進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1702201212115400
論文名稱(中文) 著地策略之疲勞效應從脛骨旋轉控制說起
論文名稱(英文) The effect of fatigue on landing strategy focusing on tibial rotatory control
校院名稱 成功大學
系所名稱(中) 物理治療研究所
系所名稱(英) Department of Physical Therapy
學年度 100
學期 1
出版年 101
研究生(中文) 黃聖洋
研究生(英文) Sheng-Yang Huang
學號 t66981067
學位類別 碩士
語文別 英文
論文頁數 68頁
口試委員 指導教授-陳文玲
口試委員-林呈鳳
口試委員-楊俊佑
中文關鍵字 前十字韌帶損傷  疲勞  旋轉著地策略  單腳跳躍測試 
英文關鍵字 ACL injury  Fatigue  Rotatory landing strategy  one-leg hop test 
學科別分類
中文摘要 背景:前十字韌帶損傷十分常見,尤其好發於需要運用著地或剪步等技巧的運動選手。雖然過去文獻認為著地瞬間的不正常膝彎曲角度造成前十字韌帶損傷,但也有文獻指出矢狀面不正常的著地策略並非唯一的原因。近來,文獻指出脛骨內旋是82%前十字韌帶損傷的主要受傷機制,而脛骨內旋著地策略更進一步被認為會提高前十字韌帶損傷復發率。文獻亦顯示經常使用著地技巧的選手採取脛骨內旋著地策略的比例較高。此外疲勞已經被公認會改變下肢著地策略進而提高非接觸型前十字韌帶損傷之比例。然而,目前尚未有文獻探討疲勞對於單腳跳躍過程中著地策略的影響。本研究的目的為藉由探討高前十字韌帶損傷族群的膝旋轉控制相關參數,以提供證據幫助釐清疲勞對於單腳跳躍過程中下肢著地策略比例的影響。方法:本實驗徵招25大學校隊選手,在單腳跳躍過程中評估選手的膝關節生物力學和相關肌肉肌電圖訊號。用卡方檢定來檢驗脛骨內旋著地策略的疲勞效應;用魏氏-曼-惠特尼考驗來比較脛骨外旋組和脛骨內旋組的組間差異;以魏氏符號檢定來比較疲勞前後的差異。結果:疲勞後,跳躍距離(p<0.005)和最大垂直地面反作用力(p<0.01)都顯著降低,而自覺用力係數顯著提高(p<0.001)。在脛骨內旋著地策略之比例上沒有觀察到疲勞效應。疲勞後,所有受試者在著地瞬間(p<0.005)和最大垂直地面反作用力瞬間(p<0.05)的膝關節彎曲角度顯著較小;股內側肌的肌電訊號強度顯著降低(p<0.005),而股四頭肌(p<0.05)和膝旋轉肌(p<0.05)的共同收縮強度也顯著降低。疲勞前,在著地瞬間雖然脛骨內旋組的脛骨旋轉角度顯著比脛骨外旋組外旋(p<0.01),然而在著地初期脛骨內旋組的脛骨內旋角位移量卻顯著大於脛骨外旋組(p<0.005)。雖然在著地初期,脛骨內旋組的運動學參數沒有觀察到疲勞效應;然而膝外旋肌的肌電訊號強度顯著降低(骨外側肌,p<0.05;外側大腿後肌,p<0.05);股四頭肌(p<0.05)和膝外旋肌(p<0.05)的共同收縮強度也顯著降低。討論和結論:本實驗受試者在執行疲勞運動後確實又達到疲勞。雖然脛骨內旋著地策略的比例沒有疲勞效應,然而我們觀察到疲勞後脛骨內旋著地策略的比例確實有提高。疲勞後,受試者顯示在著地瞬間的關節彎曲角度顯著變小且股內側肌肌電訊號顯著降低的情況是支持本實驗關於疲勞會造成單腳跳躍過程中採取職西著地策略的假說。組間比較結果顯示脛骨內旋組有較大的脛骨內旋角位移量,這也顯示檢驗著地初期的運動學參數表現是臨床評估的重要環節。另一方面,膝外旋肌(股外側肌和外側大腿後肌)肌電訊號強度以及股四頭肌和膝外旋肌共同收縮強度顯著降低的結果顯示脛骨內旋組無法阻擋疲勞造成的前十字韌帶損傷機率提高。此研究提出資料指出脛骨內旋著地策略比例在疲勞後確實有上升。這個結果明白指出膝旋轉著地策略在前十字韌帶損傷的重要性,並已間接證明脛骨內旋著地策略會提高前十字韌帶損傷風險。
英文摘要 Background and Purpose: Anterior cruciate ligament (ACL) injury is very common, especially for athletes playing the game contained landing and cutting tasks. It has been widely attributed to abnormal knee flexion angle during landing; however it was also proposed that ACL injury is not only limited to abnormal landing strategy in sagittal plane. Recently, tibial internal rotation was described to be the primary component of ACL injury in 82% of ACL injury patients. Further tibial internal rotation (TIR) landing strategy is suggested as the landing strategy at higher risk for the recurrence of ACL injuries. People involved in frequent landing are reported be at higher incidence of TIR landing strategy. Beside, fatigue had been suggested as a factor that increases the risk of noncontact ACL injuries by altering lower extremity landing strategies. Nevertheless, there is still lack of evidence investing the role of fatigue in the landing strategy during on-leg hop. The purpose of this study is to provide evidence to demonstrate the role of fatigue on the incidence of landing strategy during one-leg hop test by investigating the rotatory knee control related parameter in people at risk for ACL injury. Methods: 25 professional varsity players were recruited for evaluation of the biomechanical analysis and electromyography (EMG) for related knee muscles during one-leg hop test. Chi-square test was used to examine the fatigue effect on occurrence of TIR landing strategy. Several Wilcoxon-Mann-Whitney tests were conducted to examine the differences between TER and TIR groups. Several Wilcoxon signed ranked tests were used to perform comparison before and after fatigue. Results: Significantly decreased hopping distance (p<0.005) and peak vertical force (p<0.01), and increased ratings of perceived exertion (RPE) score (p<0.001) were found after fatigue. No significant fatigue effect on occurrence of TIR landing strategy. After fatigue, all subject showed significantly less knee flexion at FC (p<0.005) and PVF (p<0.05); significantly decreased average EMG intensity in VMO (p<0.005) and concontraction index for quadriceps (p<0.05) as well knee rotators (p<0.05). In pre-fatigue condition, TIR group showed significantly less tibial internal rotation at FC than TER group (p<0.01), however TIR group showed significantly larger angular displacement of tibial internal rotation during initial landing phase than TER group (p<0.005). Although no significant fatigue effect on kinematics during initial landing phase was found for TIR group, significantly decreased in average EMG intensity of knee external rotator (VL, p<0.05; LH, p<0.05) and cocontraction index for quadriceps (p<0.05) and knee external rotator (p<0.05). Discussion and conclusion: Subjects undergoing fatigue protocol were quite exhausted. Although there not significant difference in occurrence of TIR landing strategy, the higher incidence of TIR landing strategy was found after fatigue. After fatigue, the significantly less knee flexion at FC and decreased average EMG intensity in VMO supported our hypothesis with respect to the fatigue resulted in landing with less knee flexion during one-leg hop. Our results of group comparison showing significantly larger angular displacement of tibial internal rotation during initial landing phase in the TIR group have suggested that examination of kinematics during initial landing phase is necessary for clinical evaluation. On the other hand, the significantly decreased significantly decreased in average EMG intensity of knee external rotator (VL and LH) and cocontraction index for quadriceps and knee external rotator also demonstrated TIR group could not resist the ACL injury risk induced by fatigue. This study has provided data to address the increased incidence of TIR landing strategy after fatigue. The role of fatigue in landing strategy has also been demonstrated in depth.
論文目次 摘要-------------------------------------------------------Ⅱ
ABSTRACT--------------------------------------------------Ⅳ
致謝------------------------------------------------------Ⅶ
CONTENTS--------------------------------------------------Ⅷ
TABLE LIST------------------------------------------------XI
FIGURE LIST---------------------------------------------XIII
Chapter 1 INTRODUCTION-------------------------------------1
1.1 Timing and instant joint position at the time of ACL injury-------------------------------------------------1
1.2 Gender differences in the occurrence of ACL injury-----2
1.3 Biomechanical risk factor------------------------------3
1.3.1 Sagittal plane---------------------------------------3
1.3.2 Frontal or transverse plane--------------------------5
1.4 Neuromuscular risk factor:-----------------------------7
1.5 The risk factor: fatigue-------------------------------8
1.5.1 The effect of fatigue on knee kinematics-------------8
1.5.2 The fatigue effect on neuromuscular control----------9
1.6 Research motives--------------------------------------10
1.7 Purpose-----------------------------------------------10
1.8 Research questions------------------------------------10
1.9 The hypothesis----------------------------------------11
Chapter 2 MATERIALS and METHODS---------------------------11
2.1 Subjects----------------------------------------------11
2.2 Data collection---------------------------------------12
2.2.1 Procedure-------------------------------------------15
2.2.2 Fatigue protocol------------------------------------15
2.3 Data reduction----------------------------------------16
2.3.1 Plug-In Gait model----------------------------------16
2.3.2 Data processing-------------------------------------18
2.4 Statistical analysis----------------------------------21
Chapter 3 RESULTS-----------------------------------------22
3.1 Hopping distance, peak vertical force and RPE scores--22
3.2 The occurrence of landing strategy--------------------22
3.3 The effect of fatigue on kinematics-------------------23
3.3.1 The comparison of kinematics between TIR and TER group before fatigue--------------------------------------24
3.3.2 The effect of fatigue on kinematics in TIR group----25
3.3.3 The effect of fatigue on kinematics in TER group----26
3.3.4 The effect of fatigue and landing strategy on average knee motion and angular displacement in the initial landing phase (from FC to PVF)------------------------------------28
3.4 The effect of fatigue on EMG activity-----------------29
3.4.1 The effect of fatigue on EMG activity---------------29
3.4.2 The effect of fatigue on coactivity ratio-----------33
3.4.3 The effect of fatigue on cocontraction index--------36
Chapter 4 DISCUSSIONS-------------------------------------39
4.1 The fatigue level of subjects-------------------------39
4.2 The effect of fatigue on the occurrence of landing strategy during one-legged hop test-----------------------41
4.3 The effect of fatigue on the kinematics during one-legged hop test-------------------------------------------42
4.3.1 The comparison of kinematics between TER and TER group during initial landing phase for pre-fatigue condition-------------------------------------------------44
4.3.2 The effect of fatigue on kinematics in TIR group and TER group during landing----------------------------------46
4.4 The effect of fatigue on EMG activity-----------------48
4.4.1 The effect of fatigue on EMG activity---------------48
4.4.2 The effect of fatigue on coactivity ratio-----------49
4.4.3 The effect of fatigue on cocontraction index--------50
4.5 Clinical implications---------------------------------51
4.6 Study limitation--------------------------------------52
Chapter 5 CONCLUSIONS-------------------------------------52
REFERENCE-------------------------------------------------53
APPENDIX Ⅰ-----------------------------------------------64
APPENDIX Ⅱ-----------------------------------------------67
自述------------------------------------------------------68

參考文獻 1. Majewski, M., H. Susanne, and S. Klaus, Epidemiology of athletic knee injuries: A 10-year study. Knee, 2006. 13(3): p. 184-8.
2. Arendt, E. and R. Dick, Knee injury patterns among men and women in collegiate basketball and soccer. NCAA data and review of literature. American Journal of Sports Medicine, 1995. 23(6): p. 694-701.
3. Myklebust, G., et al., Registration of cruciate ligament injuries in Norwegian top level team handball. A prospective study covering two seasons. Scandinavian Journal of Medicine & Science in Sports, 1997. 7(5): p. 289-92.
4. Myklebust, G., et al., A prospective cohort study of anterior cruciate ligament injuries in elite Norwegian team handball. Scandinavian Journal of Medicine & Science in Sports, 1998. 8(3): p. 149-53.
5. Boden, B.P., et al., Mechanisms of anterior cruciate ligament injury. Orthopedics, 2000. 23(6): p. 573-8.
6. Hewett, T.E., G. D. Myer, and K. R. Ford, Anterior cruciate ligament injuries in female athletes: Part 1, mechanisms and risk factors. Am. J. Sports Med., 2006. 34: p. 299-311.
7. McNair, P.J., R.N. Marshall, and J.A. Matheson, Important features associated with acute anterior cruciate ligament injury. New Zealand Medical Journal, 1990. 103(901): p. 537-9.
8. Olsen, O.E., et al., Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. American Journal of Sports Medicine, 2004. 32(4): p. 1002-12.
9. Bahr, R., O. Lian, and I.A. Bahr, A twofold reduction in the incidence of acute ankle sprains in volleyball after the introduction of an injury prevention program: a prospective cohort study. Scandinavian Journal of Medicine & Science in Sports, 1997. 7(3): p. 172-7.
10. Cerulli, G., et al., In vivo anterior cruciate ligament strain behaviour during a rapid deceleration movement: case report. Knee Surgery, Sports Traumatology, Arthroscopy, 2003. 11(5): p. 307-11.
11. Nagano, Y., et al., Gender differences in knee kinematics and muscle activity during single limb drop landing. Knee, 2007. 14(3): p. 218-23.
12. Arms, S.W., et al., The biomechanics of anterior cruciate ligament rehabilitation and reconstruction. American Journal of Sports Medicine, 1984. 12(1): p. 8-18.
13. Berns, G.S., M.L. Hull, and H.A. Patterson, Strain in the anteromedial bundle of the anterior cruciate ligament under combination loading. Journal of Orthopaedic Research, 1992. 10(2): p. 167-76.
14. Markolf, K.L., A. Graff-Radford, and H.C. Amstutz, In vivo knee stability. A quantitative assessment using an instrumented clinical testing apparatus. Journal of Bone & Joint Surgery - American Volume, 1978. 60(5): p. 664-74.
15. Li, G., et al., The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL. Journal of Biomechanics, 1999. 32(4): p. 395-400.
16. Li, G., et al., In situ forces of the anterior and posterior cruciate ligaments in high knee flexion: an in vitro investigation. Journal of Orthopaedic Research, 2004. 22(2): p. 293-7.
17. Markolf, K.L., et al., Effects of applied quadriceps and hamstrings muscle loads on forces in the anterior and posterior cruciate ligaments. American Journal of Sports Medicine, 2004. 32(5): p. 1144-9.
18. Mazzocca, A.D., et al., Valgus medial collateral ligament rupture causes concomitant loading and damage of the anterior cruciate ligament. The Journal of Knee Surgery, 2003. 16(3): p. 148-51.
19. Arnold, J.A., et al., Natural history of anterior cruciate tears. American Journal of Sports Medicine, 1979. 7(6): p. 305-13.
20. McLean, S.G., S.W. Lipfert, and A.J. van den Bogert, Effect of gender and defensive opponent on the biomechanics of sidestep cutting. Medicine & Science in Sports & Exercise, 2004. 36(6): p. 1008-16.
21. Olsen, O.E., et al., Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med, 2004. 32(4): p. 1002-12.
22. Renstrom, P., et al., Non-contact ACL injuries in female athletes: an International Olympic Committee current concepts statement. Br J Sports Med, 2008. 42(6): p. 394-412.
23. Shimokochi, Y. and S.J. Shultz, Mechanisms of noncontact anterior cruciate ligament injury. J Athl Train, 2008. 43(4): p. 396-408.
24. Arnold, J.A., et al., Natural history of anterior cruciate tears. Am J Sports Med, 1979. 7(6): p. 305-13.
25. Renstrom, P., et al., Non-contact ACL injuries in female athletes: an International Olympic Committee current concepts statement. British Journal of Sports Medicine, 2008. 42(6): p. 394-412.
26. Shimokochi, Y., et al., The relationships among sagittal-plane lower extremity moments: implications for landing strategy in anterior cruciate ligament injury prevention. Journal of Athletic Training, 2009. 44(1): p. 33-8.
27. Butler, D.L., F.R. Noyes, and E.S. Grood, Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study. Journal of Bone & Joint Surgery American, 1980. 62(2): p. 259-70.
28. Woo, S.L.Y., et al., Biomechanics of the ACL: Measurements of in situ force in the ACL and knee kinematics. Knee, 1998. 5(4): p. 267-288.
29. Butler, D.L., F.R. Noyes, and E.S. Grood, Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study. J Bone Joint Surg Am, 1980. 62(2): p. 259-70.
30. Sakane, M., et al., Relative contribution of the ACL, MCL, and bony contact to the anterior stability of the knee. Knee Surg Sports Traumatol Arthrosc, 1999. 7(2): p. 93-7.
31. James, C.R., et al., Gender differences among sagittal plane knee kinematic and ground reaction force characteristics during a rapid sprint and cut maneuver. Research Quarterly for Exercise & Sport, 2004. 75(1): p. 31-8.
32. Arms, S.W., et al., The biomechanics of anterior cruciate ligament rehabilitation and reconstruction. Am J Sports Med, 1984. 12(1): p. 8-18.
33. Li, G., et al., The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL. J Biomech, 1999. 32(4): p. 395-400.
34. Li, G., et al., In situ forces of the anterior and posterior cruciate ligaments in high knee flexion: an in vitro investigation. J Orthop Res, 2004. 22(2): p. 293-7.
35. Markolf, K.L., et al., Effects of applied quadriceps and hamstrings muscle loads on forces in the anterior and posterior cruciate ligaments. Am J Sports Med, 2004. 32(5): p. 1144-9.
36. Beynnon, B.D., et al., Anterior cruciate ligament strain behavior during rehabilitation exercises in vivo. American Journal of Sports Medicine, 1995. 23(1): p. 24-34.
37. Heijne, A., et al., Strain on the anterior cruciate ligament during closed kinetic chain exercises. Medicine & Science in Sports & Exercise, 2004. 36(6): p. 935-41.
38. Fleming, B.C., et al., The effect of weightbearing and external loading on anterior cruciate ligament strain. J Biomech, 2001. 34(2): p. 163-70.
39. Heijne, A., et al., Strain on the anterior cruciate ligament during closed kinetic chain exercises. Med Sci Sports Exerc, 2004. 36(6): p. 935-41.
40. Markolf, K.L., et al., Combined knee loading states that generate high anterior cruciate ligament forces. J Orthop Res, 1995. 13(6): p. 930-5.
41. Chouliaras, V., et al., Effectiveness of reconstruction of the anterior cruciate ligament with quadrupled hamstrings and bone-patellar tendon-bone autografts: an in vivo study comparing tibial internal-external rotation. American Journal of Sports Medicine, 2007. 35(2): p. 189-96.
42. Ristanis, S., et al., The effects of anterior cruciate ligament reconstruction on tibial rotation during pivoting after descending stairs. Knee Surgery, Sports Traumatology, Arthroscopy, 2003. 11(6): p. 360-5.
43. Ristanis, S., et al., Excessive tibial rotation during high-demand activities is not restored by anterior cruciate ligament reconstruction. Arthroscopy, 2005. 21(11): p. 1323-9.
44. Fink, C., et al., Long-term outcome of operative or nonoperative treatment of anterior cruciate ligament rupture--is sports activity a determining variable? International Journal of Sports Medicine, 2001. 22(4): p. 304-9.
45. Kessler, M.A., et al., Function, osteoarthritis and activity after ACL-rupture: 11 years follow-up results of conservative versus reconstructive treatment. Knee Surgery, Sports Traumatology, Arthroscopy, 2008. 16(5): p. 442-8.
46. Lohmander, L.S., et al., High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis & Rheumatism, 2004. 50(10): p. 3145-52.
47. Fleming, B.C., et al., The effect of weightbearing and external loading on anterior cruciate ligament strain. Journal of Biomechanics, 2001. 34(2): p. 163-70.
48. Markolf, K.L., et al., Combined knee loading states that generate high anterior cruciate ligament forces. Journal of Orthopaedic Research, 1995. 13(6): p. 930-5.
49. Kanamori, A., et al., The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: A human cadaveric study using robotic technology. Arthroscopy, 2000. 16(6): p. 633-9.
50. Kanamori, A., et al., The effect of axial tibial torque on the function of the anterior cruciate ligament: a biomechanical study of a simulated pivot shift test. Arthroscopy, 2002. 18(4): p. 394-8.
51. Andriacchi, T.P. and C.O. Dyrby, Interactions between kinematics and loading during walking for the normal and ACL deficient knee. Journal of Biomechanics, 2005. 38(2): p. 293-8.
52. Georgoulis, A.D., et al., Three-dimensional tibiofemoral kinematics of the anterior cruciate ligament-deficient and reconstructed knee during walking. American Journal of Sports Medicine, 2003. 31(1): p. 75-9.
53. Zhang, L.Q., et al., Six degrees-of-freedom kinematics of ACL deficient knees during locomotion-compensatory mechanism. Gait & Posture, 2003. 17(1): p. 34-42.
54. Huang CY1, C.Y., Li JS1, Yang CY2, Su FC3, Chen WL1, Landing Strategies Focusing on the Rotatory Control of Knee Joints in Patients with ACL Reconstruction, Basketball players, and Healthy controls. 2010.
55. Malinzak, R.A., et al., A comparison of knee joint motion patterns between men and women in selected athletic tasks. Clinical Biomechanics, 2001. 16(5): p. 438-45.
56. Myer, G.D., K.R. Ford, and T.E. Hewett, The effects of gender on quadriceps muscle activation strategies during a maneuver that mimics a high ACL injury risk position. Journal of Electromyography & Kinesiology, 2005. 15(2): p. 181-9.
57. Hewett, T.E., et al., Neuromuscular Control and Valgus Loading of the Knee Predict ACL Injury Risk in Female Athletes. Medicine & Science in Sports & Exercise, 2004. 36(5): p. S287.
58. Rozzi, S.L., et al., Knee joint laxity and neuromuscular characteristics of male and female soccer and basketball players. American Journal of Sports Medicine, 1999. 27(3): p. 312-9.
59. Borotikar, B.S., et al., Combined effects of fatigue and decision making on female lower limb landing postures: central and peripheral contributions to ACL injury risk. Clinical Biomechanics, 2008. 23(1): p. 81-92.
60. Kernozek, T.W., M.R. Torry, and M. Iwasaki, Gender differences in lower extremity landing mechanics caused by neuromuscular fatigue. American Journal of Sports Medicine, 2008. 36(3): p. 554-65.
61. McLean, S.G., et al., Impact of fatigue on gender-based high-risk landing strategies.[Erratum appears in Med Sci Sports Exerc. 2008 May;40(5):982 Note: Felin, Rebecca E [corrected to Fellin, Rebecca E]]. Medicine & Science in Sports & Exercise, 2007. 39(3): p. 502-14.
62. Chappell, J.D., et al., Effect of fatigue on knee kinetics and kinematics in stop-jump tasks. American Journal of Sports Medicine, 2005. 33(7): p. 1022-9.
63. Nyland, J.A., et al., Fatigue after eccentric quadriceps femoris work produces earlier gastrocnemius and delayed quadriceps femoris activation during crossover cutting among normal athletic women. Knee Surgery, Sports Traumatology, Arthroscopy, 1997. 5(3): p. 162-7.
64. Wojtys, E.M., B.B. Wylie, and L.J. Huston, The effects of muscle fatigue on neuromuscular function and anterior tibial translation in healthy knees. American Journal of Sports Medicine, 1996. 24(5): p. 615-21.
65. Plug-in-Gait, http://www.irc-web.co.jp/vicon_web/news_bn/PIGManualver1.pdf.
66. Plug-in Gait model. http://www.irc-web.co.jp/vicon_web/news_bn/PIGManualver1.pdf

67. Davis, R., Ounpuu, S., Tyburski, D. & Gage, J., A gait analysis data collection and reduction technique. Human Movement Sciences, 1991. 10: p. 575-587.
68. Kadaba, M.P., Ramakrishnan, H.K., Wootten, M.E, Gainey, J., Gorton, G. & Cochran, G.V.B, Repeatability of kinematic, kinetics and electromyographic data in normal adult gait Journal of Orthopaedic Research, 1989. 7: p. 849-860.
69. Kadaba, M.P., Ramakrishnan, H.K. & Wooten, M.E., Lower extremity kinematics during level walking Journal of Orthopaedic Research, 1990. 8: p. 849-860.
70. Macleod, A.A.M., J.R.W. , Investigation of inherent experimental noise in kinematic experiments using superficial markers. . Biomechanics X-B, Human Kinetics Publishers, Inc., Chicago, 1987: p. 1035-1039.
71. Ramakrishnan, H.K., Wootten M.E & Kadaba, M.P., On the estimation of three dimensional joint angular motion in gait analysis. 35th annual Meeting, Orthopaedic Research Society, February 6-9, 1989, Las Vegas, Nevada., 1989.
72. Ramakrishnan, H.K., Masiello G. & kadaba M.P., On the estimation of the three dimensional joint moments in gait. 1991 Biomechanics Symposium, ASME 1991(120): p. 333-339.
73. Winter, D.A., Biomechanics and motor control of human movement. . John Wiley & Sons, Inc., 1990.
74. Lewek, M.D., K.S. Rudolph, and L. Snyder-Mackler, Control of frontal plane knee laxity during gait in patients with medial compartment knee osteoarthritis. Osteoarthritis & Cartilage, 2004. 12(9): p. 745-51.
75. Benjaminse, A., et al., Fatigue alters lower extremity kinematics during a single-leg stop-jump task. Knee Surgery, Sports Traumatology, Arthroscopy, 2008. 16(4): p. 400-7.
76. Moran, K.A. and B.M. Marshall, Effect of fatigue on tibial impact accelerations and knee kinematics in drop jumps. Medicine & Science in Sports & Exercise, 2006. 38(10): p. 1836-42.
77. Steed, J., G.A. Gaesser, and A. Weltman, Rating of perceived exertion and blood lactate concentration during submaximal running. Medicine & Science in Sports & Exercise, 1994. 26(6): p. 797-803.
78. Augustsson, J., et al., Single-leg hop testing following fatiguing exercise: reliability and biomechanical analysis. Scandinavian Journal of Medicine & Science in Sports, 2006. 16(2): p. 111-20.
79. Rahnama, N., et al., Muscle fatigue induced by exercise simulating the work rate of competitive soccer. Journal of Sports Sciences, 2003. 21(11): p. 933-42.
80. Madigan, M.L. and P.E. Pidcoe, Changes in landing biomechanics during a fatiguing landing activity. Journal of Electromyography & Kinesiology, 2003. 13(5): p. 491-8.
81. Markolf, K.L., et al., Direct measurement of resultant forces in the anterior cruciate ligament. An in vitro study performed with a new experimental technique. Journal of Bone & Joint Surgery - American Volume, 1990. 72(4): p. 557-67.
82. Markolf, K.L., J.S. Mensch, and H.C. Amstutz, Stiffness and laxity of the knee--the contributions of the supporting structures. A quantitative in vitro study. Journal of Bone & Joint Surgery American, 1976. 58(5): p. 583-94.
83. Sakane, M., et al., In situ forces in the anterior cruciate ligament and its bundles in response to anterior tibial loads. Journal of Orthopaedic Research, 1997. 15(2): p. 285-93.
84. Deneweth, J.M., et al., Tibiofemoral joint kinematics of the anterior cruciate ligament-reconstructed knee during a single-legged hop landing. American Journal of Sports Medicine, 2010. 38(9): p. 1820-8.
85. Orishimo, K.F., et al., Adaptations in single-leg hop biomechanics following anterior cruciate ligament reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy, 2010. 18(11): p. 1587-93.
86. McLean, S.G. and J.E. Samorezov, Fatigue-induced ACL injury risk stems from a degradation in central control. Medicine & Science in Sports & Exercise, 2009. 41(8): p. 1661-72.
87. Li, G., et al., The coupled motion of the femur and patella during in vivo weightbearing knee flexion. Journal of Biomechanical Engineering, 2007. 129(6): p. 937-43.
88. Bonnard, M., et al., Different strategies to compensate for the effects of fatigue revealed by neuromuscular adaptation processes in humans. Neuroscience Letters, 1994. 166(1): p. 101-5.
89. Zhang, L.-Q., et al., Multiaxis muscle strength in ACL deficient and reconstructed knees: compensatory mechanism. Medicine & Science in Sports & Exercise, 2002. 34(1): p. 2-8.
90. Rudolph, K.S., M.J. Axe, and L. Snyder-Mackler, Dynamic stability after ACL injury: who can hop? Knee Surgery, Sports Traumatology, Arthroscopy, 2000. 8(5): p. 262-9.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw