the surface of low modulus Ti–7.5Mo implants in rabbit femur." Biomaterials 28: 2582-2589. (2007)
Long, M., R. Crooks and H. J. Rack. "High-cycle fatigue performance of solution-treated metastable-beta titanium alloys." Acta Materialia 47(2): 661-669. (1999)
Long, M. and H. J. Rack. "Titanium alloys in total joint replacement--a materials science perspective." Biomaterials 19(18): 1621-1639. (1998)
Lu, Z., Y. Liu, B. Liu and M. Liu. "Friction and wear behavior of hydroxyapatite based composite ceramics reinforced with fibers." Materials and Design 39: 444-449. (2012)
Ma, Y. Q., S. Y. Yang, W. J. Jin, Y. N. Wang, C. P. Wang and X. J. Liu. "Microstructure, mechanical and shape memory properties of Ti-55Ta-xSi biomedical alloys." Transactions Of Nonferrous Metals Society Of China 21(2): 287-291. (2011)
Matsumoto, H. and H. Motoda. "Aluminum toxicity recovery processes in root apices. Possible association with oxidative stress." Plant Science 185: 1-8. (2012)
Matsumoto, H., S. Watanabe and S. Hanada. Strengthening of low Young’s modulus beta Ti-Nb-Sn alloys by thermomechanical processing. Proceedings of the Materials and Processes for Medical Devices Conference (MPMD 06). (2006)
Matsumoto, H., S. Watanabe and S. Hanada. "α’ Martensite Ti–V–Sn alloys with low Young's modulus and high strength." Materials Science & Engineering: A 448: 39-48. (2007)
Messerschmidt, U. Dislocation Dynamics During Plastic Deformation, Springer London, Limited. (2012)
Miyamoto, R., H. Inoue, K. Ohashi, H. Shibata, T. Meguro, S. Fukuyama and K. Hashimoto. "Evaluation of the cell cytotoxicity of & β-tricalcium phosphate doped with vanadium ions." Phosphorus Research Bulletin 26: 113-116. (2012)
Molchanova, E. K. Phase diagrams of titanium alloys. Jerusalem, Israel program for scientific translations. (1965)
Morinaga, M. "Evaluation of Titanium-Alloys by the Electronic Theory .1. Calculation of Electronic-Structure." Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan 71(5): S740-S740. (1985)
Morinaga, M. "Evaluation of Titanium-Alloys by the Electronic Theory .2. Estimation of Alloy Properties." Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan 71(5): S741-S741. (1985)
Morinaga, M., N. Yukawa and H. Adachi. "Electronic-Structure of Non-Stoichiometric Nial." Journal of the Less-Common Metals 108(1): 53-64. (1985)
Morinaga, M., N. Yukawa and H. Adachi. "Theory of the D Electrons Alloy Design." Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan 71(11): 1441-1451. (1985)
Morinaga, M., N. Yukawa, H. Ezaki and H. Adachi. "D-Electrons Alloy Design for Heat-Resisting Alloys." Transactions of the Iron and Steel Institute of Japan 24(12): B406-B406. (1984)
Mott, N. F. "A Theory of Work-Hardening of Metal Crystals." Philosophical Magazine 43(346): 1151-1178. (1952)
Murray, J. (1981). "The Mo− Ti (Molybdenum-Titanium) system." Bulletin of Alloy Phase Diagrams 2(2): 185-192.
Murray, J. L. (1981). "Evaluation of Titanium Binary Phase-Diagrams." Journal of Metals 33(9): A39-A39.
Murray, J. L. (1981). "The Mo−Ti (Molybdenum-Titanium) system." Bulletin of Alloy Phase Diagrams 2(2): 185-192.
Nagashima S. I. (1986). "Texture of titanium. " Bulletin of The Iron and Steel Institute of Japan 72: 314-320. (in Japanese)
Nalla, R. K., J. H. Kinney and R. O. Ritchie (2003). "On the fracture of human dentin: Is it stress- or strain-controlled?" Journal of Biomedical Materials Research Part A 67A(2): 484-495.
Natelson, B. H., J. E. Ottenweller, J. A. Cook, D. Pitman, R. Mccarty and W. N. Tapp. "Effect of Stressor Intensity on Habituation of the Adrenocortical Stress Response." Physiology & Behavior 43(1): 41-46. (1988)
Nelson, D. H. and G. Schneider. Applied manufacturing process planning: with emphasis on metal forming and machining, Prentice Hall. (2001)
Niinomi, M. "Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti-29Nb-13Ta-4.6Zr." Biomaterials 24(16): 2673-2683. (2003)
Niinomi, M. "Recent research and development in titanium alloys for biomedical applications and healthcare goods." Science and Technology of Advanced Materials 4(5): 445-454. (2003)
Niinomi, M. "Tend and present state of titanium alloys with body centered structure for biomedical applications." Bulletin of The Iron and Steel Institute of Japan 15: 661-670. (2010)
Niinomi, M., T. Hattori, T. Kasuga and H. Fukui. Titanium and Its Alloys. Encyclopedia of Biomaterials and Biomedical Engineering: 2876-2892. (2006)
Niinomi, M. and M. Nakai. "Titanium-Based Biomaterials for Preventing Stress Shielding between Implant Devices and Bone." International Journal of Biomaterials 2011. (2011)
Oh, I. and W. H. Harris. "Proximal Strain Distribution in Loaded Femur - Invitro Comparison of Distributions in Intact Femur and after Insertion of Different Hip-Replacement Femoral Components." Journal of Bone and Joint Surgery-American Volume 60(1): 75-85. (1978)
Oh, J. M., J. W. Lim, B. G. Lee, C. Y. Suh, S. W. Cho, S. W. Lee and G. S. Choi. "Grain Refinement and Hardness Increase of Titanium via Trace Element Addition." Materials Transactions 51(11): 2009-2012. (2010)
Okazaki, Y., S. Asao, S. Rao and T. Tateishi. "Effect of concentration of Zr, Sn, Nb, Ta, Pd, Mo, Co, Cr, Si, Ni, Fe on the relative growth ratios of bio-cells." Journal of the Japan Institute of Metals 60(9): 902-906. (1996)
Oliveira, N. T. C., G. Aleixo, R. Caram and A. C. Guastaldi. "Development of Ti–Mo alloys for biomedical applications: Microstructure and electrochemical characterization." Materials Science and Engineering: A 452–453(0): 727-731. (2007)
Oxford-instruments. "Electron Backscatter Diffraction." from http://www.oxford-instruments.com/.
Papakyriacou, M., H. Mayer, C. Pypen, H. Plenk and S. Stanzl-Tschegg. "Effects of surface treatments on high cycle corrosion fatigue of metallic implant materials." International Journal of Fatigue 22(10): 873-886. (2000)
Park, B. and W. Brook. "Choosing the right engineering surface." Surface Engineering 5(4). (1989)
Park, J. and R. Lakes. Biomaterials Springer New York. (2007)
Pilliar, R. M. "Modern metal processing for improved load-bearing surgical implants." Biomaterials 12(2): 95-100. (1991)
Pittinato, G., A. Phillips, V. Kerlin and M. Russo. SEM/TEM fractography handbook, DTIC Document. (1975)
Rae, T. "Study on Effects of Particulate Metals of Orthopedic Interest on Murine Macrophages Invitro." Journal of Bone and Joint Surgery-British Volume 57(4): 444-450. (1975)
Reed-Hill, R. E. and R. Abbaschian. "Physical metallurgy principles." (1973)
Reportlinker. Orthopedic Industry: Market Research Reports, Statistics and Analysis, Reportlinker. (2013)
Rho, J.-Y., M. E. Roy, T. Y. Tsui and G. M. Pharr. "Elastic properties of microstructural components of human bone tissue as measured by nanoindentation." Journal of Biomedical Materials Research 45(1): 48-54. (1999)
Rogers, H. C. "The Tensile Fracture of Ductile Metals." Transactions of the American Institute of Mining and Metallurgical Engineers 218(3): 498-506. (1960)
Rooksby, H. "The powder method in X-ray crystallography by L. V. Azaroff and J. Buerger." Acta Crystallographica 11(10): 753-754. (1958)
Sasaki, K., O. Suzuki, N. Takahashi and P. Stashenko. Interface Oral Health Science 2011: Proceedings of the 4th International Symposium for Interface Oral Health Science, Springer. (2012)
Schutz, R. W. "Environmental Behavior of Beta-Titanium Alloys." Jom-Journal of the Minerals Metals & Materials Society 46(7): 24-29. (1994)
Sekiguchi, T., K. Ono, H. Fujiwara and K. Ameyama. "New Microstructure Design for Commercially Pure Titanium with Outstanding Mechanical Properties by Mechanical Milling and Hot Roll Sintering." Materials transactions 51(1): 39-45. (2010)
Sergueeva, A. V., V. V. Stolyarov, R. Z. Valiev and A. K. Mukherjee. "Advanced mechanical properties of pure titanium with ultrafine grained structure." Scripta Materialia 45(7): 747-752. (2001)
Sinclair, D. "A Bending Method for Measurement of the Tensile Strength and Young's Modulus of Glass Fibers." Journal of Applied Physics 21(5): 380-386. (1950)
Smith, C. W. "Experiments in three-dimensional fracture problems." Experimental Mechanics 33(3): 249-262. (1993)
Soboyejo, W. "4.17 - Fatigue of Biomaterials/Biomedical Systems." Comprehensive Structural Integrity. I. Milne, R. O. Ritchie and B. Karihaloo. Oxford, Pergamon: 443-465. (2003)
Song, Y., D. Xu, R. Yang, D. Li, W. Wu and Z. Guo. "Theoretical study of the effects of alloying elements on the strength and modulus of< i> β-type bio-titanium alloys." Materials Science and Engineering: A 260(1): 269-274. (1999)
Springer, C. and W. Ahmed. "Metallographic preparation of titanium." Prakt. Metallogr. 21(4): 200-203. (1984)
Srivastava, S., N. Kumar, R. Thakur and P. Roy. "Role of Vanadium (V) in the Differentiation of C3H10t1/2 Cells Towards Osteoblast Lineage: A Comparative Analysis with Other Trace Elements." Biological Trace Element Research 152(1): 135-142. (2013)
Steinemann, S. "Corrosion of titanium and titanium alloys for surgical implants." Titanium--Science and Technology. 2: 1373-1379. (1984)
Stolyarov, V. V., Y. T. Zhu, I. V. Alexandrov, T. C. Lowe and R. Z. Valiev. "Grain refinement and properties of pure Ti processed by warm ECAP and cold rolling." Materials Science and Engineering: A 343(1–2): 43-50. (2003)
Sumner, D. R., T. M. Turner, R. M. Urban and J. O. Galante. "Experimental Studies of Bone Remodeling in Total Hip-Arthroplasty." Clinical Orthopaedics and Related Research(276): 83-90. (1992)
Sung, S.-Y. and Y.-J. Kim. "Alpha-case formation mechanism on titanium investment castings." Materials Science and Engineering: A 405(1): 173-177 . (2005)
Tabor, D. The hardness of metals, Oxford university press, England. (2000)
Taddei, E. B., V. A. R. Henriques, R. M. d. Silva and C. A. A. Cairo. "Age-hardening of Ti-35Nb-7Zr-5Ta alloy for orthopaedic implants." Materials Research 10: 289-292. (2007)
Takemoto, Y., I. Shimizu, A. Sakakibara, M. Hida and Y. Mantani. "Tensile behavior and cold workability of Ti-Mo alloys." Materials Transactions 45(5): 1571-1576. (2004)
Tane, M., T. Nakano, S. Kuramoto, M. Hara, M. Niinomi, N. Takesue, T. Yano and H. Nakajima. "Low Young's modulus in Ti-Nb-Ta-Zr-O alloys: Cold working and oxygen effects." Acta Materialia 59(18): 6975-6988. (2011)
Tane, M., T. Nakano, S. Kuramoto, M. Niinomi, N. Takesue and H. Nakajima. "omega Transformation in cold-worked Ti-Nb-Ta-Zr-O alloys with low body-centered cubic phase stability and its correlation with their elastic properties." Acta Materialia 61(1): 139-150. (2013)
Tao, N. R., Z. B. Wang, W. P. Tong, M. L. Sui, J. Lu and K. Lu. "An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment." Acta Materialia 50(18): 4603-4616. (2002)
Thompson, G. and D. Puleo. "Ti-6Al-4V ion solution inhibition of osteogenic cell phenotype as a function of differentiation timecourse< i> in vitro." Biomaterials 17(20): 1949-1954. (1996)
Tosha, K. "Influence of Residual Stresses on the Hardness Number in the Affected Layer Produced by Shot Peening." Meiji University/1-1-1 Higashimita, Tamaku, Kawasaki: 214-8571. (2002)
Tousignant, M. and J. Huot. "Hydrogen sorption enhancement in cold rolled LaNi5." Journal of Alloys and Compounds 595(0): 22-27. (2014)
Tsutsui, T., H. Kawaguchi, A. Fujino, A. Sakai, H. Kaji and T. Nakamura. "Exposure of macrophage-like cells to titanium particles does not affect bone resorption, but inhibits bone formation." Journal of orthopaedic science 4(1): 32-38. (1999)
Uan, J. Y. and H. F. Cheng. "Uniform equiaxed grain structure throughout thickness of a hot-rolled 5083 Al-Mg-Mn alloy thick plate after a tempering treatment at 350 degrees C." Materials Transactions 48(2): 178-183. (2007)
Valiev, R. Z., A. V. Sergueeva and A. K. Mukherjee. "The effect of annealing on tensile deformation behavior of nanostructured SPD titanium." Scripta Materialia 49(7): 669-674. (2003)
Vander Voort, G. "Buehler’s Guide to Materials Preparation." Buehler Ltd, Lake Bluff, IL 135. (2004)
Vetalice, J. A. The Top Ten Orthopaedic Device Companies: A new report from ORTHOWORLD. (2013)
Vinogradov, A. Y., V. V. Stolyarov, S. Hashimoto and R. Z. Valiev. "Cyclic behavior of ultrafine-grain titanium produced by severe plastic deformation." Materials Science and Engineering: A 318(1–2): 163-173. (2001)
Wagner, L. and J. K. Gregory. "Improve the Fatigue Life of Titanium-Alloys .1." Advanced Materials & Processes 145(3): V36. (1994)
Wang, K. "The use of titanium for medical applications in the USA." Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 213(1-2): 134-137. (1996)
Wang, L., W. Lu, J. Qin, F. Zhang and D. Zhang. "Microstructure and mechanical properties of cold-rolled TiNbTaZr biomedical β titanium alloy." Materials Science and Engineering: A 490(1–2): 421-426. (2008)
Warren, B. E. X-ray Diffraction, Courier Dover Publications. (1969)
Weinans, H., R. Huiskes and H. J. Grootenboer. "Effects of Material Properties of Femoral Hip Components on Bone Remodeling." Journal of Orthopaedic Research 10(6): 845-853. (1992)
Weiss, I. and S. L. Semiatin. "Thermomechanical processing of beta titanium alloys - an overview." Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 243(1-2): 46-65. (1998)
Wikipedia. "Rolling (metalworking)." from http://en.wikipedia.org/wiki/Rolling_(metalworking).
Williams, D. F. and E. S. f. Biomaterials. Definitions in biomaterials: proceedings of a consensus conference of the European Society for Biomaterials, Chester, England, March 3-5, 1986, Elsevier, England. (1987)
Wolff, J. The law of bone remodeling [translated from the 1892 original, Das Gesetz der Transformation der Knochen, by P. Maquet and R. Furlong], Berlin: Springer Verlag. (1986)
Woodfield, A., P. Postans, M. Loretto and R. Smallman. "The effect of long-term high temperature exposure on the structure and properties of the titanium alloy Ti 5331S." Acta Metallurgica 36(3): 507-515. (1988)
Wu, J., Z. M. Liu, X. H. Zhao, Y. Gao, J. Hu and B. Gao. "Improved Biological Performance of Microarc-Oxidized Low-Modulus Ti-24Nb-4Zr-7.9Sn Alloy." Journal of Biomedical Materials Research Part B-Applied Biomaterials 92B(2): 298-306. (2010)
Wu, S. K. and H. C. Lin. "Recent development of TiNi-based shape memory alloys in Taiwan." Materials Chemistry and Physics 64(2): 81-92. (2000)
Xiaosong, Z., L. Xinggui, Z. Lin, P. Shuming and L. Shunzhong. "X-ray diffraction analysis of titanium tritide film during 1600 days." Journal of Nuclear Materials 396(2–3): 223-227. (2010)
Yamada, H. and F. G. Evans. Strength of biological materials, Williams & Wilkins. (1970)
Yilmazer, H., M. Niinomi, M. Nakai, J. Hieda, T. Akahori and Y. Todaka. "Microstructure and Mechanical Properties of a Biomedical β-Type Titanium Alloy Subjected to Severe Plastic Deformation after Aging Treatment." Key Engineering Materials 508: 152-160. (2012)
Yun, Y. L. Z. 材料物理學概論, 五南圖書出版公司. (2003)
Zhao, Y. and J. Zhang. "Microstrain and grain-size analysis from diffraction peak width and graphical derivation of high-pressure thermomechanics." Journal of Applied Crystallography 41(6): 1095-1108. (2008)
Zherebtsov, S. V., G. S. Dyakonov, A. A. Salem, S. P. Malysheva, G. A. Salishcheva and S. L. Semiatin. "Evolution of grain and subgrain structure during cold rolling of commercial-purity titanium." Mat. Sci. Eng. A-struct 528(9): 3474-3479. (2011)
Zhou, Y. L. and M. Niinomi. "Effects of Nd Content on the Dynamic Elastic Modulus and Mechanical Properties of Titanium-Neodymium Alloys." Materials Transactions 50(2): 368-372. (2009)
Zhou, Y. L., M. Niinomi and T. Akahori. "Effects of Ta content on Young’s modulus and tensile properties of binary Ti–Ta alloys for biomedical applications." Materials Science and Engineering: A 371(1–2): 283-290. (2004)
Zysset, P. K., X. Edward Guo, C. Edward Hoffler, K. E. Moore and S. A. Goldstein. "Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur." Journal of Biomechanics 32(10): 1005-1012. (1999)
中國百科網. "真空冶金." from http://www.chinabaike.com/z/yj/gt/739924.html.
王士瑋. 熱機處理對Ti-7.5Mo合金機械性質之影響. 碩士, 國立成功大學. (2012)
刘孝敏. 工程材料的微细观结构和力学性能, 中国科学技术大学出版社. (2003)
朱胤碩. 熱機處理對鑄造Ti-7.5Mo合金結構與機械性質之研究. 碩士, 國立成功大學. (2011)
何文福. 鑄造鈦-鉬合金之結構及性質研究. 博士, 國立成功大學. (1999)
余煜. "X 射线衍射仪微机化升级改造的讨论与实践." 理化检验 物理分册 37(6). (2001)
李智銘. 鈦鉭及鈦鈮合金之結構性質研究. 博士, 國立成功大學. (2001)
林士哲. 熱機處理對鈦-鉬合金機械性質的影響. 碩士, 國立成功大學. (2009)
林家緯. 鑄造鈦-鉬合金疲勞性質研究. 博士, 國立成功大學. (2004)
林殿傑. 鑄造鈦-鉬-鐵及鈦-鉬-鉻合金性質研究. 博士, 國立成功大學. (2002)
袁成華. 鈦鉬合金熱處裡後疲勞性質之研究. 碩士, 國立成功大學. (2004)
高至鈞. "X光的特性與材料分析." 工業材料 86: 8. (1994)
許峻維. 鉍含量對鈦鉬鉍合金熱機性質之影響. 碩士, 國立成功大學. (2008)
許博淵. 熱機處理對Ti-7.5Mo合金結構與機械性質之影響. 碩士, 國立成功大學. (2013)
陳俊廷. 熱機處理對Ti-7.5Mo合金機械性質的影響. 碩士, 國立成功大學. (2010)
陳彥均. 鈦鉬合金機械性質之研究. 學士, 國立成功大學. (2009)
微奈米科技研究中心. "High-Resolution Thermal Field Emission Scanning Electron Microscopy; FE-SEM 7001F." from http://cmnst.ncku.edu.tw/. (2002)
精呈科技. "V50 Wire Cut EDM." from http://www.excetek.com.tw/. (2006)
鍾進欽. 未定. 博士候選人, 國立成功大學. (2014)
冯凯, 黄晓锋, 马颖, 陈娟娟 and 郝远. "固溶时间对ZA72镁合金显微组织及力学性能的影响." 中國有色金屬學報 21(9): 16-23. (2011)
陈石卿. 钛合金金相学, 国防工业出版社. (1986)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-05-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw