進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1702201612562400
論文名稱(中文) 以非線性光學分析超低能量佈植硼之低溫Si(110)之重建
論文名稱(英文) Analyzing the restructure of ultra-low energy Boron implanted Si(110) with cold temperature by nonlinear optics
校院名稱 成功大學
系所名稱(中) 物理學系
系所名稱(英) Department of Physics
學年度 104
學期 1
出版年 105
研究生(中文) 李阜穎
研究生(英文) Fu-Ying Lee
電子信箱 l26021121@mail.ncku.edu.tw
學號 L26021121
學位類別 碩士
語文別 英文
論文頁數 73頁
口試委員 指導教授-羅光耀
口試委員-張玉明
口試委員-陳宜君
口試委員-古慶順
中文關鍵字 低溫離子佈植  二次諧波  超淺層介面  脈衝雷射退火 
英文關鍵字 Cold-implantation  Second harmonic generation (RSHG)  Ultra-shallow junction  Pulsed Laser annealing 
學科別分類
中文摘要 於半導體產業中,元件微縮一直是產業致力的重點。在奈米元件微縮的同時,要如何製造超淺層介面以及確認其製造品質以維持電特性,使得製作完成的元件擁有良好工作特性一直是相當困難的部分。此研究以非線性光學提供一種非破壞性且有效偵測離子佈植退火後再結晶情形的方法,以及分辨低溫基板離子佈植所造成的效果與常溫基板離子佈值之間的差別。反射式二次諧波對於晶體表面極性結構相當敏銳,藉由偵測矽(110) 2m對稱結構所以反映出之圖像,可分析樣本再結晶及活化之特性。而紫外光拉曼光譜可觀測離子佈植矽基板經退火後的非結晶情形。以研究利用快速熱退火、雷射退火以及相關參數調控之設定以達到區分不同溫度佈植所造成之再結晶、參雜物擴散、活化等性質差異。
低溫基板提供轟擊的硼離子於基板表面擁有低溫環境,使得佈植區域擁有更為徹底的非結晶狀態。由於再結晶形成是由結晶與非結晶介面處開始成長,較明確之介面可使晶體重建過程有較好的初始條件,因此低溫離子佈植所造成的好處即是使得退火時可以更低的熱預算達成較好的活化及再結晶效果。
在以非線性光學作為判斷超淺層介面品質之前,製程上以極高之佈植濃度製作奈米元件,以達成其電性需求。重新尋找超高濃度佈植之超淺層界面所適用之佈植及退火條件,具相當困難性。藉由非破壞性之非線性光學量測,可獲得更多更詳細之佈植及退火訊息,藉此改善製程控制條件可進而得到更佳之超淺層介面性質。
英文摘要 The further scale down in device is the trend of semiconductor fabrication and this result approaches to the need of nanotechnology industry. The most critical problem in the yield of the nano-device fabrication is how to confirm the recover of the ultrathin shallow junction, especially for the quality and electrical properties. In this work, we present a nonlinear optical method to inspect the degree of recrystallization and activation of these ultrathin implanted Si(110), and compare the effect of cold substrate used in the implanted process. Reflective second harmonic generation (RSHG) has sensitivity on the surface polar structure to inspect the degree of recrystallization and activation by examining the amplitude of 2m symmetrical pattern and constant value in RSHG. UV Raman can observe the amorphous condition of implanted Si(110) via annealing. Rapid thermal annealing (RTA), laser annealing, and related parameters in these annealing treatments were performed in this work to distinguish the situation of dopant diffusion, recrystallization and activation for the implanted Si(110) with different substrate temperature implantation.
The usage of cold substrate provides a cold environment to suppress the energy of bombard B atoms in the surface region. The bombarded surface region would be more amorphous in the case of the cold substrate. The advantage of the usage of cold substrate is to easily activate the implanted region with lower thermal budget. Due to the recrystallization of implanted Si happens from α/c interface. Obvious α/c interface in the case of cold substrate can improve the quality of the recovered implanted Si(110).
Before usage the nonlinear optical way to inspect the quality of ultrathin shallow junction, implantation with ultra-high dose is used to apply on the fabrication of nano-device. It is critical to recover the ultrathin shallow junction with high dose in the post-annealing treatment. Through the non-destroyed nonlinear optical way, more detailed condition of implantation and post-annealing can be controlled and further improve the optima condition of ultrathin shallow junction.
論文目次 CHAPTER 1 INTRODUCTION 1
1.1 IMPLANTATION TECHNOLOGY IN ULSI 1
1.2 THE ADVANTAGE OF COLD SUBSTRATE IN THE ULSI 4
1.3 THE MEASUREMENT OF THE ELECTRICAL AND PHYSICAL PROPERTIES OF IMPLANTED SI 4
1.4 THE SURFACE ANALYSIS OF IMPLANTED SI BY USING REFLECTIVE SECOND HARMONIC GENERATION 6
CHAPTER 2 THEORY I: IMPLANTATION AND RECRYSTALLIZATION 7
2.1 LOW ENERGY IMPLANTATION AND COLD SUBSTRATE 7
2.2 THE ACTUAL SITUATION OF COLD SUBSTRATE IMPLANTATION 10
2.3 POINT DEFECT IN SILICON 12
2.4 MECHANISMS OF DOPANT DIFFUSION 13
2.5 SOLID SOLUBILITY OF DOPANTS IN SILICON 15
2.6 END-OF-RANGE (EOR) DEFECTS 16
2.7 ANNEALING TREATMENT 19
2.8 TRANSIENT DIFFUSION ENHANCE (TED) 21
2.9 X-RAY PHOTOELECTRON SPECTROSCOPY (XPS) 22
CHAPTER 3 THEORY II: REFLECTIVE SECOND HARMONIC GENERATION 24
3.1. SECOND HARMONIC GENERATION FROM SI(111) 24
3.2 THE POINT GROUP OF SI(111) OR SI(110) AND SHG FROM THE IMPLANTED SILICON 25
3.3 THE RSHG CONTRIBUTION FROM IMPLANTED SI 29
3.4 UV RAMAN SPECTRUM 30
CHAPTER 4 EXPERIMENT PROCEDURE AND METHODS 35
4.1 THE SUBSTRATES CONDITION 35
4.1.1 The Implantation treatment of Si(110) substrate 35
4.1.2 Process of cleaning Silicon substrate 35
4.2 ANNEALING TREATMENT 36
4.2.1 Rapid thermal annealing (RTA) treatment 36
4.2.2 Pulsed laser annealing treatment 36
4.3 THE SETUP OF REFLECTIVE SECOND HARMONIC GENERATION (RSHG) MEASUREMENT 37
4.3.1 Optical measurement system 37
4.3.2 Integration system 38
CHAPTER 5 RESULT AND DISCUSSION 40
5.1 RAPID THERMAL ANNEALING (RTA) IN DIFFERENT HOLDING TIMES 40
5.2 NANOSECOND PULSED LASER ANNEALING 45
5.2.1 Laser annealing in fixed energy density and different pulses number 45
5.2.2 Laser annealing in fixed pulses number and different energy density 53
5.2.3 XPS surface spectrum for Nanosecond pulsed laser annealing 57
5.2.4 The correlation of RSHG, UV Raman and XPS. 64
CHAPTER 6 CONCLUSION 66
REFERENCE 69
參考文獻 [1]. Kyoichi Suguro, 2014 20th International Conference on Ion Implantation Technology (IIT), 1-3
[2]. F. Fagin, T. Klein and L. Vadasz, IEDM Tech. Dig., p.22 (IEEE, New York, 1968).
[3]. L. L. Vadasz, A. S. Grove, T. A. Rowe and G. E. Moore, IEEE Spectrum 6, 28 (1969).
[4]. Y. Li, S. Yu, J. Hwang, and F. Yang, IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 55, no. 6, 2008, pp. 1449–1455 .
[5]. M. K. Weldon, M. Collot, Y. J. Chabal, V. C. Venezia, A. Agarwal, T. E. Haynes, D. J. Eaglesham, S. B. Christman and E. E. Chaban, Appl. Phys. Lett. 73, 3721 (1998)
[6]. Yun Wang, Shaoyin Chen, Xiaoru Wang, and Michael Shen, 2014 20th International Conference on Ion Implantation Technology (IIT),
[7]. S. Sun et al., Ext. Abs. the 13th International Workshop on Junction Technology, p. 88, 2013.
[8]. A.F. Vyatkin, Yu.A. Agafonov, V.I. Zinenko and V.V. Sarikin, , 2014 20th International Conference on Ion Implantation Technology (IIT)
[9]. John R. Dennis and Edward B. Hale, J. Appl. Phys., vol.49(3), p.1119, 1978.
[10] C. Liu, A. Wenzel, K. Volz, and B. Rauschenbach, Nucl. Instr. and Meth. in Phys. Res. B, vol 148, p.396, 1999.
[11] S. Whelan, M. J. Kelly, R. Gwilliam, C. Jeynes, and C. Bongiorno, J.Appl. Phys., vol.98, p. 013515, 2005.
[12] A.F. Vyatkin, Yu.A. Agafonov and A.N. Pustovit, AIP Conf. Proc. 1496, p.83, 2012.
[13] S. Whelan, A, L. magna, V. Privitera, G. Mannino, M. Italia and C. Bongiomo, G. Fortunato and L. Mariucci, Phys. Rev. B, 67, 075201 (2003)
[14] Masahiro Yoshimoto, Masashi Okutani,a Gota Murai, Shuji Tagawa, Hiroki Saikusa, Shuhei Takashima, and Woo Sik Yoo, ECS Journal of Solid State Science and Technology, 2 (5) P195-P204 (2013)
[15]. K.Y. Lo, Y.L. Wang and J.D. Jin, Thin Solid Films, 420-421, 345 (2002)
[16]. K.Y. Lo, and Y.J. Huang, Physical Review B, 76, 035306 (2007)
[17]. C.C. Liu, C.W. Liu, J.Y. Cheng, Y.J. Huang, and K.Y. Lo, Journal of Applied Physics, 110, 103520 (2011).
[18].Masahiro Yoshimoto, Hiroshi Nishigaki, Hiroshi Harima, Toshiyuki Isshiki,Kitaek Kang, and Woo Sik Yoo, Journal of The Electrochemical Society, 153, 697 (2006)
[19]. Kyoichi Suguro, “The Prospects and Challenges in Junction Process Technology for Advanced Semiconductor Devices”, 2014 20th International Conference on Ion Implantation Technology (IIT)
[20]. S.B Felch, et al, “Tunable, High productivity Plasma Doping”, AIP Conf proceedings p 333-336 [IIT2010, Kyoto, Japan]
[21]. A-S. Robbes, K-A B-T. Meura, M-P. Moret, M. Schuhmacher. “Implantation and Metrology Solutions for Low Energy Boron Implant on 450mm Wafers”, 2014 20th International Conference on Ion Implantation Technology (IIT)
[22]. P-F Staub, “The low energy X-ray spectrometry technique as applied to semiconductors.”, Microsc. Microanal. 12, 340-346, 2006.
[23]. L. A. Clevenger, C. V. Thompson and K. N. Tu., “Explosive silicidation in nickel/amorphous‐silicon multilayer thin films”, J. Appl. Phys., 67, 2894 (1990).
[24]. Erik Collart, “Aspects and Process Applications of Temperature Control During Ion Implant”, Taking Ion Implantation to the Next Level, Tainan, Taiwan, 2012
[25]. Hugh Park, Stan Todorov, Benjamin Colombeau, Dennis Rodier, Dimitry Kouzminov, Wei Zou, Baonian Guo, Niranjan Khasgiwale, and Kurt Decker- Lucke, “Cryogenic ion implantation near amorphization threshold dose for halo/extension junction improvement in sub-30 nm device technologies”, AIP Conf. Proc., 1496, p.79, 2012.
[26]. P.M.Fahey, P.B.Griffin, and J.D.Plummer, “Point defects and dopant diffusion in silicon”, Rev. Mod. Phys., 61, 289 (1989)
[27]. S.M.SZE, “VLSI Technology. ”, (1988)
[28]. H. Bracht, “diffusion mechanisms and intrinsic point defect properties in silicon”, MRS Bulletin/June (2000).
[29]. Mathiot, D., J. C. Pfister, “High concentration diffusion of P in Si : a percolation problem ?”, J. Physique Lett., 43 12 (1982) 453-459
[30]. F.A. Trumbore, “Solid Solubilities of Impurity Elements in Germanium and Silicon”, Bell Syst. Tech. J., 39,205 (1960)
[31]. H. H. Lin, S. L. Cheng, L. J. Chen, Chih Chen, K. N. Tu, “Enhanced dopant activation and elimination of end-of-range defects in BF+2-implanted silicon-on-insulator by high-density current”, Appl. Phys. Lett., 79, 3971 (2001)
[32]. K. S. Jones, L. H. Zhang, V. Krishnamoorthy, M. Law, D. S. Simons, P. Chi, L. Rubin, and R. G. Elliman, “Diffusion of ion implanted boron in preamorphized silicon”, Appl. Phys. Lett. 68, 2672 (1996)
[33]. A. Claverie, S. Koffel, N. Cherkashin, G. Benassayag, P. Scheiblin, “Amorphization, recrystallization and end of range defects in germanium”, Thin Solid Films 518 (2010) 2307.
[34] C. Bonafos1, D. Mathiot2 and A. Claverie3, “Ostwald ripening of end-of-range defects in silicon”, J. Appl. Phys. 83, 3008 (1998)
[35]. L. Pelaz, L.A.Marques, I. Santo, P. Lopez and M. Aboy, “Modeling of Advanced Ion Implantation Technologies in Semiconductors”, The 11th International Workshop on Junction Technology 2011.
[36]. Renata A. Camillo-Castillo, “Boron Activation And Diffusion in Silicon for Varying Initial Process Conditions During Flash-assist Rapid Thermal Annealing”, Ph.D thesis, University of Florida 2006.
[37]. Li Xu, Costas P. Grigoropoulos, Chair, “Pulsed Laser Annealing of Silicon Structures for Crystallization and Dopant Activation”, 2000
[38]. Yang Qiu , Fuccio Cristiano, Karim Huet, Fulvio Mazzamuto, Giuseppe Fisicaro , Antonino La Magna, Maurice Quillec, Nikolay Cherkashin, Huiyuan Wang, Sébastien Duguay, and Didier Blavette, “Extended Defects Formation in Nanosecond Laser-Annealed Ion Implanted Silicon”, Nano letter, 14, 1769 (2014)
[39]. I.G. Salisbury and M. H. Loretto, “{113} Loops in electron-irradiated silicon”, Philosophical Magazine A 39, 317 (1979).
[40]. M. Pasemann, D. Hoehl, A. L. Aseev, and O. P. Pchelyakov, “Analysis of rod-like defects in silicon and germanium by means of high-resolution electron microscopy”, Phys. Status Solidi (A): Appl.Res. 80, 135 (1983).
[41]. J.H. Liang, C.H. Wu, “Shallow junction characteristics due to low temperature BGe molecular ion implantation into silicon”, Applied Surface science, 310, 230 (2014)
[42]. J. E. Sipe, D. J. Moss, and H. M. van Driel, “Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals”, Phys. Rev. B.35.1129
[43]. Masahiro Yoshimoto, Hiroshi Nishigaki, Hiroshi Harima, Toshiyuki Isshiki,Kitaek Kang, and Woo Sik Yoo, “Application of UV-Raman Spectroscopy for Characterization of the Physical Crystal Structure Following Flash Anneal of an Ultrashallow Implanted LayerSemiconductor Devices, Materials, and Processing”, Journal of The Electrochemical Society, 153, 697 (2006)
[44]. Leroy, et al, New Industrial solution for measuring Strain and Ge content on sSi and SiGe wafers using Raman spectroscopy, Semicon west 2004
[45]. I. H. Campbell and P. M. Fauchet, “The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors”, Solid State Commun., 58, 739 (1986)
[46]. R. B. Iverson and R. Reif J., “Recrystallization of amorphized polycrystalline silicon films on SiO2: Temperature dependence of the crystallization parameters”, Appl. Phys. 62, 1675 (1987)
[47]. S. Whelan, A. La Magna, V. Privitera, G. Mannino, M. Italia, C. Bongiorno, G. Fortunato, and L. Mariucci, “Dopant redistribution and electrical activation in silicon following ultra-low energy boron implantation and excimer laser annealing”, Phys. Rev. B 67, 075201
[48]. C. W. Ong, H. Huang, B. Zheng, R. W. M. Kwok, Y. Y. Hui, W. M. Lau, “X-ray photoemission spectroscopy of nonmetallic materials: Electronic structures of boron and BxOy”, J. Appl. Phys., Vol. 95, No. 7, 1 April 2004
[49]. Th. Gross, M. Ramm, H. Sonntag, W. Unger, H. M. Weijers, E. H. Adem, “An XPS Analysis of Different Si02 Modifications Employing a C 1s as well as an Au 4f7/2 Static Charge Reference”, SURFACE AND INTERFACE ANALYSIS, VOL. 18. 59-64 (1992)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-02-19起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-02-19起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw