進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1701201416254500
論文名稱(中文) 台灣西南部高屏溪流域風化作用及海底地下水之研究: 同位素與元素分布
論文名稱(英文) Distribution of Dissolved Elements and Isotopes in the Gaoping River Catchment, Southwestern Taiwan: Weathering and Submarine Groundwater Discharge
校院名稱 成功大學
系所名稱(中) 地球科學系
系所名稱(英) Department of Earth Sciences
學年度 102
學期 1
出版年 103
研究生(中文) 王若梅
研究生(英文) Ruo-Mei Wang
學號 L48941070
學位類別 博士
語文別 英文
論文頁數 140頁
口試委員 指導教授-游鎮烽
口試委員-李德春
口試委員-何東垣
口試委員-何恭算
口試委員-楊懷仁
中文關鍵字 高屏溪  河口  河流風化  微量元素  鈾同位素  鍶同位素  鋰同位素  海底地下水  UTEVA  多接收器感應耦合電漿質譜儀 
英文關鍵字 Gaoping River  estuary  river weathering  trace element  U isotopes  Sr isotopes  Li isotopes  SGD  UTEVA  MC-ICP-MS 
學科別分類
中文摘要 本研究顯示台灣西南部高屏溪河水由上游至河口的元素與同位素變化,包括主要、微量元素濃度與鈾(U)、鍶(Sr)、鋰(Li)同位素比值。本實驗完整建立一利用多接收器感應耦合電漿質譜儀的分析方法,可快速、簡單並精確量測自然界低濃度樣品的鈾同位素比值。利用三個具備不同基質的國際標準品(IAPSO, IRMM-3184和CRM-U010)進行分析方法驗證,其均於標定值相當;而長期測量鈾標準品及IAPSO的(234U/238U)和238U/235U, 其值與分析誤差分別為0.970 ± 0.002及137.56 ± 0.09; 1.144 ± 0.004及137.72 ± 0.13。此快速且精確量測不同基質樣品中(234U/238U)和238U/235U的分析方法將對環境風化、海洋學與古氣候學等研究議題有相當的幫助。
根據高屏溪河水主要元素濃度的變化顯示,矽酸鹽風化為影響河水化學組成的主要因素,其次受到區域性溫泉水的貢獻與輕微的人為汙染。而氣候變化可能對由於化學作用產生的陽離子剝蝕速率造成影響。高屏溪河水的平均鈾同位素值高於世界其他河流,顯示物理風化是控制鈾同位素比值變化相當重要的因素,而河水鈾同位素比值將可反應河川物理與化學風化的程度。河水鋰同位素的分化則與河流流域的化學風化強度有關。因此,根據高屏溪流域河水化學與同位素的變化,推論解釋後可得知,在高屏溪上游受到強烈物理風化所影響,因此可觀察到河水顯示較高的鈾同位素值與低的鋰同位素值,以及相對較低的鈾濃度與較高的鋰濃度。而後河川愈往下游,化學風化逐漸強烈,因此造成河水產生低的鈾同位素值與高的鋰同位素,及相對較高的鈾含量和較低的鋰濃度。然而,本研究認為地下水對於高屏溪河水化學的貢獻是無法被忽略的,但對於地下水方面,則需要更系統性的採樣策略與詳細的分析數據後才能有效釐清高屏溪流域河水與地下水系統間的關係。
為了更加瞭解微量元素於高屏溪河口的地球化學行為,以及季節性變化對於河水化學通量的影響,系統性針對高屏溪河口於乾、溼季進行水樣採集,並量測其主要、微量元素濃度與鍶同位素比值。研究結果顯示,溶解態鈉、鎂、鈣及氯元素隨著鹽度變化呈現保守行為分布,並在濕季提供較大的通量輸入至海洋。而河口主要元素與硼、鍶微量元素隨深度的垂直剖面變化,主要顯示河流淡水與海水此兩端元混和的情形。溶解態鋇與錳元素的分布則可能受到地下水、孔隙水及水體與沉積物交互作用等吸附/脫附過程所影響。此外,87Sr/86Sr比值的分布變化也指示一具有較重同位素比值的陸源訊號與海水值的混和特徵。在分析結果上,顯示可能來自表層土壤與大氣顆粒沉降使得濕季具有較高的微量元素濃度,這暗示著河水化學組成能靈敏反應出區域性的氣候變化。本研究計算後發現,高屏溪提供了大量硼與鍶元素通量進入到海洋中,明顯顯示出高山型河流對於全球海洋化學組成通量平衡的計算具有重要潛在性的影響力。
本研究亦分析高屏溪河口水樣中的鈾同位素比值,並進一步探討其水文地質化學循環等現象。結果顯示,溶解態鈾、鍶元素及其同位素比值的變化明顯並具有季節性差異,而利用鈾與鍶同位素比值的分布,三個不同特徵的端元混合現象明顯顯示於高屏溪河口 – 海水(SW)、河水(RW)與地下水(或再循環的淡水)(GW或evolved RW)。此外,地下水輸入的訊號在靠近河口的垂直深度剖面變化中也清楚地被觀察到。河水與地下水端元具備高的鈾同位素比值,表示出河流上游土壤經過α-recoil效應後受到淋溶等強烈陸源風化的訊號。溶解態鍶及其同位素比值是被認為能靈敏反應水團混合來源的良好示蹤計,其分布變化則與鈾相似,因此更加確立了鈾及鈾同位素比值的端元混合模型。因此,進一步利用鈾及鍶元素與其同位素比值計算高屏溪流域的海底地下水(submarine groundwater discharge, SGD)通量,得到最大的通量值分布為456–2107 × 1011 L yr−1,此結果暗示著在高屏溪近岸地區存在著一重要的化學通量貢獻來源,而鈾與鍶同位素則對於河口地區海底地下水研究具有重大的發展潛力。
英文摘要 This study presents major and trace element data, as well as uranium (U), strontium (Sr) and lithium (Li) isotopes for the waters collected from upstream to the estuary of the Gaoping River catchment in the southwest Taiwan. A fast and simple analytical procedure using MC-ICP-MS was developed for the precise determination of U isotopic compositions in low concentration natural samples. The results for three international standards with different matrices (IAPSO, IRMM-3184 and CRM-U010) are in close agreement with the certified values. The long-term reproducibility of (234U/238U) and 238U/235U is 0.970 ± 0.002 and 137.56 ± 0.09; 1.144 ± 0.004 and 137.72 ± 0.13, respectively, for in-house U solution and IAPSO. The approach provides a fast method to measure (234U/238U) and 238U/235U ratios in sample matrices commonly encountered in studies of chemical weathering, oceanography and paleoclimatology.
In the Gaoping River, based on the variations of major ions in the river water, the silicate weathering mainly affects the river water chemistry and minor contributions may input from local hot springs or anthropogenic sources. The climatic variations may influence the cation denudation rate due to chemical weathering. The average U activity ratio in Gaoping River is highest among the worldwide rivers. The physical weathering acts an important role to control the U activity ratios whereas (234U/238U) can reflect relative level of physical weathering to chemical erosion, and the fractionation of riverine δ7Li can be used to reflect the degree of chemical weathering in the Gaoping River. A scenario is proposed to explain the chemical and isotopic observations in the Gaoping River basin. The high physical denudation is dominated at the upstream stations where primary intensive weathering to cause high (234U/238U) and low δ7Li with relatively low U and high Li concentrations. Subsequently more enhanced chemical weathering has occurred toward the downstream stations to cause low (234U/238U) and high δ7Li, as well as high U and low Li concentrations. However, the contributions of groundwater and deep weathering cannot be neglect. But it still needs systematic sampling of groundwater and detail analytical data to resolve the relationship between river water and groundwater in the Gaoping River basin.
To gain a better understanding of geochemical behavior of trace elements in Gaoping River estuary and to examine seasonal variations in associated chemical fluxes, estuarine water samples were collected in typical dry and wet seasons for analyzing the dissolved major and trace elements and Sr isotopes. The results show that dissolved Na, Mg, Ca and Cl behave conservatively along the salinity gradient and display significantly larger fluxes in the wet seasons. Vertical profiles of the major ions and trace elements of B and Sr reveal mainly two end-member mixing between riverine freshwater and seawater. Dissolved Ba and Mn were affected by uptake/release processes involving groundwater, benthic flux and water/sediment interactions. 87Sr/86Sr ratios also support a scenario of mixing between a more radiogenic continental source and seawater. It appears that the wet season samples have higher trace element concentrations due to inputs from topsoils and atmospheric dusts. This implies that chemical compositions in river waters respond sensitively to regional climatic changes. The observed high fluxes of B and Sr in the Gaoping River emphasize the potential impact of mountainous rivers on the global oceanic mass balance of these constituents.
The estuary water samples were also analyzed for U isotopes to further define the hydro-geochemical circulation in estuary. The dissolved U and Sr concentrations, as well as (234U/238U) and 87Sr/86Sr, vary significantly and show strongly seasonal variability. Three characteristic source waters can be identified in the Gaoping River estuary by the U and Sr contents and their distinctive isotopic ratios - seawater (SW), river water (RW), and groundwater (GW or evolved RW). The GW is most clearly identified in the vertical profile of the near estuary stations. These high (234U/238U) values in RW and GW reflect the outcome of intense weathering in the upper catchment, efficient leaching of α-recoil products in soils. Dissolved Sr and 87Sr/86Sr data confirm similar U mixing scenarios, but the index is more sensitive to water source variations. Estimated fluxes of submarine groundwater discharge (SGD) in the Gaoping River estuary reach a maximum value of 456–2107 × 1011 L yr−1, implying important contribution to the chemical budget in coastal regions. This study reveals that U and Sr isotopes have great potential for monitoring SGD in estuaries.
論文目次 Chapter 1. Introduction 1
1.1 Motivation and Objective 2
1.2 U and U isotopes in natural environments 4
1.3 Scope of this thesis 6
Chapter 2. Precise determination of U isotopic compositions in low concentration carbonate samples by MC-ICP-MS 7
Abstract 8
2.1 Introduction 9
2.2 Experiment 10
2.2.1 Instrumentation 11
2.2.2 Sample materials 11
2.2.3 Sample preparation 12
2.2.4 Standards 13
2.2.5 Chromatography 14
2.2.6 U isotope measurements 14
2.3 Results and discussion 16
2.3.1 Column separation efficiency 16
2.3.2 U isotopic ratios 17
2.4 Conclusion 21
Acknowledgments 21
Chapter 3. The Distribution of U, Sr and Li isotopes in the Gaoping River 28
Abstract 29
3.1 Introduction 30
3.2 Study area 32
3.3 Sampling procedures 33
3.4 Chemical analysis 34
3.4.1 Element concentrations 34
3.4.2 U, Sr and Li isotopic analyses 35
3.5 Results 36
3.5.1 Major ion concentrations 36
3.5.2 U, Sr, Li and their isotopes 38
3.6 Discussion 39
3.6.1 Major ions distribution and potential sources in Gaoping River 39
3.6.2 Weathering-limited or transport-limited denudation 41
3.6.3 U isotopes as a weathering proxy 43
3.6.4 Li Isotopes as a probe for chemical weathering 45
3.6.5 U and Li isotopes 46
3.6.6 U and Sr isotopes: the potential and complex factor of groundwater 47
3.7 Conclusion 49
Acknowledgement 50
Chapter 4. Seasonal variability of dissolved major and trace elements in the Gaoping (Kaoping) River Estuary, Southwestern Taiwan 61
Abstract 62
4.1 Introduction 63
4.2 Study area 65
4.3 Sampling and chemical analysis 65
4.4 Results and discussion 67
4.4.1 Rainfall, river discharge and suspended load 67
4.4.2 Vertical distribution of elements in Gaoping (Kaoping) estuary 68
4.4.3 Seasonal variation of trace elements in the Gaoping River 69
4.4.4 Strontium isotope ratio in Gaoping estuary 72
4.4.5 Riverine flux of trace elements to the ocean 73
4.5 Conclusions 74
Acknowledgements 75
Chapter 5. Uranium and strontium isotopic evidence for strong submarine groundwater discharge in an estuary of a mountainous island: A case study in the Gaoping River Estuary, Southwestern Taiwan 91
Abstract 92
5.1 Introduction 93
5.2 Study Area 95
5.3 Methods 96
5.3.1 Sample collection 96
5.3.2 Chemical analysis 97
5.3.3 Isotopic analyses 97
5.4 Results 98
5.4.1 Hydrographic conditions 98
5.4.2 Elemental concentrations 99
5.4.3 U and Sr isotopes 99
5.5 Discussion 100
5.5.1 Major and trace elements 100
5.5.2 U behavior in the Gaoping estuary 101
5.5.3 U isotopic compositions 104
5.5.4 Sr isotopic compositions 106
5.5.5 U and Sr Isotopic Evidence for Submarine Groundwater Discharge in Gaoping Estuary 106
5.5.6 Evaluation the Submarine Groundwater Discharge Fluxes 108
5.6 Conclusions 109
Acknowledgments 110
Chapter 6. Conclusions 122
References 126
參考文獻 Andersen, M.B., Erel, Y. and Bourdon, B., 2009. Experimental evidence for 234U–238U fractionation during granite weathering with implications for 234U/238U in natural waters. Geochimica et Cosmochimica Acta, 73(14), 4124-4141.
Andersen, M.B., Stirling, C.H., Porcelli, D., Halliday, A.N., Andersson, P.S. and Baskaran, M., 2007. The tracing of riverine U in Arctic seawater with very precise 234U/238U measurements. Earth and Planetary Science Letters, 259(1-2), 171-185.
Andersen, M.B., Stirling, C.H., Potter, E.K. and Halliday, A.N., 2004. Toward epsilon levels of measurement precision on 234U/238U by using MC-ICPMS. International Journal of Mass Spectrometry, 237(2-3), 107-118.
Andersen, M.B., Stirling, C.H., Zimmermann, B. and Halliday, A.N., 2010. Precise determination of the open ocean 234U/238U composition. Geochemistry Geophysics Geosystems, 11(12).
Andersson, P.S. Porcelli, D., Gustafsson, O., Ingri, J. and Wasserburg, G.J., 1998. Particle transport of 234U-238U in the Kalix River and in the Baltic Sea. Geochimica et Cosmochimica Acta, 62, 385-392.
Andersson, P.S., Porcelli, D., Gustafsson, O., Ingri, J. and Wasserburg, G.J., 2001. The Importance of colloids for the behavior of U isotopes in the low-salinity zone of a stable estuary. Geochimica et Cosmochimica Acta, 65(1), 13-25.
Andersson, P.S., Wasserburg, G.J., Chen, J.H., Papanastassiou, D.A. and Ingri, J., 1995. 238U-234U and 232Th-230Th in the Baltic Sea and in river water. Earth and Planetary Science Letters, 130(1-4), 217-234.
Audry, S., Blanc, G., Schafer, J., Chaillou, G. and Robert, S., 2006. Early diagenesis of trace metals (Cd, Cu, Co, Ni, U, Mo, and V) in the freshwater reaches of a macrotidal estuary. Geochimica Et Cosmochimica Acta, 70(9), 2264-2282.
Bar-Matthews, M., Marean, C.W., Jacobs, Z., Karkanas, P., Fisher, E.C. Herries, A.I.R., Brown, K., Williams, H.M., Bernatchez, J., Ayalon, A. and Nilssen, P.J., 2010. A high resolution and continuous isotopic speleothem record of paleoclimate and paleoenvironment from 90 to 53 ka from Pinnacle Point on the south coast of South Africa. Quaternary Science Reviews, 29(17–18), 2131-2145.
Berner, R.A., Lasaga, A.C. and Garrels, R.M., 1983. The carbonate–silicate geochemical cycle and its effect on atmopheric carbon dioxide over the past 100 million years. American Journal of Science, 283(7), 641-683.
Borole, D.V., Krishnaswami, S. and Somayajulu, B.L.K., 1982. Uranium isotopes in rivers, estuaries and adjacent coastal sediments of western India: their weathering, transport and oceanic budget. Geochimica et Cosmochimica Acta, 46(2), 125-137.
Boyle, E., Collier, R., Dengler, A.T., Edmond, J.M., Ng, A.C. and Stallard, R.F., 1974. On the chemical mass-balance in estuaries. Geochimica et Cosmochimica Acta, 38(11), 1719-1728.
Brennecka, G.A., Borg, L.E., Hutcheon, I.D., Sharp, M.A. and Anbar, A.D., 2010. Natural variations in uranium isotope ratios of uranium ore concentrates: Understanding the 238U/235U fractionation mechanism. Earth and Planetary Science Letters, 291(1-4), 228-233.
Bricker, O.P., Pačes, T., Johnson, C.E. and Sverdrup, H., 1994. Weathering and erosion aspects of small catchment research. In: B. Moldan and J. Cerny (Editors), Biogeochemistry of small catchments, a tool for environmental research, pp. 85-105.
Brunskill, G.J., Zagorskis, I. and Pfitzner, J., 2003. Geochemical mass balance for lithium, boron, and strontium in the Gulf of Papua, Papua New Guinea (Project TROPICS). Geochimica Et Cosmochimica Acta, 67(18), 3365-3383.
Calmels, D., Galy, A., Hovius, N., Bickle, M., West, A.J., Chen, M.C. and Chapman, H., 2011. Contribution of deep groundwater to the weathering budget in a rapidly eroding mountain belt, Taiwan. Earth and Planetary Science Letters, 303(1-2), 48-58.
Carroll, J. and Moore, W.S., 1993. Uranium removal during low discharge in the Ganges-Brahmaputra mixing zone. Geochimica et Cosmochimica Acta, 57(21–22), 4987-4995.
Carroll, J. and Moore, W.S., 1994. Uranium removal during low discharge in the Ganges–Brahmaputra mixing zone. Geochimica et Cosmochimica Acta, 58, 4987–4995.
Carroll, J., Falkner, K.K., Brown, E.T. and Moore, W.S., 1993. The role of the Ganges–Brahmaputra mixing zone in supply Ba and 226Ra to the Bay of Bengal. Geochimica et Cosmochimica Acta, 57, 2981–2990.
Carter, H.E., Warwick, P., Cobb, J. and Longworth, G., 1999. Determination of uranium and thorium in geological materials using extraction chromatography. The Analyst, 124(3), 271-274.
Chabaux, F., Riotte, J. and Dequincey, O., 2003. U-Th-Ra Fractionation During Weathering and River transport, Uranium-Series Geochemistry, Reviews in Mineralogy and Geochemistry, pp. 533-576.
Chabaux, F., Riotte, J., Clauer, N. and France-Lanord, C., 2001. Isotopic tracing of the dissolved U fluxes of Himalayan rivers: Implications for present and past U budgets of the Ganges-Brahmaputra system. Geochimica et Cosmochimica Acta, 65(19), 3201-3217.
Charette, M.A. and Sholkovitz, E.R., 2006. Trace element cycling in a subterranean estuary: Part 2. Geochemistry of the pore water. Geochimica et Cosmochimica Acta, 70(4), 811-826.
Charette, M.A., Splivallo, R., Herbold, C., Bollinger, M.S. and Moore, W.S., 2003. Salt marsh submarine groundwater discharge as traced by radium isotopes. Marine Chemistry, 84(1-2), 113-121.
Chen, C.T., Zhang, J., Peng, T.R. and Hagiwar, T., 2005. Exploratory sampling of submarine groundwater discharge in Taiwan. Geochemistry, 39, 165-171.
Chen, C.T.A. and Selvaraj, K., 2008. Evaluation of elemental enrichments in surface sediments off southwestern Taiwan. Environmental Geology, 54(6), 1333-1346.
Chen, J.H., Lawrence Edwards, R. and Wasserburg, G.J., 1986. 238U, 234U and 232Th in seawater. Earth and Planetary Science Letters, 80(3–4): 241-251.
Cheng, H., Edwards, R.L., Hoff, J., Gallup, C.D., Richards, D.A. and Asmerom, Y., 2000. The half-lives of uranium-234 and thorium-230. Chemical Geology, 169(1-2), 17-33.
Chkir, N., Guendouz, A., Zouari, K., Hadj Ammar, F. and Moulla, A.S., 2009. Uranium isotopes in groundwater from the continental intercalaire aquifer in Algerian Tunisian Sahara (Northern Africa). J Environ Radioact, 100(8), 649-56.
Chu, H.Y. and You, C.F., 2007. Dissolved constituents and Sr isotopes in river waters from a mountainous island - the Danshuei Drainage System in Northern Taiwan. Applied Geochemistry, 2, 1701–1717.
Chung, C.H., You, C.F. and Chu, H.Y., 2009. Weathering sources in the Gaoping (Kaoping) river catchments, southwestern Taiwan: Insights from major elements, Sr isotopes, and rare earth elements. Journal of Marine Systems, 76(4), 433-443.
Church, T.M., Sarin, M.M., Fleisher, M.Q. and Ferdelman, T.G., 1996. Salt marshes: An important coastal sink for dissolved uranium. Geochimica et Cosmochimica Acta, 60(20), 3879-3887.
Coffey, M., Dehairs, F., Collette, O., Luther, G., Church, T. and Jickells, T., 1997. The behavior of dissolved barium in estuaries. Estuarine, Coastal and Shelf Science 45, 113–121.
Colbert, D. and McManus, J., 2005. Importance of seasonal variability and coastal processes on estuarine manganese and barium cycling in a Pacific Northwest estuary. Continental Shelf Research, 25(11), 1395-1414.
Colodner, D., Edmond, J. and Boyle, E., 1995. Rhenium in the Black-Sea - Comparison with Molybdenum and Uranium. Earth and Planetary Science Letters, 131(1-2), 1-15.
Condon, D.J., McLean, N., Noble, S.R. and Bowring, S.A., 2010. Isotopic composition (238U/235U) of some commonly used uranium reference materials. Geochimica et Cosmochimica Acta, 74(24), 7127-7143.
Cowan, G.A. and Adler, H.H., 1976. The variability of the natural abundance of 235U. Geochimica et Cosmochimica Acta, 40(12), 1487-1490.
Dadson, S.J., Hovius, N., Chen, H.G., Dade, W.B., Hsieh, M.L., Willett, S.D., Hu, J.C., Horng, M.J., Chen, M.C., Stark, C.P., Lague, D. and Lin, J.C., 2003. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426(6967), 648-651.
Das, A. and Krishnaswami, S., 2006. Barium in Deccan Basalt Rivers: its abundance, relative mobility and flux. Aquatic Geochemistry, 12, 221–238.
Das, A., Chung, C.H. and You, C.F., 2012. Disproportionately high rates of sulfide oxidation from mountainous river basins of Taiwan orogeny: Sulfur isotope evidence. Geophysical Research Letters, 39(12).
Das, A., Krishnaswami, S., Sarin, M.M. and Pande, K., 2005. Chemical weathering in the Krishna Basin and Western Ghats of the Deccan Traps, India: Rates of basalt weathering and their controls. Geochimica et Cosmochimica Acta, 69(8), 2067-2084.
Delanghe, D., Bard, E. and Hamelin, B., 2002. New TIMS constraints on the uranium-238 and uranium-234 in seawaters from the main ocean basins and the Mediterranean Sea. Marine Chemistry, 80(1), 79-93.
Deschamps, P., Doucelance, R., Ghaleb, B. and Michelot, J.-L., 2003. Further investigations on optimized tail correction and high-precision measurement of uranium isotopic ratios using multi-collector ICP-MS. Chemical Geology, 201(1-2), 141-160.
DePaolo, D.J., Maher, K., Christensen, J.N. and McManus, J., 2006. Sediment transport time measured with U-series isotopes: Results from ODP North Atlantic drift site 984. Earth and Planetary Science Letters, 248(1-2), 394-410.
Dion, P., 1983. Trace elements and radionuclides in the Connecticut River and Amazon River estuary. Ph.D. Thesis, Yale University, 233 pp.
Dosseto, A., Bourdon, B. and Turner, S.P., 2008. Uranium-series isotopes in river materials: Insights into the timescales of erosion and sediment transport. Earth and Planetary Science Letters, 265(1-2), 1-17.
Dosseto, A., Bourdon, B., Gaillardet, J., Allègre, C.J. and Filizola, N., 2006. Time scale and conditions of weathering under tropical climate: Study of the Amazon basin with U-series. Geochimica et Cosmochimica Acta, 70(1), 71-89.
Douville, E., Sallé, E., Frank, N., Eisele, M., Pons-Branchu, E. and Ayrault, S., 2010. Rapid and accurate U–Th dating of ancient carbonates using inductively coupled plasma-quadrupole mass spectrometry. Chemical Geology, 272(1-4), 1-11.
Dupre, B., Gaillardet, J., Rousseau, D. and Allegre, C.J., 1996. Major and trace elements of river-borne material: the Congo basin. Geochimica et Cosmochimica Acta, 60(8), 1301–1321.
Durand, S., Chabaux, F., Rihs, S., Duringer, P. and Elsass, P., 2005. U isotope ratios as tracers of groundwater inputs into surface waters: Example of the Upper Rhine hydrosystem. Chemical Geology, 220(1-2), 1-19.
Edmond, J.M., 1992. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science, 258, 1594–1597.
Edmond, J.M., Boyle, E.D., Drummond, D., Grant, B. and Mislick, T., 1978. Desorption of barium in the plume of the Zaire (Congo) River. Netherlands Journal of Sea Research, 12, 324–328.
Fietzke, J., Liebetrau, V., Eisenhauer, A. and Dullo, C., 2005. Determination of uranium isotope ratios by multi-static MIC-ICP-MS: method and implementation for precise U- and Th-series isotope measurements. Journal of Analytical Atomic Spectrometry, 20(5), 395.
Fleischer, R.L. and Raabe, O.G., 1978. Recoiling alpha-emitting nuclei. Mechanisms for uranium-series disequilibrium. Geochimica et Cosmochimica Acta, 42(7), 973-978.
France-Lanord, C., Evans, M., Hurtrez, J.E. and Riotte, J., 2003. Annual dissolved fluxes from Central Nepal rivers: budget of chemical erosion in the Himalayas. Comptes Rendus Geoscience, 335, 1131–1140.
Gaillardet, J., Dupre, B., Allegre, C.J. and Negrel, P., 1997. Chemical and physical denudation in the Amazon River basin. Chemical Geology, 142(3-4), 141-173.
Gaillardet, J., Dupre, B., Louvat, P. and Allegre, C.J., 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159(1-4), 3-30.
Galy, A. and France-Lanord, C., 1999. Weathering processes in the Ganges–Brahmaputra basin and the riverine alkalinity budget. Chemical Geology, 159, 31–60.
Göktürk, O.M., Fleitmann, D., Badertscher, S., Cheng, H., Edwards, R.L., Leuenberger, M., Fankhauser, A., Tüysüz, O. and Kramers, J., 2011. Climate on the southern Black Sea coast during the Holocene: Implications from the Sofular Cave record. Quaternary Science Reviews, 30(19-20), 2433-2445.
Goldstein, S.L., Deines, P., Oelkers, E.H., Rudnick, R.L. and Walter, L.M., 2003. Standards for publication of isotope ratio and chemical data in Chemical Geology. Chemical Geology, 202(1-2), 1-4.
Grzymko, T.J., Marcantonio, F., McKee, B.A. and Mike Stewart, C., 2007. Temporal variability of uranium concentrations and 234U/238U activity ratios in the Mississippi river and its tributaries. Chemical Geology, 243(3-4): 344-356.
Guay, G.K. and Falkner, K.K., 1998. A survey of dissolved barium in the estuaries of major Arctic rivers and adjacent seas. Continental Shelf Research, 18, 859–882.
Gurumurthy, G.P., Balakrishna, K., Riotte, J., Braun, J.J., Audry, S., Shankar, H.N.U. and Manjunatha, B.R., 2012. Controls on intense silicate weathering in a tropical river, southwestern India. Chemical Geology, 300-301, 61-69.
Hanor, J.S. and Chan, L.H., 1977. Non-conservative behavior of barium during mixing of Mississippi River and Gulf of Mexico waters. Earth and Planetary Science Letters, 37, 242–250.
Harmon, R.S., Ku, T.L., Matthews, R.K. and Smart, P.L., 1979. Limits of U-Series Analysis - Phase-1 Results of the Uranium-Series Intercomparison Project. Geology, 7(8), 405-409.
Hartshorn, K., Hovius, N., Dade, W.B. and Slingerland, R.L., 2002. Climate-driven bedrock incision in an active mountain belt. Science, 297(5589), 2036-2038.
Hellstrom, J., 2003. Rapid and accurate U/Th dating using parallel ion-counting multi-collector ICP-MS. Journal of Analytical Atomic Spectrometry, 18(11), 1346.
Henderson, G.M., 2002. Seawater (234U/238U) during the last 800 thousand years. Earth and Planetary Science Letters, 199, 97-110.
Henderson, G.M., Martel, D.J., Onions, R.K. and Shackleton, N.J., 1994. Evolution of Seawater Sr-87/Sr-86 over the Last 400-Ka - the Absence of Glacial Interglacial Cycles. Earth and Planetary Science Letters, 128(3-4), 643-651.
Hiess, J., Condon, D.J., McLean, N. and Noble, S.R., 2012. 238U/235U Systematics in terrestrial uranium-bearing minerals. Science, 335(6076), 1610-1614.
Ho, C.S., 1988. An introduction to the geology of Taiwan: explanatory text of the geologic map of Taiwan. Central Geological Survey, Ministry of Economic Affairs, Taiwan.
Hoffmann, D.L., Prytulak, J., Richards, D.A., Elliott, T., Coath, C.D., Smart, P.L. and Scholz, D., 2007. Procedures for accurate U and Th isotope measurements by high precision MC-ICPMS. International Journal of Mass Spectrometry, 264(2-3), 97-109.
Horwitz, E.P., Chiarizia, R. and Dietz, M.L., 1992. A Novel Strontium-Selective Extraction Chromatographic Resin. Solvent Extraction and Ion Exchange, 10(2), 313-336.
Hsi, C.K.D. and Langmuir, D., 1985. Adsorption of Uranyl onto Ferric Oxyhydroxides - Application of the Surface Complexation Site-Binding Model. Geochimica Et Cosmochimica Acta, 49(9), 1931-1941.
Hsu, K.C., Wang, C.H., Chen, K.C., Chen, C.T. and Ma, K.W., 2006. Climate-induced hydrological impacts on the groundwater system of the Pingtung Plain, Taiwan. Hydrogeology Journal, 15(5), 903-913.
Huang, K.F. and You, C.F., 2007. Tracing freshwater plume migration in the estuary after a typhoon event using Sr isotopic ratios. Geophysical Research Letters, 34(2), doi:10.1029/2006GL028253.
Huang, K.F., You, C.F., Chung, C.H. and Lin, I.T., 2011. Nonhomogeneous seawater Sr isotopic composition in the coastal oceans: A novel tool for tracing water masses and submarine groundwater discharge. Geochemistry Geophysics Geosystems, 12(5).
Huang, K.F., You, C.F., Liu, Y.H., Wang, R.M., Lin, P.Y. and Chung, C.H., 2010. Low-memory, small sample size, accurate and high-precision determinations of lithium isotopic ratios in natural materials by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 25(7), 1019-1024.
Hudson, B.D., 1995. Reassessment of polynov ion mobility series. Soil Science Society of America Journal, 59(4), 1101-1103.
Huh, Y., Chan, L.H. and Chadwick, O.A., 2004. Behavior of lithium and its isotopes during weathering of Hawaiian basalt. Geochemistry Geophysics Geosystems, 5(9).
Huh, Y., Chan, L.H. and Edmond, J.M., 2001. Lithium isotopes as a probe of weathering processes: Orinoco River. Earth and Planetary Science Letters, 194(1-2), 189-199.
Huh, Y., Chan, L.H., Zhang, L. and Edmond, J.M., 1998. Lithium and its isotopes in major world rivers: Implications for weathering and the oceanic budget. Geochimica Et Cosmochimica Acta, 62(12), 2039-2051.
Huh, Y. and Edmond, J.M., 1999. The fluvial geochemistry of the rivers of Eastern Siberia: III. Tributaries of the Lena and Anabar draining the basement terrain of the Siberian Craton and the Trans-Baikal Highlands. Geochimica Et Cosmochimica Acta, 63(7-8), 967-987.
Hung, J.J. and Hsu, C.L., 2004. Present state and historical changes of trace metal pollution in Kaoping coastal sediments, southwestern Taiwan. Marine Pollution Bulletin, 49(11-12), 986-998.
Hung, J.J., Yang, C.Y. and Lai, I.J., 2004. Meteorologic control on physical and chemical weathering rates and material fluxes from a tropical (Kaoping) river watershed in Taiwan. Joint AOGS 1st Annual Meeting & 2nd APHW Conference, Singapore, p. 759.
Hydrological Year Book of Taiwan Republic of China, 1999–2004. Water Resources Agency Ministry of Economic Affairs.
Ingri, J. and Widerlund, A., 1994. Uptake of alkali and alkaline-earth elements on suspended iron and manganese in the Kalix River, northern Sweden. Geochimica et Cosmochimica Acta, 58, 5433–5442.
Ivanovich, M. and Harmon, R.S., 1982. Uranium series disequilibrium: applications to environmental problems. Clarendon Press.
Ivanovich, M. and Harmon, R.S., 1992. Uranium-series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences. Clarendon Press.
Jaffey, A., Flynn, K., Glendenin, L., Bentley, W. and Essling, A., 1971. Precision Measurement of Half-Lives and Specific Activities of 235U and 238U. Physical Review C, 4(5), 1889-1906.
Jiang, X.Y., Yu, Z.G., Ku, T.L., Kang, X.L., Wei, W. and Chen, H.T. 2007. Behavior of uranium in the Yellow River plume (Yellow river estuary). Estuaries and Coasts, 30(6), 919-926.
Jiang, X.Y., Yu, Z.G., Ku, T.L., Kang, X.L., Wei, W. and Chen, H.T., 2009. Distribution of uranium isotopes in the main channel of Yellow river (Huanghe), China. Continental Shelf Research, 29(4), 719-727.
Joshi, L.U. and Ganguly, A.K., 1976. Anomalous behaviour of uranium isotopes in coastal marine environment of the west coast of India. Geochimica et Cosmochimica Acta, 40(12), 1491-1496.
Joshi, L.U. and Mishra, U.C., 1981. Studies on the geochemical behaviour of uranium isotopes in coastal environment of the east coast of India. Journal of Radioanalytical Chemistry, 67(1), 47-54.
Kaufman, A., Wasserburg, G.J., Porcelli, D., Bar-Matthews, M., Ayalon, A. and Halicz, L., 1998. U-Th isotope systematics from the Soreq cave, Israel and climatic correlations. Earth and Planetary Science Letters, 156(3-4), 141-155.
Kigoshi, K., 1971. Alpha-recoil Th-234-Dissolution into water and U-234/U-238 disequilibrium in nature. Science, 173(3991), 47-48.
Kısakűrek, B., James, R.H. and Harris, N.B.W., 2005. Li and δ7Li in Himalayan rivers: Proxies for silicate weathering? Earth and Planetary Science Letters, 237(3-4), 387-401.
Kısakürek, B., Widdowson, M. and James, R.H., 2004. Behaviour of Li isotopes during continental weathering: the Bidar laterite profile, India. Chemical Geology, 212(1-2), 27-44.
Klinkhammer, G.P. and McManus, J., 2001. Dissolved manganese in the Columbia River estuary: production in the water column. Geochimica et Cosmochimica Acta, 65, 2835–2841.
Klinkhammer, G.P. and Palmer, M.R., 1991. Uranium in the oceans: Where it goes and why. Geochimica et Cosmochimica Acta, 55(7), 1799-1806.
Koshikawa, M.K., Takamatsu, T., Takada, J., Zhu,M., Xu, B., Chen, Z.,Murakami, S., Xu, K. and Watanabe, M., 2007. Distributions of dissolved and particulate elements in the Yangtze estuary in 1997–2002: background data before the closure of the Three Gorges Dam. Estuarine, Coastal and Shelf Science, 71, 26–36.
Ku, T.L., Knauss, K.G. and Mathieu, G.G., 1977. Uranium in Open Ocean: Concentration and Isotopic Composition. Deep-Sea Research, 24(11), 1005-1017.
Kumar, N., Anderson, R.F., Mortlock, R.A., Froelich, P.N., Kubik, P., Dittrichhannen, B. and Suter, M., 1995. Increased Biological Productivity and Export Production in the Glacial Southern-Ocean. Nature, 378(6558), 675-680.
Langmuir, D., 1978. Uranium Solution-Mineral Equilibria at Low-Temperatures with Applications to Sedimentary Ore-Deposits. Geochimica Et Cosmochimica Acta, 42(6), 547-569.
Lawrence Edwards, R., Chen, J.H. and Wasserburg, G.J., 1987. 238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500,000 years. Earth and Planetary Science Letters, 81(2–3), 175-192.
Lee, B., Han, Y., Huh, Y., Lundstrom, C., Siame, L.L., Lee, J.I., Park, B.K. and Aster Team, 2013. Chemical and physical weathering in south Patagonian rivers: A combined Sr-U-Be isotope approach. Geochimica et Cosmochimica Acta, 101, 173-190.
Li, Y.H. and Chan, L.H., 1979. Desorption of Ba and 226Ra from river-borne sediments in the Hudson Estuary. Earth and Planetary Science Letters 43, 343–350.
Li, Y.H., 1976. Denudation of Taiwan island since the Pleistocene Epoch. Geology, 4, 105-107.
Li, Y.H., Chen, C.T. and Hung, J.J., 1997. Aquatic chemistry of lakes and reservoirs in Taiwan. TAO, 8, 405-426.
Lin, I.T., Wang, C.H., Lin, S. and Chen, Y.G., 2011. Groundwater-seawater interactions off the coast of southern Taiwan: Evidence from environmental isotopes. Journal of Asian Earth Sciences, 41(3), 250-262.
Lin, I.T., Wang, C.H., You, C.F., Lin, S., Huang, K.F. and Chen, Y.G., 2010. Deep submarine groundwater discharge indicated by tracers of oxygen, strontium isotopes and barium content in the Pingtung coastal zone, southern Taiwan. Marine Chemistry, 122(1-4), 51-58.
Liu, C.C. and Yu, S.B., 1990. Vertical Crustal Movements in Eastern Taiwan and Their Tectonic Implications. Tectonophysics, 183(1-4), 111-119.
Liu, J.T., Liu, K.J. and Huang, J.C., 2002. The effect of a submarine canyon on the river sediment dispersal and inner shelf sediment movements in southern Taiwan. Marine Geology, 181(4), 357-386.
Liu, H.C., You, C.F., Huang, K.F. and Chung, C.H., 2012. Precise determination of triple Sr isotopes δ87Sr and δ88Sr using MC-ICP-MS. Talanta, 88, 338-44.
Liu, Y.C., You, C.F., Huang, K.F., Wang, R.M., Chung, C.H. and Liu, H.C., 2012. Boron sources and transport mechanisms in river waters collected from southwestern Taiwan: Isotopic evidence. Journal of Asian Earth Sciences, 58, 16-23.
Lovley, D.R. and Phillips, E.J.P., 1992. Reduction of Uranium by Desulfovibrio-Desulfuricans. Applied and Environmental Microbiology, 58(3), 850-856.
Lovley, D.R., Widman, P.K., Woodward, J.C. and Phillips, E.J.P., 1993. Reduction of Uranium by Cytochrome-C(3) of Desulfovibrio-Vulgaris. Applied and Environmental Microbiology, 59(11), 3572-3576.
Luo, X., M., R., Lee , D.C. and Halliday, A.N., 1997. High precision 230Th/232Th and 234U/238U measurements using energy-filtered ICP magnetic sector multiple collector mass spectrometry. International Journal of Mass Spectrometry and Ion Processes, 171, 105-117.
Ma, Z.B., Xia, M., Zhang, C.H., Pen, Z.C., Wang, Z.R., Sun, W.D. and An, Z.S., 1999. High-precision U-series dating of Holocene corals from South China Sea by thermal ionization mass spectrometry (TIMS). Chinese Science Bulletin, 44(10), 937-941.
Ma, Z.B., Xiao, J.L., Zhao, X.T., Peng, Z.C., Xia, M., Zhang, G.P., Wang, Z.R. and An, Z.S., 2003. Precise U-series dating of coral reefs from the South China Sea and the high sea level during the Holocene. Journal of Coastal Research, 19(2), 296-303.
Maeda, M. and Windom, H.L., 1982. Behavior of uranium in two estuaries of the southeastern United States. Marine Chemistry, 11(5), 427-436.
Makishima, A., Chekol, T.A. and Nakamura, E., 2007. Accurate determination of 234U/238U and 230Th/232Th for U–Th disequilibria studies by MC-ICP-MS with simple bracketing. Journal of Analytical Atomic Spectrometry, 22(11), 1383.
McKee, B.A., DeMaster, D.J. and Nittrouer, C.A., 1987. Uranium geochemistry on the Amazon shelf: Evidence for uranium release from bottom sediments. Geochimica et Cosmochimica Acta, 51(10), 2779-2786.
Meybeck, M., 1983. Atmospheric inputs and river transport of dissolved substances. Proceedings of the Hamburg Symposium, IAHD publ., 141, 173-192.
Millward, G.E., 1995. Processes affecting trace element speciation in estuaries. Analyst, 120, 609–614.
Moore, R.M., Burton, J.D., LeB, PJ. and Young, M.L., 1979. The behaviour of dissolved organic material, iron and manganese in estuarine mixing. Geochimica et Cosmochimica Acta, 43, 919–926.
Moore, W.S., 1996. Large groundwater inputs to coastal waters revealed by Ra-226 enrichments. Nature, 380(6575), 612-614.
Moore, W.S., 1997. High fluxes of radium and barium from the mouth of the Ganges–Brahmaputra River during low river discharge suggest a large groundwater source. Earth and Planetary Science Letters, 150, 141–150.
Moore, W.S., 2003. Sources and fluxes of submarine groundwater discharge delineated by radium isotopes. Biogeochemistry, 66(1-2), 75-93.
Moore, W.S., 2006. Radium isotopes as tracers of submarine groundwater discharge in Sicily. Continental Shelf Research, 26(7), 852-861.
Moore, W.S., DeMaster, D.J., Smoak, J.M., McKee, B.A. and Swarzenski, P.W., 1996. Radionuclide tracers of sediment-water interactions on the Amazon shelf. Continental Shelf Research, 16(5-6), 645-665.
Not, C., Brown, K., Ghaleb, B. and Hillaire-Marcel, C., 2012. Conservative behavior of uranium vs. salinity in Arctic sea ice and brine. Marine Chemistry, 130-131, 33-39.
Nozaki, Y., Yamamoto, Y., Manaka, T., Amakawa, H. and Snidvongs, A., 2001. Dissolved barium and radium isotopes in the Chao Phraya River estuarine mixing zone in Thailand. Continental Shelf Research, 21, 1435–1448.
Okai, T., Suzuki, A., Kawahata, H., Terashima, S. and Imai, N., 2002. Preparation of a new Geological Survey of Japan geochemical reference material: Coral JCp-1. Geostandards Newsletter-the Journal of Geostandards and Geoanalysis, 26(1), 95-99.
Palmer, M.R. and Edmond, J.M., 1993. Uranium in river water. Geochimica et Cosmochimica Acta, 57(20), 4947-4955.
Payne, T.E., Hatje, V., Itakura, T., McOrist, G.D. and Russell, R., 2004. Radionuclide applications in laboratory studies of environmental surface reactions. Journal of Environmental Radioactivity, 76(1-2), 237-251.
Payne, T.E., Lumpkin, G.R. and Waite, T.D., 1998. Chapter 2 - UraniumVI Adsorption on Model Minerals: Controlling Factors and Surface Complexation Modeling. In: A.J. Everett (Editor), Adsorption of Metals by Geomedia. Academic Press, San Diego, pp. 75-97.
Peng, T.R., Chen, C.T.A., Wang, C.H., Zhanc, J. and Lin, Y.J., 2008. Assessment of terrestrial factors controlling the submarine groundwater discharge in water shortage and highly deformed island of Taiwan, western Pacific Ocean. Journal of Oceanography, 64(2), 323-337.
Peng, Z.C., Wang, Z.R., Sun, W.D., Ma, Z.B., Xia, M., Zhang, C.H., Chen, W.J., Zhang, Z.L. and An, Z.H., 1998. High-precision timing of the Quaternary standard samples with thermal ionization mass spectrometry (TIMS) U-series method. Chinese Science Bulletin, 43(4), 333-336.
Pickett, J.W., Ku, T. L., Thompson, C.H., Roman, D., Kelley, R.A. and Huang, Y.P., 1989. A Review of Age-Determinations on Pleistocene Corals in Eastern Australia. Quaternary Research, 31(3), 392-395.
Pistiner, J.S. and Henderson, G.M., 2003. Lithium-isotope fractionation during continental weathering processes. Earth and Planetary Science Letters, 214(1-2), 327-339.
Pogge von Strandmann, P.A.E., Burton, K.W., James, R.H., van Calsteren, P. and Gislason, S.R., 2010. Assessing the role of climate on uranium and lithium isotope behaviour in rivers draining a basaltic terrain. Chemical Geology, 270(1-4), 227-239.
Pogge von Strandmann, P.A.E., Burton, K.W., James, R.H., van Calsteren, P., Gíslason, S.R. and Mokadem, F., 2006. Riverine behaviour of uranium and lithium isotopes in an actively glaciated basaltic terrain. Earth and Planetary Science Letters, 251(1-2), 134-147.
Pogge von Strandmann, P.A.E., Burton, K.W., Porcelli, D., James, R.H., van Calsteren, P. and Gislason, S.R., 2011. Transport and exchange of U-series nuclides between suspended material, dissolved load and colloids in rivers draining basaltic terrains. Earth and Planetary Science Letters, 301(1-2), 125-136.
Pogge von Strandmann, P.A.E., James, R.H., van Calsteren, P., Gíslason, S.R. and Burton, K.W., 2008. Lithium, magnesium and uranium isotope behaviour in the estuarine environment of basaltic islands. Earth and Planetary Science Letters, 274(3-4), 462-471.
Polynov, B.B. and Muir, A., 1937. The Cycle of Weathering. T. Murby.
Porcelli, D., Andersson, P.S., Wasserburg, G.J., Ingri, J. and Baskaran, M., 1997. The importance of colloids and mires for the transport of uranium isotopes through the Kalix River watershed and Baltic Sea. Geochimica et Cosmochimica Acta, 61(19), 4095-4113.
Potter, E.K., Stirling, C.H., Andersen, M.B. and Halliday, A.N., 2005. High precision Faraday collector MC-ICPMS thorium isotope ratio determination. International Journal of Mass Spectrometry, 247(1-3), 10-17.
Rademacher, L.K., Lundstrom, C.C., Johnson, T.M., Sanford, R.A., Zhao, J. and Zhang, Z., 2006. Experimentally determined uranium isotope fractionation during reduction of hexavalent U by bacteria and zero valent iron. Environmental science & technology, 40(22), 6943-6948.
Rahaman, W., Singh, S.K. and Raghav, S., 2010. Dissolved Mo and U in rivers and estuaries of India: Implication to geochemistry of redox sensitive elements and their marine budgets. Chemical Geology, 278(3-4), 160-172.
Ray, S.B., Mohanti, M. and Somayajulu, B.L.K., 1995. Uranium Isotopes in the Mahanadi River Estuarine System, India. Estuarine Coastal and Shelf Science, 40(6), 635-645.
Richter, S., Alonso, A., Bolle, W. De, Kühn, H., Verbruggen, A., Wellum, R. and Taylor, P.D.P., 2005. Re-certification of a series of uranium isotope reference materials: IRMM-183, IRMM-184, IRMM-185, IRMM-186 and IRMM-187. International Journal of Mass Spectrometry, 247(1–3), 37-39.
Richter, S., Eykens, R., Kühn, H., Aregbe, Y., Verbruggen, A. and Weyer, S., 2010. New average values for the n(238U)/n(235U) isotope ratios of natural uranium standards. International Journal of Mass Spectrometry, 295(1-2), 94-97.
Riotte, J. and Chabaux, F., 1999. (234U/238U)AR in freshwaters as tracers of hydrological processes-the Strengbach watershed (Vosges, France). Geochimica et Cosmochimica Acta, 63, 1263-1275.
Robinson, L.F., Belshaw, N.S. and Henderson, G.M., 2004. U and Th concentrations and isotope ratios in modern carbonates and waters from the Bahamas. Geochimica et Cosmochimica Acta, 68(8), 1777-1789.
Robinson, L.F., Henderson, G.M. and Slowey, N.C., 2002. U–Th dating of marine isotope stage 7 in Bahamas slope sediments. Earth and Planetary Science Letters, 196, 175-187.
Robinson, L.F., Henderson, G.M., Hall, L. and Matthews, I., 2004. Climatic control of riverine and seawater uranium-isotope ratios. Science, 305(5685), 851-854.
Rosman, K.J.R. and Taylor, P.D.P., 1998. Isotopic compositions of the elements 1997. Pure and Applied Chemistry, 70(1), 217-235.
Ryu, J.S., Lee, K.S., Chang, H.W. and Cheong, C.S., 2009. Uranium isotopes as a tracer of sources of dissolved solutes in the Han River, South Korea. Chemical Geology, 258(3-4), 354-361.
Savenko, A.V., 2007. Factors controlling uranium geochemistry in the mixing zone of river- and seawaters. Geochemistry International, 45(9), 945-952.
Selvaraj, K. and Chen, C.T.A., 2006. Moderate chemical weathering of subtropical Taiwan: Constraints from solid-phase geochemistry of sediments and sedimentary rocks. Journal of Geology, 114(1), 101-116.
Shaw, D.M. and Sturchio, N.C., 1992. Boron-Lithium Relationships in Rhyolites and Associated Thermal Waters of Young Silicic Calderas, with Comments on Incompatible Element Behavior. Geochimica Et Cosmochimica Acta, 56(10), 3723-3731.
Shaw, T.J., Sholkovitz, E.R. and Klinkhammer, G., 1994. Redox Dynamics in the Chesapeake Bay - the Effect on Sediment-Water Uranium Exchange. Geochimica Et Cosmochimica Acta, 58(14), 2985-2995.
Shen, M.L., 2007. Distribution of the Trace Elements in Fossil Teeth: Implication for Uranium Mobilization, National Chen Kung University, Tainan, 65 pp.
Shiller, A.M., 1997. Dissolved trace elements in the Mississippi River: seasonal, interannual, and decadal variability. Geochimica et Cosmochimica Acta, 61, 4321–4330.
Sholkovitz, E.R., 1976. Flocculation of dissolved organic and inorganic matter during the mixing of river water and seawater. Geochimica et Cosmochimica Acta, 40, 831–845.
Sholkovitz, E.R., 1978. The flocculation of dissolved Fe, Mn, Al, Cu, Ni, Co and Cd during estuarine mixing. Earth and Planetary Science Letters, 41, 77–86.
Sirocko, F., Garbe-Schönberg, D. and Devey, C., 2000. Processes controlling trace element geochemistry of Arabian Sea sediments during the last 25,000 years. Global and Planetary Change, 26(1–3), 217-303.
Spence, J. and Telmer, K., 2005. The role of sulfur in chemical weathering and atmospheric CO2 fluxes: Evidence from major ions, δ13CDIC, and δ34SSO4 in rivers of the Canadian Cordillera. Geochimica et Cosmochimica Acta, 69(23), 5441-5458.
Stallard, R.F. and Edmond, J.M., 1981. Geochemistry of the Amazon .1. Precipitation Chemistry and the Marine Contribution to the Dissolved-Load at the Time of Peak Discharge. Journal of Geophysical Research-Oceans and Atmospheres, 86(Nc10), 9844-9858.
Stallard, R.F. and Edmond, J.M., 1983. Geochemistry of the Amazon .2. The Influence of Geology and Weathering Environment on the Dissolved-Load. Journal of Geophysical Research-Oceans and Atmospheres, 88(Nc14), 9671-9688.
Stallard, R.F., Koehnken, L. and Johnsson, M.J., 1991. Weathering Processes and the Composition of Inorganic Material Transported through the Orinoco River System, Venezuela and Colombia. Geoderma, 51(1-4), 133-165.
Stecer, H.A. and Kogut, M.B., 1999. Rapid barium removal in the Delaware estuary. Geochimica et Cosmochimica Acta, 63, 1003–1012.
Stirling, C.H., Halliday, A.N., Potter, E., Andersen, M. and Zanda, B., 2006. A low initial abundance of 247Cm in the early solar system and implications for r-process nucleosynthesis. Earth and Planetary Science Letters, 251(3-4), 386-397.
Stirling, C.H., Andersen, M.B., Potter, E.K. and Halliday, A.N., 2007. Low-temperature isotopic fractionation of uranium. Earth and Planetary Science Letters, 264(1-2), 208-225.
Stirling, C.H., Halliday, A.N. and Porcelli, D., 2005. In search of live 247Cm in the early solar system. Geochimica et Cosmochimica Acta, 69(4), 1059-1071.
Swarzenski, P., Campbell, P., Porcelli, D. and McKee, B., 2004. The estuarine chemistry and isotope systematics of 234,238U in the Amazon and Fly Rivers. Continental Shelf Research, 24(19), 2357-2372.
Swarzenski, P.W. and Baskaran, M., 2007. Uranium distribution in the coastal waters and pore waters of Tampa Bay, Florida. Marine Chemistry, 104(1-2), 43-57.
Swarzenski, P.W. and McKee, B.A., 1998. Seasonal U Distributions in the Coastal Waters off the Amazon and Mississippi Rivers. Estuaries, 21(3), 379-390.
Swarzenski, P.W., Porcelli, D., Andersson, P.S. and Smoak, J.M., 2003. The behavior of U- and Th-series nuclides in the estuarine environment, Uranium-Series Geochemistry, Reviews in mineralogy and geochemistry, pp. 577-606.
Tang, Y.J., Zhang, H.F. and Ying, J.F., 2007. Review of the lithium isotope system as a geochemical tracer. International Geology Review, 49(4), 374-388.
Tomascak, P.B., 2004. Developments in the understanding and application of lithium isotopes in the earth and planetary sciences. In: C.M. Johnson, B.L. Beard and F. Albarede (Editors), Geochemistry of Non-Traditional Stable Isotopes. Reviews in Mineralogy & Geochemistry. Mineralogical Soc America, Washington, pp. 153-195.
van Calsteren, P. and Thomas, L., 2006. Uranium-series dating applications in natural environmental science. Earth-Science Reviews, 75(1–4), 155-175.
Veizer, J., 1989. Strontium Isotopes in Seawater through Time. Annual Review of Earth and Planetary Sciences, 17, 141-167.
Vigier, N. and Bourdon, B., 2012. Constraining Rates of Chemical and Physical Erosion Using U-Series Radionuclides. In: M. Baskaran (Editor), Handbook of Environmental Isotope Geochemistry. Advances in Isotope Geochemistry. Springer Berlin Heidelberg, pp. 553-571.
Vigier, N., Bourdon, B., Lewin, E., Dupré, B., Turner, S., Chakrapani, G.J., van Calsteren, P. and Allègre, C.J., 2005. Mobility of U-series nuclides during basalt weathering: An example from the Deccan Traps (India). Chemical Geology, 219(1-4), 69-91.
Vigier, N., Burton, K.W., Gislason, S.R., Rogers, N.W., Duchene, S., Thomas, L., Hodge, E. and Schaefer, B., 2006. The relationship between riverine U-series disequilibria and erosion rates in a basaltic terrain. Earth and Planetary Science Letters, 249(3-4), 258-273.
Vigier, N., Bourdon, B., Turner, S. and Allegre, C.J., 2001. Erosion timescales derived from U-decay series measurements in rivers. Earth and Planetary Science Letters, 193(3-4), 549-563.
Wang, R.M. and You, C.F., 2013a. Precise determination of U isotopic compositions in low concentration carbonate samples by MC-ICP-MS. Talanta, 107, 67-73.
Wang, R.M. and You, C.F., 2013b. Uranium and strontium isotopic evidence for strong submarine groundwater discharge in an estuary of a mountainous island: A case study in the Gaoping River Estuary, Southwestern Taiwan. Marine Chemistry, 157, 106-116.
Wang, R.M., You, C.F., Chu, H.Y. and Hung, J.J., 2009. Seasonal variability of dissolved major and trace elements in the Gaoping (Kaoping) River Estuary, Southwestern Taiwan. Journal of Marine Systems, 76(4), 444-456.
Wang, Z.R., Zhang, Z.F., Peng, Z.C. and Ma, Z.B., 2001. High Precision TIMS Dating of Corals and Its Application to Paleo-Environmental Study. Chinese Journal of Geochemistry, 20, 138-143.
Watanabe, Y. and Nakai, S.i., 2006. Accurate U–Th radioactive disequilibrium analyses of carbonate rock samples using commercially available U and Th reagents and multi-collector ICP-MS. Microchimica Acta, 156(3-4), 289-295.
Water Resource Agency Hydrological Yearbook, 1999-2004. E-book, Water Resource Agency, Ministry of Economic Affair, Taiwan, R.O.C..
West, A.J., Bickle, M.J., Collins, R. and Brasington, J., 2002. Small-catchment perspective on Himalayan weathering fluxes. Geology, 30(4), 355-358.
West, A.J., Galy, A. and Bickle, M., 2005. Tectonic and climatic controls on silicate weathering. Earth and Planetary Science Letters, 235(1-2), 211-228.
Weyer, S., Anbar, A.D., Gerdes, A., Gordon, G.W., Algeo, T.J. and Boyle, E.A., 2008. Natural fractionation of 238U/235U. Geochimica et Cosmochimica Acta, 72(2), 345-359.
Wimpenny, J., Gislason, S.R., James, R.H., Gannoun, A., Pogge Von Strandmann, P.A.E. and Burton, K.W., 2010. The behaviour of Li and Mg isotopes during primary phase dissolution and secondary mineral formation in basalt. Geochimica et Cosmochimica Acta, 74(18), 5259-5279.
Windom, H. and Niencheski, F., 2003. Biogeochemical processes in a freshwater–seawater mixing zone in permeable sediments along the coast of Southern Brazil. Marine Chemistry, 83(3-4), 121-130.
Windom, H., Smith, R., Niencheski, F. and Alexander, C., 2000. Uranium in rivers and estuaries of globally diverse, smaller watersheds. Marine Chemistry, 68(4), 307-321.
Yokoyama, T., Makishima, A. and Nakamura, E., 1999. Separation of thorium and uranium from silicate rock samples using two commercial extraction chromatographic resins. Anal Chem, 71(1), 135-41.
You, C.F., Gieskes, J.M., Lee, T., Yui, T.F. and Chen, S.W., 2004. Geochemistry of mud volcano fluids in the Taiwan accretionary prism. Applied Geochemistry, 19, 695–707.
You, C.F., Lee, T., Brown, L., Shen, J.J.S. and Chen, J.C., 1988. Be-10 Study of Rapid Erosion in Taiwan. Geochimica et Cosmochimica Acta, 52(11), 2687-2691.
Yu, H.S. and Hong, E., 1993. The Huapinghsu Channel/Canyon System off Northeastern Taiwan: Morphology, Sediment Character and Origin. Terr. Atmos. Ocean. Sci., 4(3), 307-319.
Yusan, S., Aslani, M.A.A., Turkozu, D.A., Aycan, H.A., Aytas, S. and Akyil, S., 2010. Adsorption and thermodynamic behaviour of U(VI) on the Tendurek volcanic tuff. Journal of Radioanalytical and Nuclear Chemistry, 283(1), 231-238.
Zavialov, P.O., Kao, R.C., Kremenetskiy, V.V., Peresypkin, V.I., Ding, C.F., Hsu, J.T., Kopelevich, O.V., Korotenko, K.A., Wu, Y.S. and Chen, P., 2012. Evidence for submarine groundwater discharge on the Southwestern shelf of Taiwan. Continental Shelf Research, 34, 18-25.
Zhou, J., Lundstrom, C.C., Fouke, B., Panno, S., Hackley, K. and Curry, B., 2005. Geochemistry of speleothem records from southern Illinois: Development of (234U)/(238U) as a proxy for paleoprecipitation. Chemical Geology, 221(1-2), 1-20.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-02-10起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw