進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1701202022251200
論文名稱(中文) 汙泥/棕櫚殼之共氣化特性研究
論文名稱(英文) The study of co-gasification characteristics of sewage sludge and palm kernel shell
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 108
學期 1
出版年 108
研究生(中文) 房子路
研究生(英文) Tzu-Lu Fang
電子信箱 al3831498@yahoo.com.tw
學號 P46061097
學位類別 碩士
語文別 中文
論文頁數 114頁
口試委員 指導教授-趙怡欽
口試委員-陳冠邦
口試委員-伍芳嫺
口試委員-鄭藏勝
中文關鍵字 生活汙泥  棕櫚殼  共氣化  田口實驗法  流體化床氣化爐 
英文關鍵字 Sewage Sludge  Palm Kernel Shell  Co-gasification  Taguchi Method  Fluidized Bed Gasifier. 
學科別分類
中文摘要 生活污泥是一種常見的城市固體廢棄物,台灣大部份仍採掩埋的方式處理,若採用焚燒的方式處理則會產生有毒的氣體,像是戴奧辛、多氯聯苯等,產生的飛灰當中含有鉻(Cd)鉛(Pb)等重金屬。因此本研究透過氣化的方式將汙泥轉換成合成氣,但汙泥本身能量密度低、灰份與水份含量高,因此利用棕櫚殼進行混摻,透過共氣化的方式,減少進料的困難度並提升合成氣的品質。本研究探討燃料的基本特性,並利用熱重分析搭配傅立葉轉換紅外線光譜分析實驗,探討污泥與棕櫚殼之共熱解/氣化反應,了解在受熱過程中的重量損失趨勢與所釋放的揮發份組成,並利用其結果進行FWO活化能、協同效應與氣體產率分析,其結果顯示出汙泥與棕櫚殼之間存在著協同效應,且當混摻比為20、30與40%時,相對於純棕櫚殼與汙泥而言,能有效降低產氣中的焦油組成與污染物NH3之含量。本研究建置1KWth級連續進料式流體化床氣化爐,並透過田口實驗法分別找出最大的冷氣體效率(CGE)、H2/CO ratio、H2濃度時之最佳操作參數分別為氣化溫度900℃,混摻比為0%,CO2/CO2+H2O ratio =100%" ,催化劑含量20%;氣化溫度900℃,混摻比為30%,CO2/CO2+H2O ratio=70%" ,催化劑含量20%;氣化溫度800℃,混摻比為40%,CO2/CO2+H2O ratio=70%" ,催化劑含量15%。
英文摘要 Sewage sludge (SS) is a by-product of wastewater treatment plants. It can be treated as municipal solid waste and usually disposal of by landfills in Taiwan. Due to the complicated chemical compositions, it is prone to generate toxic gases such as dioxin and polychlorinated biphenyls for incineration. The resulting fly ash may also contain heavy metals such as chromium (Cd) and lead (Pb) that become a direct threat to human health and the environment. In this study, the sewage sludge is converted to syngas by gasification. However, sewage sludge possesses low energy density and high ash and moisture content that would lead to difficulty for utilization. Therefore, palm kernel shells (PKS) are used for co-gasification to reduce the difficulty of feeding and improve the quality of syngas. This study starts from the fuel property analysis and then uses a thermogravimetric analyzer integrated with Fourier transform infrared spectroscopy (TG-FTIR) to explore the co-pyrolysis/gasification characteristics of sewage sludge and palm kernel shells. The activation energy is calculated by using the FWO method with different heating rates. The results also show that there exists a synergistic effect during the reaction. From the gas yield, the case of biomass blending ratio (BBR) =20, 30, 40 % have revealed a lower tar yield and NH3 production than pure PKS and pure SS in the syngas. Finally, a 1 kWth continuous feeding type fluidized-bed reactor is designed and built for isothermal gasification test. The best-operating conditions of maximum cold gas efficiency (CGE), H2/CO ratio, and H2 concentration are found through the Taguchi method, respectively. According to the result, it shows that the parameter combination of temperature, blending ratio, carry gas CO2/(CO2+H2O) ratio and catalyst addition to achieve maximum CGE is 900 °C, 0 %, 100 %, and 15 %; for maximum H2/CO ratio is 900 °C, 30 %, 70 %, and 20 %; for maximum H2 concentration is 800 °C, 40 %, 70 %, and 15 %, respectively.
論文目次 摘要 I
英文延伸摘要 II
致謝 XXIII
目錄 XXV
表目錄 XXIX
圖目錄 XXXI
第一章 前言 1
1-1 全球與台灣能源概況 1
1-2 生質能源概況 1
1-3 汙泥 2
1-4 國內外汙泥處理現況 3
1-5 氣化技術發展特性 5
1-6 共氣化技術 7
1-7 棕櫚殼 8
第二章 文獻回顧與動機 9
2-1 汙泥組成與熱裂解特性 9
2-2 棕櫚殼與熱裂解特性 9
2-3 化學反應動力學 10
2-4 氣化原理 11
2-4-1 流化床氣化技術 12
2-4-2 水蒸氣氣化特性 14
2-4-3 二氧化碳氣化特性 15
2-4-4 催化劑氣化特性 16
2-5 田口實驗設計法(TAGUCHI METHOD) 17
2-5-1 田口法介紹 17
2-5-2 直交表(ORTHOGONAL ARRAY, OA) 18
2-6 研究動機與目的 19
第三章 實驗設備與實驗方法 21
3-1 實驗燃料 21
3-2 實驗樣品成分分析 21
3-2-1 元素分析 21
3-2-2 近似分析 22
3-2-3 熱值分析 22
3-3 熱重分析搭配傅立葉轉換紅外線光譜分析儀(TG-FTIR) 22
3-4 化學反應動力學(FWO) 23
3-5 協同效應分析 25
3-6 田口實驗法之氣化特性參數訂定與選取範圍 26
3-7 實驗室等級氣泡式流體化床氣化爐 30
3-7-1 實驗室等級氣泡式流體化床氣化爐之主體構造圖 30
3-7-2 主體構造尺寸計算 31
3-7-3 水蒸氣產生器 36
3-7-4 熱風槍 36
3-7-5 電熱式環狀、箱型加熱器 36
3-7-6 連續進料機 37
3-7-7 合成氣過濾系統 38
3-7-8 文式管 38
3-7-9 氣體分析儀 39
3-7-10 小型燃燒器 40
第四章 結果與討論 41
4-1 燃料性質分析 41
4-2 熱重串連紅外線光譜分析 41
4-2-1 FWO活化能分析 46
4-2-2 疊加法則(ADDITIVE METHOD) 47
4-3 汙泥與棕櫚殼之可燃氣含量驗證 50
4-4 氣化介質對合成氣組成之影響 50
4-4-1 二氧化碳氣化 50
4-4-2 水蒸氣氣化 51
4-5 利用田口實驗法找出最佳的操作參數 52
4-5-1 最佳冷氣體效率(CGE) 52
4-5-2 最大H2/CO RATIO 54
4-5-3 最大H2 濃度 55
第五章 結論 57
第六章 未來工作與目標 59
參考文獻 60
表格 80
圖片 93

參考文獻 [1] Key World Energy Statistics,2018
[2] Global Energy & CO2 Status Report,2018
[3]台灣發電結構與再生能源發電種類占比,經濟部能源局,2018
[4]經濟部106年7月,能源轉型白皮書
[5]Shashi Kant Bhatiaa, Hwang-Soo Joob , Yung-Hun Yanga “Yanga“Biowaste-to-bioenergy using biological methods – A mini-review”, Energy Conversion and Management,177,640-660,2018
[6] R. Saidur a, E.A. Abdelaziz , A. Demirbas , M.S. Hossaina, S. Mekhilef “A review on biomass as a fuel for boilers”, Renewable and Sustainable Energy Reviews,15,2262-2289,2011
[7] Shashi Kant Bhatiaa, Hwang-Soo Joob , Yung-Hun Yanga “Biowaste-to-bioenergy using biological methods – A mini-review”, Energy Conversion and Management,177,640-660,2018
[8] Fytili, D., Zabaniotou “ Utilization of sewage sludge in EU application 21 of old and new methods-A review. Renew Sust Energ Rev”. 12, 116-140,2008
[9] Jiao Li “Study of the Co-pyrolysis of Dewatered Sewage Sludge and Biomass”, A Thesis Submitted in Fulfillment of the Requirements for the Degree of Master of Engineering Study,2013
[10]LesławŚwierczekBartłomiej MichałCieślikPiotrKonieczka, A.“The potential of raw sewage sludge in construction industry – A review”. Journal of Cleaner Production,200, 342-356,2018
[11] Christodoulou, A., Stamatelatou, K. “ Overview of legislation on sewage sludge management in developed countries worldwide. ” Water Sci. Technol. 73, 453–462,2016
[12] Augusto Bianchini, Luca Bonfiglioli, Marco Pellegrini and Cesare Saccani. “Sewage sludge management in Europe: a critical analysis of data quality. ” Int. J. Environment and Waste Management,18, No.3,2016
[13] Hong, J., Hong, J., Otaki, M., Jolliet, O. “Environmental and economic life cycle assessment for sewage sludge treatment processes in Japan. ” Waste Manag,29, 696–703,2009
[14] Center for Sustainable Systems, University of Michigan “U.S. Wastewater Treatment Factsheet.” Pub. No. CSS04-14,2018
[15] 朱敬平,下水污泥減量及再利用推動說明,2018
[16] Prabir Basu ,Biomass Gasification and Pyrolysis Practical Design and Theory,2013
[17] Zhu, Y., & Frey, H. C ‘Integrated gasification combined cycle (IGCC) systems. Combined Cycle Systems for Near-Zero Emission Power Generation’, 129–161,2012
[18] Frey , H. C. and Zhu , Y. , ‘Improved system integration for Integrated Gasifi cation Combined Cycle (IGCC) systems’ , Environmental Science and Technology , 40 (5) , 1693 – 1699,2006
[19] Umberto Arena , ‘Process and technological aspects of municipal solid waste gasification. A review’ , Waste Management , 32 , 625 – 639,2012
[20]Abdelmalik M. Shakorfow, ‘Biomass. Incineration, Pyrolysis, Combustion and Gasification’ , International Journal of Science and Research ,5, 2319 – 7064,2013
[21] Singh RN, Singh SP, Balwanshi JB. “Tar removal from producer gas: a review. ”Res J Eng Sci,3(10):16–22,2014
[22] Seong-Wan Kang • Jong-In Dong • Jong-Min Kim •Woo-Chan Lee • Won-Gu Hwang, ‘Gasification and its emission characteristics for dried sewage sludge utilizing a fluidized bed gasifier’ , Journal of Material Cycles and Waste Management ,13, 180–185,2011
[23] Jumoke Oladejo , Kaiqi Shi,Xiang Luo ,Gang Yang and TaoWu, ‘A Review of Sludge-to-Energy Recovery Methods’, Energies ,12, 60,2018
[24] M.C. Samolada , A.A. Zabaniotou, ‘Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece’ , Waste Management ,34, 411–420,2014
[25] Syed Shatir ,Syed-Hassana,Yi Wanga,Song Hua,Sheng Sua,Jun Xianga , ‘Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations’, Renewable and Sustainable Energy Reviews ,80, 888-913,2017
[26] Pinto F, Andre RN, Lopes H, Dias M, Gulyurtlu I, Cabrita I. , ‘Effect of experimental conditions on gas quality and solids produced by sewage sludge cogasification. 2. Sewage sludge mixed with biomass.’, Energy Fuels ,22, 2314-2325,2008
[27] Peng L, Wang Y, Lei Z, Cheng G., ‘Co-gasification of wet sewage sludge and forestry waste in situ steam agent..’, Bioresour Technol ,114, 698-702,2012
[28] Ana Ramos,Eliseu Monteiro,Valter Silva,AbelRoubo, ‘Co-gasification and recent developments on waste-to-energy conversion: A review.’, Renewable and Sustainable Energy Reviews ,81, 380-398,2018
[29] Abdullah SS, Yusup S. “Method for screening of Malaysian biomass based on aggregated matrix for hydrogen production through gasification. ” J Appl Sci ,10,3301-3306,2010
[30] Moghadam RA, Yusup S, Uemura Y, Chin BLF, Lam HL, Al Shoaibi A. “ Syngas production from palm kernel shell and polyethylene waste blend in fluidized bed catalytic steam co-gasification process. ” Energy,75,40–44,2014
[31] Khan Z, Yusup S, Ahmad MM, Rashidi NA. “ Integrated catalytic adsorption (ICA) steam gasification system for enhanced hydrogen production using palm kernel shell. ” Int J Hydrog Energy,39(7),3286–3293,2014
[32] Esfahani RM, Wan Ab Karim Ghani WA, Mohd Salleh MA, Ali S. “Hydrogen-Rich Gas Production from Palm Kernel Shell by Applying Air Gasification in Fluidized Bed Reactor. ” Energy & Fuels,26,1185,2012
[33] Ong HC, Mahlia TMI, Masjuki HH, Norhasyima RS. “Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: A review. ” Renewable and Sustainable Energy Reviews,15,3501,2011
[34] Umar MS, Jennings P, Urmee T “Strengthening the palm oil biomass renewable energy industry in Malaysia. ” Renew Energy ,60,107–115,2013
[35] Umar MS, Jennings P, Urmee T. “Generating renewable energy from oil palm biomass in Malaysia: the Feed-in Tariff policy framework. ” Biomass Bioenergy ,62,37–46,2014
[36] Darshini D, Dwivedi P, Glenk K. “ Capturing stakeholders´ views on oil palmbased biofuel and biomass utilisation in Malaysia. ” Energy Policy, 62,1128–1237,2013
[37] Hoong SS. “Palm Oil and Related Products. 1 of 12 National Key Economic Areas under Economic Transformation Programme ”, pp. 11–15,2011
[38] Abas R, Kamarudin MF, Nordin ABA, Simeh MA. “A study on the Malaysian oil palm biomass sector – supply and perception of palm oil millers. ” Oil Palm Ind Econ J ,11(1),28–41,2011
[39] Salman Zafar, “Bioenergy Developments in Malaysia” ,2018
[40] 蔡文田, “台灣利用進口棕櫚殼產製能源之現況分析”,台灣能源教育資源總中心,2019
[41] Li M, Xiao B, Wang X, Liu J. “Consequences of sludge composition on combustion performance derived from thermogravimetry analysis.” Waste Management,35,141–147,2015
[42] XinWangBingweiZhaoXiaoyiYang. “Co-pyrolysis of microalgae and sewage sludge: Biocrude assessment and char yield prediction.” Energy Conversion and Management,117,326-334,2016
[43] Sebastian Werle , Mariusz Dudziak. “Analysis of Organic and Inorganic Contaminants in Dried Sewage Sludge and By-Products of Dried Sewage Sludge Gasification.” Energies,7,462-476,2014
[44]YanLinYanfenLiao,ZhaoshengYuShiwenFang,YoushengLin,YunlongFan,XiaoweiPeng,XiaoqianMa. “Co-pyrolysis kinetics of sewage sludge and oil shale thermal decomposition using TGA–FTIR analysis.” Energy Conversion and Management,15,345-352,2016
[45]ZihuanWang,XiaoqianMa,ZhongliangYao,QuanhengYu,ZhaoWang,YoushengLin. “Study of the pyrolysis of municipal sludge in N2/CO2 atmosphere.” Applied Termal Engineering,128,662-671,2018
[46] Alvarez J, Amutio M, Lopez G, Bilbao J, Olazar M. “Fast co-pyrolysis of sewage sludge and lignocellulosic biomass in a conical spouted bed reactor. ” Fuel,159,810–818,2015
[47] Salman Raza Naqvia,Rumaisa Tariq, Zeeshan Hameed, Imtiaz Ali, Syed A. Taqvi,Muhammad Naqvie,M.B.K. Niazi, Tayyaba Noor, Wasif Farooq “Pyrolysis of high-ash sewage sludge: Thermo-kinetic study using TGA and artificial neural networks ” Fuel,233,529–538,2018
[48] Alvarez J, et al. “Characterization of the bio-oil obtained by fast pyrolysis of sewage sludge in a conical spouted bed reactor.” Fuel Process Technol ,149,169–175,2016
[49] Zuo W, et al. “ Pyrolysis of high-ash sewage sludge in a circulating fluidized bed reactor for production of liquids rich in heterocyclic nitrogenated compounds. ” Bioresour Technol,127,44–48,2013
[50] Young Nam ChunEmail authorDae Won JiKunio Yoshikawa. “Pyrolysis and gasification characterization of sewage sludge for high quality gas and char production. ” Journal of Mechanical Science and Technology,27(1),263-272,2013
[51]QianjinDai,Xuguang,JiangaGuojunLv,XiaojunMa,YuqiJin,FeiWang,YongChi,JianhuaYan “Investigation into particle size influence on PAH formation during dry sewage sludge pyrolysis: TG-FTIR analysis and batch scale research ” Journal of Analytical and Applied Pyrolysis,112,388–393,2015
[52] Abnisa F, Daud WMAW, Husin WNW, Sahu JN. “ Utilization possibilities of palm shell as a source of biomass energy in Malaysia by producing bio-oil in pyrolysis process. ” Biomass Bioenergy,35(5),1863–1872,2011
[53] Ninduangdee P, Kuprianov VI. “ Study on burning oil palm kernel shell in a conical fluidized-bed combustor using alumina as the bed material. ”J. Taiwan Inst Chem Eng ,44(6),1045–1053,2013
[54] Lin Y, Ma X, Yu Z, Cao Y.. “ Investigation on thermochemical behavior of co-pyrolysis between oil-palm solid wastes and paper sludge.”. Bioresour Technol ,166:444-450,2014
[55]ZhongqingMa,DengyuChen,JieGu,BinfuBao,QishengZhang.“Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA–FTIR and model-free integral methods. ”. Energy Conversion and Management,89:251-259,2015
[56] Siti ShawalliahIdris,Norazah AbdRahman,KhudzirIsmail. “Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA) ”. Bioresource Technology,123,581-591,2012
[57]Zhongqing Ma,Junhao Wang,Youyou Yang,Yu Zhang,Chao Zhao,Youming Yu,Shurong Wang, “Comparison of the thermal degradation behaviors and kinetics of palm oil waste under nitrogen and air atmosphere in TGA-FTIR with a complementary use of model-free and model-fitting approaches ”. Journal of Analytical and Applied Pyrolysis,134,12-24,2018
[58] 趙衛東, 劉建忠, 張保生, 周俊虎, and 岑可法, “水焦漿燃燒動力學參數求解方法,” 中國電機工程學報, 28,55-60,2008
[59] 彭承祖, 陳冠邦, and 趙怡欽, “棕櫚空果串/煤炭混燒之純氧燃燒特性研究”,2018
[60]Flynn JH, Wall AL(1966). “ A quick direct method for determination of activation energy from thermogravimetric data.”J Polym Sci B,4,323–328,1966
[61]Akahira T, Sunose T. “Method of determining activation deterioration constant of electrical insulating materials. ”Rep. Res. Inst. Chiba Inst. Technol. (Sci.Technol.),16,22–31,1971
[62] Salman Raza Naqvia,, Rumaisa Tariq, Zeeshan Hameed, Imtiaz Ali, Syed A. Taqvid,Muhammad Naqvi,M.B.K.Niazi, Tayyaba Noor, Wasif Farooq. “Pyrolysis of high-ash sewage sludge: Thermo-kinetic study using TGA and artificial neural networks. ” Fuel,233,529–538,2018
[63] Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C,
Sbirrazzuoli N. “ ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. ” Thermochim Acta 520,1–19,2011
[64] Jingyong Liua, Limao Huang, Wuming Xie, Jiahong Kuo, Musa Buyukada,
Fatih Evrendilek. “Characterizing and optimizing (co-)pyrolysis as a function of different feedstocks, atmospheres, blend ratios, and heating rates. ” Bioresource Technology,277,104–116,2019
[65] Zhongqing Maa,, Dengyu Chen , Jie Gu , Binfu Bao , Qisheng Zhang . “Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA–FTIR and model-free integral methods. ” Energy Conversion and Management,89,251–259,2015
[66]王杰 and 王文舉, “棕櫚殼熱解特性與動力學分析,” 南京理工大學能源與動力工程學院,09,55,2783-2095,2013
[67] Arshad Adam Salema, Muhammad T. Afzal, Farough Motasemi. “Is there synergy between carbonaceous material and biomass during conventional pyrolysis? A TG-FTIR approach.” Journal of Analytical and Applied Pyrolysis,105,217–226,2014
[68]Puig-Arnavat M, Carles Bruno J, Coronas A. “Review and analysis of biomass gasification models. ”. Renew Sustain Energy Rev,14:2841–2851,2010
[69]Arena U. “Process and technological aspects of municipal solid waste gasification. A review”. Waste Manag,32:625–639,2012
[70]Ashok Pandey, “Recent Advances in Thermochemical Conversion of Biomass (1st Edition)” Published by Elservier Inc,2015
[71] DSutton,S.MParle,J.R.HRoss “The CO2 reforming of the hydrocarbons present in a model gas stream over selected catalysts” Fuel Processing Technology,75,45-53,2002
[72] U. Arena, , “Fluidized bed gasification” Second University of Naples, Italy,2013
[73] Couto N, Rouboa A, Silva V, Monteiro E, Bouziane K. “ Influence of the biomass gasification processes on the final composition of syngas”. Energy Proc,36,596–606,2013
[74]Antonio Molino,Simeone Chianese,Dino Musmarra. “Biomass gasification technology:The state of the art overview”. Journal of Energy Chemistry,25,10–25,2016
[75] Bosmans A, Vanderreydt I, Geysen D, Helsen L. “The crucial role of waste-to energy technologies in enhanced landfill mining: a technology review”. J Clean Prod,55,10–23,2013
[76] Marcin Siedlecki ,Wiebren de Jong and Adrian H.M. Verkooijen. “Fluidized Bed Gasification as a Mature And Reliable Technology for the Production of Bio-Syngas and Applied in the Production of Liquid Transportation Fuels—A Review”. Energies,4,389–434,2011
[77] Udomsirichakorn J,BasuP,SalamPA,AcharyaB. “Effect of CaO on tar reforming to hydrogen-enriched gas within-processCO2 capture in a bubbling fluidized bed biomass steam gasifier”. Int J Hydrog Energy,4,389–434,2013
[78] Rapagna`, S., Gallucci, K., Marcello, M.D., Foscolo, P.U., Nacken, M., Heidenreich, S., “In Situ Catalytic Ceramic Candle Filtration for Tar Reforming and Particulate Abatement in a Fluidized-Bed Biomass Gasifier.” Energy & Fuels, 23, 3804-3809,2009
[79] V. Skoulou,G. Koufodimos,Z. Samaras , A. Zabaniotou, “Low temperature gasification of olive kernels in a 5-kW fluidized bed reactor for H2-rich producer gas”. international journal of hydrogen energy,33,6515–6524,2008
[80] Beenackers, A.A.C.M.; van Swaaij, W.P.M “ Gasification of biomass, a state of the art review (keynote paper). In Thermochemical Processing of Biomass”,Bridgwater, A.V., Ed.; Butterworths: London, UK, 91–136,1984
[81] S.K. Sansaniwal, K. Pala, M.A. Rosen, S.K. Tyagi. “Recent advances in the development of biomass gasification technology: A comprehensive review ”. Renewable and Sustainable Energy Reviews,72,363–384,2017
[82] NorAfzanizamSamiran , Mohammad Nazri Mohd Jaafar, Jo-Han Ng,Su Shiung Lam, Cheng Tung Chong. “Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production ”. Renewable and Sustainable Energy Reviews,62,1047–1062,2016
[83] Umberto Arena. “Process and technological aspects of municipal solid waste gasification. A review”. Waste Management,32,625–639,2012
[84]G.Gautam,S.Adhikari,S.Thangalazhy,Gopakumar,C.Brodbeck,S.Bhavnani,S.Taylor Bioresour.Technol.6,4652–4661,2011
[85]Richard B. Bates, Whitney S. Jablonski,Daniel L.Carpenter,Christos Altantzis,Aaron Garg, John L. Barton, Ran Chen, Randall P. Field, and Ahmed F. Ghoniem. “Steam-air blown bubbling fluidized bed biomass gasification (BFBBG): Multi-scale models and experimental validation”. AIChE Journal,63(5),2012
[86]Basu, P., “Combustion and gasification in fluidized beds,” Taylor & Francis Group, LLC,2006
[87] G. Ruoppolo , P. Ammendola, R. Chirone, F. Miccio “H2-rich syngas production by fluidized bed gasification of biomass and plastic fuel”, Waste Managemen,32,724-732,2012
[88] Dongdong Feng, Yijun Zhao, Yu Zhang, Shaozeng Sun “Effects of H2O and CO2 on the homogeneous conversion and heterogeneous reforming of biomass tar over biochar”, International Journal of Hydrogen Energy,42,13070-13084,2017
[89] Hakan Karatas “Experimental results of gasification of walnut shell and pistachio shell in a bubbling fluidized bed gasifier under air and steam atmospheres”,fuel,214,285-292,2018
[90] C. Guizani , F.J. Escudero Sanz , S. Salvador “Effects of CO2 on biomass fast pyrolysis: Reaction rate, gas yields and char reactive properties”,fuel,vol.116.pp. 310-320,2014
[91] DSutton,S.MParle,J.R.HRoss “The CO2 reforming of the hydrocarbons present in a model gas stream over selected catalysts” Fuel Processing Technology., vol. 75, pp. 45-53, 2002
[92] Heidi C. Butterman and Marco J. Castaldi, “CO2 as a Carbon Neutral Fuel Source via Enhanced Biomass Gasification”, Environ. Sci. Technol. vol.43.pp. 9030-9037,2009
[93] Martha Lucia Valderrama Rios,Aldemar Martínez González,Electo Eduardo Silva Lora,Oscar Agustin Almazán del Olmo“Reduction of tar generated during biomass gasification: A review”, Biomass and Bioenergy,108,345-370,2018
[94]賈佳妮,氣化過程然氣焦油檢測分析及脫除,天津大學,2007。
[95]de Andrés JM, Narros A, Rodríguez ME. “ Behaviour of dolomite, olivine and alumina as primary catalysts in air–steam gasification of sewage sludge. ” Fuel ,90,521–7,2011
[96] Xinyue Ma, Xue Zhao, Jiyou Gu , Junyou Shi, “Co-gasification of coal and biomass blends using dolomite and olivine as catalysts”, Renewable Energy,132,509-514,2019
[97] Larry Nelson, Sunkyu Park, and Martin A. Hubbe, “Thermal Depolymerization of Biomass with Emphasis on Gasifier Design and Best Method for Catalytic Hot Gas Conditioning”, BioResources,13(2),4630-4727,2018
[98] Z. Abu El-Rub,†E. A. Bramer, and G. Brem, “Interactions between char and tar during the steam gasification in a fluidized bed reactor”, Interactions between char and tar during the steam gasification in a fluidized bed reactor,224,600-609,2018
[99] Z. Abu El-Rub,†E. A. Bramer, and G. Brem, “Review of Catalysts for Tar Elimination in Biomass Gasification Processes”, Ind. Eng. Chem. Res.,43,6911-6919,2004
[100]Leon, R.V., Shoemaker, A.C., Kacker, R.N., “Performance Measures Independent of Adjustment: An Explanation and Extension of Taguchi's Signal-to-Noise Ratios.” Technometrics, 29, 253-265,1987
[101]Ghani, J.A., Choudhury, I.A., Hassan, H.H., “Application of Taguchi Method in the Optimization of End Milling Parameters.” Journal of Materials Processing Technology, 145, 84-92,2004
[102]Tang, B., “Orthogonal Array-Based Latin Hypercubes,” Journal of the American Statistical Association, 88 (424) pp. 1392-1397, 1993.
[103] Wei-Hsin Chen , Chih-Jung Chen , Chen-I Hung “Taguchi approach for co-gasification optimization of torrefied biomass and coal” Bioresource Technology,144,615-622,2013
[104] Chao Fan, Junwei Yan, Yiru Huang, Xiangxin Han, Xiumin Jiang, “XRD and TG-FTIR study of the effect of mineral matrix on the pyrolysis and combustion of organic matter in shale char”,Fuel ,139,502–510,2015
[105] Y. Lin, Y. Liao, Z. Yu, S. Fang, and X. Ma. “The investigation of co-combustion of sewage sludge and oil shale using thermogravimetric analysis,” Thermochimica Acta,653, 71-78,2017
[106]彭承祖, 陳冠邦, and 趙怡欽, “棕櫚空果串/煤炭混燒之純氧燃燒特性研究,2018”
[107] Liu Q, Wang SR, Zheng Y, Luo ZY, Cen KF. "Mechanism study of wood lignin pyrolysis by using TGA–FTIR analysis. J Anal Appl Pyrol ,82,170–7,2008
[108] Yao, Z., Ma, X., Wu, Z., and Yao, T. ", "TGA–FTIR analysis of co-pyrolysis characteristics of hydrochar and paper sludge," Journal of Analytical and Applied Pyrolysis,123,40-48,2017
[109]吳復強, “田口品質工程”, 台北: 全威, 1992.
[110]黎正中, “穩健設計之品質工程”, 台北: 台北圖書, 1993.
[111] M.P. González-Vázquez, R. García, M.V. Gil, C. Pevida, F. Rubiera., "Comparison of the gasification performance of multiple biomass types in a bubbling fluidized bed," Energy Conversion and Managemen,176,309-323,2018
[112] Antonio Soria-Verdugo, Lukas Von Berg, Daniel Serrano, Christoph Hochenauer,Robert Scharler, Andrés Anca-Couce, (2019)., "Effect of bed material density on the performance of steam gasification of biomass in bubbling fluidized beds," Fuel,257,116-118,2019
[113] M. La Villettaa, M. Costa,N.Massarotti, "Modelling approaches to biomass gasification: A review with emphasis on the stoichiometric method," Renewable and Sustainable Energy Reviews,74,71-88,2017
[114] Pindoria RV, Megaritis A, Herod AA, Kandiyoti R. “ A two-stage fixed-bed reactor for direct hydrotreatment of volatiles from the hydropyrolysis of biomass: effect of catalyst temperature, pressure and catalyst ageing time on product characteristics. ” Fuel; vol.77. pp.1715–1726,1998
[115] Fabrizio Scala “An experimental study on hydrogen-rich gas production via steam gasification of biomass in a research-scale fluidized bed. ” Energy Conversion and Management,89,251-259,2015
[116] Moghadam RA, Yusup S, Uemura Y, Chin BLF, Lam HL, Al Shoaibi A. “Syngas production from palm kernel shell and polyethylene waste blend in fluidized bed catalytic steam co-gasification process. Energy ;75:40–4.2014
[117]Devi L, Ptasinski KJ, Janssen FJJG. “ A review of the primary measures for tar elimination in biomass gasification processes. ,” Biomass Bioenergy 24,125–40,2003
[118] Sadhwani, N., Adhikari, S., & Eden, M. R.. “Biomass Gasification Using Carbon Dioxide: Effect of Temperature, CO2/C Ratio, and the Study of Reactions Influencing the Process ,” Eng. Chem,55(10),2883–2891,2016
[119] Bayu Prabowo,Kentaro Umeki, Mi Yan, Masato R. Nakamura, Marco J. Castaldi , Kunio Yoshikawa “CO2–steam mixture for direct and indirect gasification of rice straw in a downdraft gasifier: Laboratory-scale experiments and performance prediction,” Applied Energy, 113,670-679,2014
[120] M. Jeremiáš, M. Pohořelýa,K. Svoboda,, V. Manovic, E.J. Anthony, S. Skoblia,Z. Beňo,M. Šyc “Gasification of biomass with CO2 and H2O mixtures in a catalytic fluidized bed,” Fuel, 210,605-610,2017
[121]SylvieValin,LaurentBedel,JacquesGuillaudeau,SébastienThiery,SergeRavel “CO2 as a substitute of steam or inert transport gas in a fluidised bed for biomass gasification,” Fuel, 177,288-295,2016
[122] Seggiani M, Puccini M, Raggio G, Vitolo S. “ Effect of sewage sludge content on gas quality and solid residues produced by cogasification in an updraft gasifier. ” Waste Manag,vol.32.pp.1826–34,2012
[123] Ong ZH, Cheng YP, Maneerung T, Yao ZY, Tong YW, Wang CH, “Cogasification of woody biomass and sewage sludge in a fixed-bed downdraft gasifier. ”Aiche J,vol.61.pp.2508–21,2015
[124] Kung-Yuh Chiang, Cheng-Han Lu , Chun-Kai Liao ,Ray Hsien-Ruen Ger “Characteristics of hydrogen energy yield by co-gasified of sewage sludge and paper-mill sludge in a commercial scale plant,” International Journal of Hydrogen Energy, 41,21641-21648,2016
[125] Xinyue Ma, Xue Zhao, Jiyou Gu , Junyou Shi, “Co-gasification of coal and biomass blends using dolomite and olivine as catalysts”, Renewable Energy,132,509-514,2019
[126] Filomena Pinto, Rui Neto André , Carlos Carolino , Miguel Miranda , Pedro Abelha , Daniel Direito,Nikos Perdikaris b, Ioannis Boukis, “Gasification improvement of a poor quality solid recovered fuel (SRF). Effect of using natural minerals and biomass wastes blends”, Fuel,vol.117,pp.1034-1044,2014
[127] Basu, P., “Combustion and gasification in fluidized beds,” Taylor & Francis Group, LLC,2006
[128] J.C. Schmid, T. Pröll, C. Pfeifer, R. Rauch, H. Hofbauer., “Cold Flow Model Investigation on a Modified Riser with Enhanced Gas-Solid Contact: Locating the Regions of Operation in a Fluidization Regime Map,” Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria,2012
[129] 趙怡欽,高效率生質氣化共燒鍋爐系統之開發,2015。
[130] Semion Shaul , Evgeny Rabinovich, Haim Kalman, “Generalized flow regime diagram of fluidized beds based on the height to bed diameter ratio,” Powder Technology ,228,264-271,2012
[131] 流化床燃燒技術與應用
[132]Darton, R.C., LaNauze, R.D., Davidson, J.F., Harrison, D., “Bubble Growth due to Coalescence in Fluidized Beds,” Transactions of the Institution of Chemical Engineers, vol. 55, p. 274-280,1977
[133]Mori, S., Wen, C.Y., “Estimation of Bubble Diameter in Gaseous Fluidized Beds,” Journal of American Institute of Chemical Engineers, vol. 21, p. 109-115,1975
[134]Geldart D. Types of gas fluidization. Powder Technol;7:285–92,1973
[135] Ian Narva´ ez, Alberto Orı´o, Maria P. Aznar, and Jose´ Corella., “Biomass Gasification with Air in an Atmospheric Bubbling Fluidized Bed. Effect of Six Operational Variables on the Quality of the Produced Raw Gas,” Ind. Eng. Chem. Res,35,2110-2120,1996
[136] Sanna Tuomi, Esa Kurkela, Pekka Simell, Matti Reinikainen., “Behaviour of tars on the filter in high temperature filtration of biomass-based gasification ga,” Fuel,139,220-231,2015
[137] Ayse Ozyuguran, Aysen Akturk, Serdar Yaman “Optimal use of condensed parameters of ultimate analysis to predict the calorific value of biomass,” Fuel,214,640-646,2018
[138]P. Basu, Biomass gasification, pyrolysis and torrefaction: practical design and theory: Academic press, 2013.
[139] Klass DL. Biomass for renewable energy, fuels, and chemicals. San Diego: Academic Press; 1998
[140]Khan AA, Jonga WD, Jansens PJ, Spliethoff H. “Biomass combustion in fluidized bed boilers: potential problems and remedies. ” Fuel Process Technol ,90,21–50,2009
[141]Song-ping GAO,Jian-tao ZHAO,Zhi-qing WAN Ga,Jian-fei WANG,Yi-tianFANGa,Jie-jieHUANG “Effect of CO2 on pyrolysis behaviors of lignite” Journal of Fuel Chemistry and Technology., 41,257-264,2013
[142] Fanghua Li, Srikanth Chakravartula Srivatsa, Warren Batchelor, Sankar Bhattacharya. “A study on growth and pyrolysis characteristics of microalgae using Thermogravimetric Analysis-Infrared Spectroscopy and synchrotron Fourier Transform Infrared Spectroscopy ” Bioresource Technology,229,1-10,2017
[143] Hu Z, Ma X, Chen C. “A study on experimental characteristic of microwaveassisted pyrolysis of microalgae”. Biores Technol ,107,487–493,2012
[144] Pilon G, Lavoie J-M “Pyrolysis of switchgrass (Panicum virgatum L.) at low temperatures within N2 and CO2 environments: product yield study. ACS Sustainable”. Chem Eng ,1(1),198–204,2012
[145] Kim J, Lee J, Kim K-H, Ok YS, Jeon YJ, Kwon EE. “Pyrolysis of wastes generated through saccharification of oak tree by using CO 2 as reaction medium”. Appl Therm Eng ,110,335–345,2017
[146] Eilhann E. Kwon , Haakrho Yi , Hyun-Han Kwon. “Thermo-chemical process with sewage sludge by using CO2”. Journal of Environmental Management ,128,435–440,2013
[147] Tian L, Shen B, Xu H, Li F, Wang Y, Singh S. “Thermal behavior of waste tea pyrolysis by TG-FTIR analysis.”. Energy ,103,533–542,2016
[148] de Oliveira Silva J, Filho GR, da Silva Meireles C, Ribeiro SD, Vieira JG, da Silva CV, et al.“Thermal analysis and FTIR studies of sewage sludge produced in treatment plants”. Brazil Thermochim Acta ,528,72–75,2012
[149] DSutton,S.MParle,J.R.HRoss. “The CO2 reforming of the hydrocarbons present in a model gas stream over selected catalysts” Fuel Processing Technology.”. Fuel Processing Technology ,75,45-53,2002
[150] Zhu L, Cheung CS, Huang Z. “Impact of chemical structure of individual fatty acid esters on combustion and emission characteristics of diesel engine.”Energy ,107,305–32,2016
[151] Zhiguo Dong, Zihao Liu, Xiong Zhang, Haiping Yang, Jian Li, Sunwen Xia, Yingquan Chen, Hanping Chen. “Pyrolytic characteristics of hemicellulose, cellulose and lignin under CO2 atmosphere.”. Fuel ,256,115890,2019
[152] Wang S, Ru B, Lin H, Sun WJF. “Pyrolysis behaviors of four O-acetyl-preserved hemicelluloses isolated from hardwoods and softwoods.”. 150,243–251,2015
[153] Shewa WA, Lalman JA, Chaganti SR, Heath DD. “Electricity production from lignin photocatalytic degradation byproducts.”. Energy ,111,774–784,2016
[154] Yan Lin, Yanfen Liao, Zhaosheng Yu, Shiwen Fang, Xiaoqian Ma. “A study on co-pyrolysis of bagasse and sewage sludge using TG-FTIR and Py- GC/MS.”. Energy Conversion and Management ,151,190–198,2017
[155] Zhiguo Dong, Zihao Liu, Xiong Zhang, Haiping Yang, Jian Li, Sunwen Xia, Yingquan Chen, Hanping Chen. “Pyrolytic characteristics of hemicellulose, cellulose and lignin under CO2 atmosphere.”. Fuel ,256,115890,2019
[156] Pilon G, Lavoie J-M. “Pyrolysis of switchgrass (Panicum virgatum L.) at low temperatures within N2 and CO2 environments: product yield study. ACS Sustainable”. Chem Eng ,1(1),198–204,2012
[157] Nair V. Vinu RJJoA. “Pyrolysis A. Production of guaiacols via catalytic fast pyrolysis of alkali lignin using titania, zirconia and ceria.”. J Anal Appl Pyrol ,119,31–39,2016
[158] Charothon Jindarom ,Vissanu Meeyoo , Thirasak Rirksomboon ,Pramoch Rangsunvigit . “Thermochemical decomposition of sewage sludge in CO2 and N2 atmosphere.”. Chemosphere ,67,1477–1484,2007
[159]EilhannE.Kwon,TaewooLee,YongSikOk,DanielC.W.Tsang,ChanhyukPark. “Effects of calcium carbonate on pyrolysis of sewage sludge.”. Energy ,153,726–731,2018
[160] Young Jeon Kim, Myung I Kim, Chang Hun Yun, Ji Young Chang,Chong Rae Park, and Michio Inagaki. “Comparative study of carbon dioxide and nitrogen atmospheric effects on the chemical structure changes during pyrolysis of phenol–formaldehyde spheres”,274,555–562,2004
[161] Guo X, Zhang W, Wang L, Hao J. “Comparative study of nitrogen migration among the products from catalytic pyrolysis and gasification of waste rigid polyurethane foam.”. J Anal Appl Pyrol ,120,144–145,2016
[162] Sørum, L.,Grønli, M.G., Hustad, J.E. “ Pyrolysis characteristics and kinetics 18 of municipal solid wastes. ” Fuel. 80, 1217-1227,2001
[163] Haiping Yang , Rong Yan , Hanping Chen , Dong Ho Lee , Chuguang Zheng. “Characteristics of hemicellulose, cellulose and lignin pyrolysis.” Fuel,86,1781–1788,2007
[164] Liu Q, Wang SR, Zheng Y, Luo ZY, Cen KF. “ Mechanism study of wood lignin pyrolysis by using TGA–FTIR analysis. ” J Anal Appl Pyrol,82:170–177,2008 [165]https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Chemical_Bonding/Fundamentals_of_Chemical_Bonding/Bond_Energies
[166] Ana Belen Hernandez,Felix Okonta, Ntuli Freeman.“Thermal decomposition of sewage sludge under N2, CO2 and air: Gas characterization and kinetic analysis.” Journal of Environmental Management,196,560–568,2017
[167] Amanda, A.D.M., Leandro, C.M. “Kinetic parameters of red pepper waste as biomass to solid biofuel. ” Bioresour. Technol. 204, 157–163.2016
[168] Hugo de Lasa, Enrique Salaices, Jahirul Mazumder, and Rahima Lucky. “Catalytic Steam Gasification of Biomass: Catalysts, Thermodynamics and Kinetics.”. Chem. Rev,111,5404–5433,2011
[169] Shoji M, Yamamoto T, Tanno S, Aoki H, Miura T “Modeling study of homogeneous NO and N2O formation from oxidation of HCN in a flow reactor.” Energy,30,337–45,2005
[170] Singh RN, Singh SP, Balwanshi JB. “Tar removal from producer gas: a review. ”Res J Eng Sci,3(10):16–22,2014
[171] Hasler P, Nussbaumer T. “Gas cleaning for IC engine applications from fixed bed biomass gasification. ” Biomass- Bioenergy,16(6):385–95,1999
[172]Vineet Singh Sikarwar,Ming Zhao,Peter Clough,Joseph Yao,Xia Zhong,Mohammad Zaki Memon,Nilay Shah,Edward J. Anthony and Paul S. Fennell. “An overview of advances in biomass gasification.” J. Name, 0, 1-3,2013
[173] Joan J. Manya, Jose´ L. Sa´nchez, Alberto Gonzalo, and Jesu´ s Arauzo. “Air Gasification of Dried Sewage Sludge in a Fluidized Bed: Effect of the Operating Conditions and In-Bed Use of Alumina.” Energy & Fuels, 19, 629-636,2005
174] Juan Manuel de Andrés , Adolfo Narros, María Encarnación Rodríguez. “Air-steam gasification of sewage sludge in a bubbling bed reactor: Effect of alumina as a primary catalyst.” Fuel Processing Technology, 92, 433-440,2011
175] W. A. Wan Ab Karim Ghani , Reza Alipour Moghadam , M. A. Mohd Salleh and A. B. Alias. “Air Gasification of Agricultural Waste in a Fluidized Bed Gasifier: Hydrogen Production Performance.” Energies, 2, 258-268,2009
176]Zakir Khan,Suzana Yusup,Murni Melati Ahmad.Nor Adilla Rashidi. “Integrated catalytic adsorption (ICA) steam gasification system for enhanced hydrogen production using palm kernel shell.” International Journal of Hydrogen Energy,39,3286-329,2014
[177] 郭貹隆. “污泥資源化與再利用.” 國立勤益科技大學化工系
[178] Meiqi Gao, Zhirong Yang, Yulong Wang, Yonghui Bai, Fan Li , Kechang Xie. “Impact of calcium on the synergistic effect for the reactivity of coal char gasification in H2O/CO2 mixtures.” Fuel, 189,312-321,2016
[179] Daniel Schweitzer, Andreas Gredinger, Max Schmid, Gebhard Waizmann, Marcel Beirow, Reinhold Sporl, Günter Scheffknecht. “Steam gasification of wood pellets, sewage sludge and manure: Gasification performance and concentration of impurities.” Biomass and Bioenergy,111, 308-319,2017
[180] A.M. Mauerhofer , J. Fuchs, S. Müller, F. Benedikt, J.C. Schmid, H. Hofbauer. “CO2 gasification in a dual fluidized bed reactor system: Impact on the product gas composition.” Fuel,253, 1605-1616,2019
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-01-17起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-01-17起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw