進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1702201615085700
論文名稱(中文) 以射頻磁控濺鍍系統製備二氧化錫與複合薄膜(二氧化錫/奈米銀粒子/二氧化錫)的基礎特性與電性之研究
論文名稱(英文) Study on characterization and electrical properties of SnO2 films and composite films (SnO2/nano-Ag/SnO2) by R.F. magnetron sputtering deposition
校院名稱 成功大學
系所名稱(中) 地球科學系
系所名稱(英) Department of Earth Sciences
學年度 104
學期 1
出版年 105
研究生(中文) 許家泰
研究生(英文) Chia-Tai Hsu
學號 L46024115
學位類別 碩士
語文別 中文
論文頁數 116頁
口試委員 指導教授-陳燕華
口試委員-李建興
口試委員-許華書
口試委員-賴啟銘
中文關鍵字 二氧化錫薄膜  複合薄膜  磁控濺鍍法  微觀導電性  巨觀導電性 
英文關鍵字 SnO2 film  composite film  r.f. magnetron sputtering  conductivity  CAFM 
學科別分類
中文摘要 本研究利用射頻磁控濺鍍系統在矽基板上沉積不同參數(濺鍍功率與氣氛及基板溫度)的二氧化錫薄膜與奈米銀粒子/二氧化錫複合薄膜(SnO2/nano-Ag/ SnO2)。由X光繞射分析儀得知:製備出的SnO2薄膜為正方晶系金紅石結構;從場發射掃描式電子顯微鏡可知:氧化銀(AgOX)在不同的真空後退火時間會使nano-Ag之顆粒大小與分布有所不同。由紫外光-可見光光譜儀觀察到:單層SnO2薄膜之可見光穿透度皆大於70%,加入奈米銀之複合薄膜其可見光穿透度大於單層SnO2薄膜,但其能隙小於單層SnO2薄膜。原子力顯微鏡得知: SnO2薄膜在較高能量(高濺鍍功率與基板溫度)下製備具有較大的晶粒與表面粗糙度。微觀的導電力顯微鏡可觀察到SnO2薄膜中的結晶顆粒具有相分離的現象,且與巨觀的導電量測(凡德堡法)所得之結果一致,但複合薄膜則否。本研究所製備出的SnO2薄膜與其複合薄膜,利用『性能指標- Figure of merit (FOM)』加以比較:於相同參數下複合薄膜有較高的FOM值;單層SnO2薄膜則在濺鍍氣氛為Ar:O2=5:5下有較高的FOM值,故製程參數對SnO2薄膜之特性有顯著之影響。
英文摘要 SUMMARY

In this study, SnO2 film with different depositional parameters (depositional power, Ar:O2, and substrate temperature) and composite films (SnO2/nano-Ag/SnO2) are fabricated on (100) Si substrates by using radio frequency (r.f.) magnetron sputtering deposition. After preparation of the films, the as-deposited films are examined by using these equipment below: The crystal structure is analyzed by X-ray diffraction (XRD), morphology and thickness are observed by atomic force microscopy (AFM) and Field-Emission Scanning Electron Microscopy (FE-SEM), conductivity is measured by conductive atomic force microscopy (CAFM) and Van Der Pauw method, optical properties are UV-Vis and chemical X-ray Photoelectron Spectrometer (XPS).The opto–electronic properties of SnO2 films and composite films are related to its oxygen vacancy, thickness, crystallinity, and nano-Ag type (size and distributed). It can be concluded the opto–electronic properties of SnO2 films and composite films would be influenced by the deposition parameters. Last, we can conclude that if the samples were suitable to be a Transparent Conductive Oxide (TCO) by the figure of merit (FOM). And it’s obvious difference in each sample.


Keywords: SnO2 film, composite film, r.f. magnetron sputtering, conductivity, CAFM.

論文目次 中文摘要 I
Abstract II
致謝 V
圖目錄 IX
表目錄 XIV
第一章 緒論 1
1-1前言 1
1-2 研究目的 3
第二章 文獻回顧 4
2-1材料簡介 4
2-1-1二氧化錫(Tin dioxide) 4
2-1-2 銀(Silver) 5
2-2濺鍍原理 6
2-2-1何謂電漿 7
2-2-2直流輝光濺鍍 7
2-2-3射頻濺鍍 8
2-2-4磁控濺鍍 9
2-2-5反應式濺鍍 10
2-3薄膜沉積 11
2-3-1薄膜沉積方法 11
2-3-2薄膜沉積理論 12
2-3-3薄膜形成之機制 15
2-4透明導電膜特性 16
2-4-1透明導電膜的導電機制 17
2-4-1-1常用的名詞 17
2-4-1-2 透明導電膜的導電原理 19
2-4-2 透明導電膜之光學特性 20
第三章 研究方法 23
3-1實驗流程 23
3-2實驗材料 24
3-3基板前處理 25
3-4薄膜製備 26
3-4-1二氧化錫 26
3-4-2奈米銀 27
3-4-3複合薄膜(SnO2/Ag/SnO2) 28
3-5實驗儀器 30
3-5-1 X光繞射分析儀 30
3-5-2場發射掃描式電子顯微鏡 31
3-5-3 原子力顯微鏡 33
3-5-4 導電力顯微鏡 36
3-5-5紫外光-可見光光譜儀 37
3-5-6 X光光電子能譜儀 37
3-5-7凡德堡法 38
第四章 結果與討論 41
4-1單層SnO2 41
4-1-1 不同濺鍍參數對SnO2之影響 41
4-1-1-1 XRD結果 42
4-1-1-2 AFM結果 46
4-1-2 本研究主要探討之參數 50
4-1-2-1 FE-SEM結果 51
4-1-2-2 XRD結果 54
4-1-2-3 AFM與CAFM結果 57
4-1-2-4 巨觀導電特性之結果 66
4-1-2-5 UV-Vis分析結果 67
4-1-2-6 XPS結果 72
4-2 奈米銀 76
4-2-1 XRD之結果 76
4-2-2FE-SEM的分析結果 77
4-2-3 XPS分析結果 82
4-3複合薄膜(SnO2/Ag/SnO2) 83
4-3-1 SEM結果 84
4-3-2 XRD結果 88
4-3-3 AFM與CAFM結果 89
4-3-4 巨觀導電特性之結果 95
4-3-5 紫外光可見光光譜儀分析結果 96
4-4討論及文獻比較 98
4-4-1單層SnO2與複合薄膜之比較 98
4-4-2與前人文獻比較 101
第五章 結論 103
單層SnO2薄膜 103
複合薄膜(SnO2/Ag/SnO2) 104
單層SnO2薄膜與複合薄膜之比較 105
參考文獻 106
參考文獻 [1] Je-Hsiung Lan and Jerzy Kanicki, “An Alternative Transparent Conducting Oxide to ITO for the a-Si:H TFT-LCD Applications, Active Matrix Liquid Crystal Displays, 1995.
[2] Joachim Muller, Bernd Rech, Jiri Springer and Milan Vanecek, “TCO and light trapping in silicon thin film solar cells”, Solar Energy, 77 (2004) 917–930.
[3] Celine Mayousse, Caroline Celle, Eleonore Moreau, Jean-Francois Maingue, Alexandre Carella and Jean-Pierre Simonato, “Improvements in purification of silver nanowires by decantation and fabrication of flexible transparent electrodes. Application to capacitive touch sensors”, Nanotechnology, 24 (2013) 215501.
[4] K. Badeker, Ann. Phys., Lpz., 22 (1907) 749.
[5] Brian G. Lewis and David C. Paine, “Applications and Processing of Transparent Conducting Oxides”, MRS Bulletin, 25 (2000) 22-27.
[6] M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker and J. Stollenwerk,”Dependence of film composition and thicknesses on optical and electrical properties of ITO–metal–ITO multilayers” , Thin Solid Films, 326 (1998) 67–71.
[7] S. H. Yu, C. H. Jia, H. W. Zheng, L. H. Ding and W. F. Zhang, “High quality transparent conductive SnO2/Ag/SnO2 tri-layer films deposited at room temperature by magnetron sputtering”, Materials Letters 85 (2012) 68–70.
[8] hihui Yu, Lingxia Li, Dan Xu, Helei Dong and Yuxin Jin, “Characterization of SnO2/Cu/SnO2 multilayers for high performance transparent conducting electrodes”, Thin Solid Films, 562 (2014) 501–505.
[9] M. Jarzebski and J. P. Marton, “Physical Properties of SnO2 Materials”, Journal of The Electrochemical Society, (1976) 199C-205C.
[10] Linus Pauling: proc., “The Nature of the Chemical Bond”,(1989) p514.
[11] M. Batzill and U. Diebold, “The surface and materials science of tin oxide”,Progress in surface Science,79(2005)47-154.
[12] G M Stoian, P A Stampe, R J Kennedy, Y Xin, E Lochner and S von Molnar, “Magnetic and structural investigations on as-grown and oxygen annealed PLD SnO2 : Co thin films”, Journal of Physics D: Applied Physics, 47 (2014) 295002.
[13] Y. Liu and M. Liu, “Creation of Porous Ceria by Sublimation of Tin Dioxide during Sintering”, Advanced Engineering Materials, 8 (2006) 89-93.
[14] B. Selin Tosun, Rebekah K. Feist, Aloysius Gunawan, K. Andre Mkhoyan, Stephen A. Campbell and Eray S. Aydil, “Sputter deposition of semicrystalline tin dioxide films”, Thin Solid Films 520 (2012) 2554–2561.
[15] Shikha Bansal, D.K. Pandya, Subhash C. Kashyap and D. Haranath, “Growth ambient dependence of defects, structural disorder and photoluminescence in SnO2 films deposited by reactive magnetron sputtering”, Journal of Alloys and Compounds, 583 (2014) 186–190.
[16] N. Yamazoe, G.Sakai and K. Shimanoe, “Oxide semiconductor gas seneor”, Catal. Surv. Asia 7 (2003) 63.
[17] H. Cachet, J. Bruneaux, G. Folcher, C. Levy-Clement, C. Vard and M. Neumann-Spallart, “n-Si/SnO2 junctions based on macroporous silicon for photoconversion”, Sol. Energ. Mat. Sol. C. 46, 101 (1997).
[18] J. Dutta, P. Roubeau, T. Emei-aud, J. M. Laurent, A. Smith, F. Leblanc and J. Pen-in, “Application of pyrosol deposition process for large-area deposition of fluorine-doped tin dioxide thin films”, Thin Solid Films, 239 (1994) 150-155
[19] Yuan-Lung Chin, Jung-Chuan Chou, Tai-Ping Sun, Hung-Kwei Liao, Wen-Yaw Chung and Shen-Kan Hsiung, “A novel SnO2/Al discrete gate ISFET pH sensor with CMOS standard process”, Sensors and Actuators B: Chemical, 75 (2001) 36-42.
[20] Alina Palyanova, Nick Karmanov and Natalie Savva, “Sulfidation of native gold”, 2014 Mineralogical Society of America, 5 (2014) 1095-1103.
[21] S.P. Murarka, R.J. Gutmann, A.E. Kaloyeros and W.A. Lanford, “Advanced multilayer metallization schemes with copper as interconnection metal”, Thin Solid Films, 236 (1993) 257-266.
[22] 鍾宜珍,金屬化合物薄膜濺鍍製程暨應用研究,清華大學材料系碩士論文,2001。
[23] Yi Chiu, U. Rambabu, Ming-Hong Hsu, Han-Ping D. Shieh, Chien-Yang Chen and Hsi-Hsiang Lin, “Fabrication and nonlinear optical properties of nanoparticle silver oxide films”, Journal of Applied Physics, 94 (2003) 1996.
[24] Boris V. Lvov, “Kinetics and mechanism of thermal decomposition of silver oxide”, Thermochimica Acta, 333 (1999) 13-19.
[25] S.M. Rossnagel, J.J. Cuomo and W.D. Westwood, “Handbook of Plasma Processing Technology”, Noyes Publications, Park Ridge, New Jersey, U.S.A. (1982)
[26] 陳家富,真空鍍膜基礎(二),中華民國鍍膜科技研討會暨國科會計畫研究成果發表會講義,2000。
[27] 田民波, “薄膜技術與薄膜材料”, 五南圖書出版公司。
[28] 羅吉宗, “薄膜科技與應用”, 全華圖書股份有限公司,2009。
[29] T. Minami, S. Ida and T. Miyata, “High rate deposition of transparent conducting oxide thin films by vacuum arc plasma evaporation”, Thin Solid Films, 416 (2002) 92-96.
[30] Milton Ohring, The materials science of thin films,2nd edition, Academic Press (1992).
[31] T. Namikawa, S. Nakagawa, K. Kaneta, N. Matsushita and M. Naoe, “Magnetic characteristics of (La,Sr)MnO3 films deposited by facing target sputtering system”, Journal of the Japan Society of Powder Metallurgy 47 (2000) 175-178.
[32] F. Shinoki and A. Itoh, “Mechanism of rf reactive sputtering”, Journal of Applied Physics, 46 (1975) 3381-3384.
[33] Yue-Song He, Joe C. Campbell, Robert C. Murphy, M.F. Arendt and John S. Swinnea, “Electrical and optical characterization of Sb : SnO2”, Journal of Materials Research, 8 (1993) 3131-3134.
[34] Hosang Ahn, Joo Hyon Noh, Seon-Bae Kim, Ruel A. Overfelt, Young Soo Yoon and Dong-Joo Kim, “Effect of annealing and argon-to-oxygen ratio on sputtered SnO2 thin film sensor for ethylene gas detection”, Materials Chemistry and Physics 124 (2010) 563–568.
[35] 莊達人, “VLSI 製造技術”,高立出版,1995。
[36] T. Brousse, R. Retoux, U. Herterich and D. M. Schleich, “Thin‐Film Crystalline SnO2‐Lithium Electrodes”, Journal of The Electrochemical Society, 145 (1998) 1-4.
[37] Donhang Liu, Q. Wang, H.L.M. Chang and Haydn Chen, “Variant structure in metal-organic-chemical-vapor-deposition-derived SnO2 thin films on sapphire (0001)”, Journal of Materials Research, 10 (1995) 1516-1522.
[38] J. Colin, “Size selection of strained islands during stranski-krastanov growth”, Solid Films 536 (2012) 187-190.
[39] 楊明輝,“透明導電膜”,藝軒圖書出版 (2006) 8。
[40] J. E. Morris, M. I. Ridge, C. A. Bishop and R. P. Howson, “Temperature dependence of Hall mobility in indium–tin oxide thin films”, Journal of Applied Physics, 51 (1980) 1847-1849.
[41] K. Lark-Horovitz, A. E. Middleton, E. P. Miller and I. Walerstein, “proceedings of the american physical society”, Physics Review, 69 (1946) 258.
[42] E. Conwell and V. F. Weisskopf, “Theory of impurity scattering in semiconductors”, Physics Review, 77 (1950) 388-390.
[43] Shihui Yu, Weifeng Zhang, Lingxia Li, Dan Xua, Helei Dong and Yuxin Jin, “Optimization of SnO2/Ag/SnO2 tri-layer films as transparent composite electrode with high figure of merit”, Thin Solid Films 552 (2014) 150–154.
[44] R. A. Swalin, “Thermodynamics of Solids”. Wiley (1972).
[45] J. Montero, C. Guillen and J. Herrero, “Discharge power dependence of structural, optical and electrical properties of DC sputtered antimony doped tin oxide (ATO) films”, Solar Energy Materials & Solar Cells 95 (2011) 2113–2119.
[46] 楊明輝, “金屬氧化物透明導電材料的基本原理”, 工業材料雜誌,第179期,90年11月,p 136-137。
[47] I. Hamberg and C. G. Granqvist, “Evaporated Sn‐doped In2O3 films: Basic optical properties and applications to energy‐ efficient windows”, Journal of Applied Physics, 60 (1986) R123.
[48] K. L. Chopra, S. Major and D. K. Pandya, “Transparent conductors-A status review”, Thin Solid Films, 102 (1983) 1.
[49] 林麗娟,X光繞射原理及其應用,工業材料86期,民82.02,頁100-109。
[50] 羅聖全,探索奈米視界,科學研習,2013年5月,No .52-5。
[51] 黃英碩,掃描探針顯微術的原理及應用,科儀新知第二十六卷第四期,民94.2
[52] G.G. Harmon and T. Higier, “Some properties of dirty contact on semiconductors and resistivity measurements by a two-terminal method”, Journal of Physics, 33 (1962) 2198.
[53] M. W. Denhoff, “An accurate calculation of spreading resistance”, J. Phys. D: Appl. Phys. 39 (2006) 17-61.
[54] D. K. Schroder, “Semiconductor material and device characterization”, John Wiley& Sons New York, (1990) 2-34.
[55] Jiamiao Ni, Xiujian Zhao and Jiang Zhao, “P-type transparent conducting SnO2:Zn film derived from thermal diffusion of Zn/SnO2/Zn multilayer thin films”, Surface & Coatings Technology 206 (2012) 4356–4361.
[56] M.A. Gubbins, V. Casey and S.B. Newcomb, “Nanostructural characterisation of SnO2 thin films prepared by reactive r.f. magnetron sputtering of tin”, Thin Solid Films, 405 (2002) 270–275.
[57] Yong-Seok Park, Ho-Kyun Park, Jin-A Jeong, Han-Ki Kim, Kwang-Hyuk Choi, Seok-In Na and Dong-Yu Kim, “Comparative Investigation of Transparent ITO/Ag/ITO and ITO/Cu/ITO Electrodes Grown by Dual-Target DC Sputtering for Organic Photovoltaics”, Journal of The Electrochemical Society, 156 (2009) H588-H594.
[58] Saad Hamzaoui and Mohamed Adnane, “Efects of temperature and r.f. power sputtering on electrical and optical properties of SnO2”, Applied Energy 65 (2000) 19-28.
[59] Jae-Hyung Kim, Joon-Hyung Lee, Young-Woo Heo, Jeong-Joo Kim and Ju-O Park, “Effects of oxygen partial pressure on the preferential orientation and surface morphology of ITO films grown by RF magnetron sputtering”, Journal of Electroceramics, 23 (2009) 169–174.
[60] C. Kittel, “Introduction to Solid Physics”, 7th Edition, p71.
[61] Yasutaka Tsuda, Hideo Omoto, Katsuto Tanaka, Hisashi Ohsaki, “The underlayer effects on the electrical resistivity of Ag thin film”, Thin Solid Films 502 (2006) 223 – 227.
[62] A. Sivasankar Reddy, N. M. Figueiredo and A. Cavaleiro, “Nanocrystalline Au:Ag:SnO2 films prepared by pulsed magnetron sputtering”, Journal of Physics and Chemistry of Solids 74 (2013) 825–829.
[63] Dan Leng, LiliWu, Hongchao Jiang, Yu Zhao, Jingquan Zhang,Wei Li and Lianghuan Feng, “Preparation and Properties of SnO2 Film Deposited by Magnetron Sputtering”, International Journal of Photoenergy,2012 (2012) Article ID 235971.
[64] Yalan Hu, Xungang Diao, Cong Wang, Weichang Hao and Tianmin Wang, “Effects of heat treatment on properties of ITO films prepared by rf magnetron sputtering”, 75 (2004) 183–188.
[65] Koichi Suzuki and Mamoru Mizuhashi, “Structural, electrical and optical properties of R.F. magnetron-sputted SnO2: Sb film”, Thin Solid Films, 97 (1982) 119-127.
[66] Jaehyeong Lee, “Effects of oxygen concentration on the properties of sputtered SnO2:Sb films deposited at low temperature”, Thin Solid Films, 516 (2008) 1386–1390.
[67] Hong-Lei Ma, Xiao-Tao Hao, Jin Ma, Ying-Ge Yang, Jie Huang, De-Heng Zhang and Xian-Gang Xu, “Thickness dependence of properties of SnO2:Sb films deposited on flexible substrates”, Applied Surface Science, 191 (2002) 313-318.
[68] M. Fäth, S. Freisem, A. A. Menovsky, Y. Tomioka, J. Aarts and J. A. Mydosh, “Spatially Inhomogeneous Metal-Insulator Transition in Doped Manganites”, Science, 285 (1999) 1540.
[69] Liang Wang, James S. Swensen, Evgueni Polikarpov, Dean W. Matson, Charles C. Bonham, Wendy Bennett, Daniel J. Gaspar and Asanga B. Padmaperuma, “Highly efficient blue organic light-emitting devices with indium-free transparent anode on flexible substrates”, Organic Electronics, 11 (2010) 1555–1560.
[70] A.R. Babar, S.S. Shinde, A.V. Moholkar and K.Y. Rajpure, “Electrical and dielectric properties of co-precipitated nanocrystalline tin oxide”, Journal of Alloys and Compounds, 505 (2010) 743–749.
[71] D. B. Fraser and H. D. Cook, “Highly Conductive, Transparent Films of Sputtered In2 − xSnx O 3 − y”, Journal of The Electrochemical Society, 119 (1972) 1368-1374.
[72] 周彥廷, “以直流反應性濺鍍法製備二氧化錫薄膜摻雜鉬之結構及光電性質研究”,成功大學材料科學及工程學系碩士論文,2008。
[73] Su-Shia Lin and Jow-Lay Huang, “The effect of thickness on the properties of heavily Al-doped ZnO films by simultaneous rf and dc magnetron sputtering”, Ceramics International, 30 (2004) 497–501.
[74] 李玉華, “透明導電膜及其應用”,科儀新知,第12卷第一期,(1990) 94。
[75] Lata Gupta, Abhai Mansingh and P.K. Srivastava, “Band gap narrowing and the band structure of tin-doped indium oxide films”, Thin Solid Films, 176 (1989) 33-44.
[76] J.-C. Manifacier, L. Szepessy, J.F. Bresse, M. Perotin and R. Stuck, “In2O3:(Sn) and SnO2:(F) films - application to solar energy conversion part II — Electrical and optical properties”, Materials Research Bulletin, 14 (1979) 163.
[77] Xiaoxiong Ding, Feng Fang and Jianqing Jiang, “Electrical and optical properties of N-doped SnO2 thin films prepared by magnetron sputtering”, Surface & Coatings Technology 231 (2013) 67–70.
[78] J. Robertson, “Electronic structure of SnO2, GeO2, YbO2, TeO2, and MgF2”, J. Phys. C: Solid State Phys, 12 (1979) 4767-4776.
[79] Dinghua Bao, Xi Yao, Naoki Wakiya, Kazuo Shinozaki and Nobuyasu Mizutani, “Band-gap energies of sol-gel-derived SrTiO3 thin films”, Applied Physics Letters, 79 (2001) 3767.
[80] Eric L. Miller, Daniela Paluselli, Bjorn Marsen and Richard E. Rocheleau, “Low-temperature reactively sputtered iron oxide for thin film devices”, Thin Solid Films 466 (2004) 307 – 313.
[81] M. Kwoka, L. Ottaviano, M. Passacantando, S. Santucci, G. Czempik and J. Szuber, “XPS study of the surface chemistry of L-CVD SnO2 thin films after oxidation”, Thin Solid Films 490 (2005) 36 – 42.
[82] Jason F. Weaver and Gar B. Hoflund, “Surface Characterization Study of the Thermal Decomposition of Ag2O”, Chem. Mater., 6 (1994) 1693-1699.
[83] S. W. Gaarenstroom and N. Winograd, “Initial and final state effects in the ESCA spectra of cadmium and silver oxides”, Journal of Chemical Physics, 67 (1977) 3500-3508.
[84] L. H. Tjeng, M. B.J. Meinders, J. van Elp, J. Ghijsen and G. A. Sawatzky, “Electronic structure of Ag2O”, PHYSICAL REVIEW B, 41 (1990) 3190-3199.
[85] Sumaira Mehraj, M. Shahnawaze Ansari and Alimuddin, “Annealed SnO2 thin films: Structural, electrical and their magnetic properties”, Thin Solid Films 589 (2015) 57–65.
[86] Jong Hoon Kim, Kyung Ah Jeon, Gun Hee Kim and Sang Yeol Lee, “Electrical, structural, and optical properties of ITO thin films prepared at room temperature by pulsed laser deposition”, Applied Surface Science, 252 (2006) 4834–4837.
[87] Jiawen Liu, Yue Sun, Zhonghua Li, Shuying Li and Jingxiang Zhao, “Photocatalytic hydrogen production from water/methanol solutions over highly ordered Ag–SrTiO3 nanotube arrays”, 36 (2011) 5811-5816.
[88] P. Stumm, D. A. Drabold and P. A. Fedders, “Defects, doping, and conduction mechanisms in nitrogen-doped tetrahedral amorphous carbon”, Journal of Applied Physics, 81 (1997) 1289.
[89] G. Haacke, “New Figure of Merit for Transparent Conductors”, Journal of Applied Physics, 47 (1976) 4086−4089.
[90] Dongyan Zhang, Pangpang Wang, Ri-ichi Murakami, Xiaoping Song, “Effect of an interface charge density wave on surface plasmon resonance in ZnO/Ag/ZnO thin films”, Applied Physics Letters, 96 (2010) 233114.
[91] A. Indluru and T. L. Alford, “Effect of Ag thickness on electrical transport and optical properties of indium tin oxide–Ag–indium tin oxide multilayers”, Journal of Applied Physics, 105 (2009) 123528.
[92] H. Han, N. D. Theodore and T. L. Alford, “Improved conductivity and mechanism of carrier transport in zinc oxide with embedded silver layer”, Journal of Applied Physics, 103 (2008) 013708.
[93] M. Buchanan, J. B. Webb and D. F. Williams, “Preparation of conducting and transparent thin films of tin‐doped indium oxide by magnetron sputtering”, Applied Physics Letters, 37 (1980) 213.
[94] Betz Ulrich, Kharrazi Olsson Maryam, Marthy Jan, Escola M F and Atamny Fachri, “Thin Film Engineering of Indium Tin Oxide: Large area flat panel displays application”, Surface and Coating Technology, 200 (2006) 5751-5759.
[95] Adrien Bou, Philippe Torchio, Damien Barakel, Francois Thierry, Pierre-Yves Thoulon and Marc Ricci, “Numerical and experimental study of SnOx | Ag | SnOx multilayer as indium-free transparent electrode for organic solar cells”, Proc. of SPIE, Vol. 8987 (2014) 898706-1.
[96] C. Guillén and J. Herrero, “Transparent conductive ITO/Ag/ITO multilayer electrodes deposited by sputtering at room temperature”, Optics Communications, 282 (2009) 574–578.
[97] Jay Lewis, Sonia Grego, Babu Chalamala, Erik Vick and Dorota Temple, “Highly flexible transparent electrodes for organic light-emitting diode-based displays”, Applied Physics Letters, 85 (2004) 3450.
[98] Nguyen Hoa Hong, Joe Sakai, W Prellier and Awatef Hassini, “Transparent Cr-doped SnO2 thin films: ferromagnetism beyond room temperature with a giant magnetic moment”, J. Phys.: Condens. Matter, 17 (2005) 1697–1702.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2026-12-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2026-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw