進階搜尋


 
系統識別號 U0026-1701201312482500
論文名稱(中文) 黏土礦物與四環素的吸/脫附機制研究
論文名稱(英文) The mechanisms of adsorption/desorption between clay minerals and antibiotic-tetracycline
校院名稱 成功大學
系所名稱(中) 地球科學系碩博士班
系所名稱(英) Department of Earth Sciences
學年度 101
學期 1
出版年 102
研究生(中文) 張博翔
研究生(英文) Po-Hsiang Chang
電子信箱 tectonicion@yahoo.com.tw
學號 L48961054
學位類別 博士
語文別 中文
論文頁數 188頁
口試委員 指導教授-簡錦樹
共同指導教授-李朝暉
口試委員-江威德
口試委員-林財富
口試委員-陳建易
中文關鍵字 黏土礦物  四環素  吸附機制  脫附  Langmuir模式  Freundlich模式 
英文關鍵字 clay mineral  tetracyclin  adsorption mechanism  desorption  Langmuir model  Freundlich model 
學科別分類
中文摘要 本研究利用黏土礦物作為吸附劑對水體中四環素的吸脫附行為做詳細的研究。重點放在Langmuir等溫吸附曲線、動力式吸附曲線、陽離子交換、對不同pH值的變化之吸附曲線、黏土礦物層間插層變化分析、離子強度效應、溫度效應、紅外光譜(FTIR)探討以及熱重分析(TGA)。研究結果顯示7種黏土礦物均在24小時內先後達到吸附平衡,除了伊利石的動力式吸附符合Elovich模式,其餘均符合pseudo-second-order模式。吸附等溫曲線除了伊利石為Freundlich模式,其餘均符合Langmuir模式。另一方面,等溫吸附的陽離子脫附分析顯示雷托石、玻縷石、伊利石、SAz-1蒙脫石、SWy-2蒙脫石和SHCa-1蒙脫石的吸附機制為陽離子交換;SYn-1蒙脫石的吸附機制為表面絡合作用。
在吸附研究中,(1) 雷托石的吸附能力在 pH=4~5時,達到最大吸附量140 mg/g,並使雷托石中的蒙脫石層間間距擴張10 Å。而在pH=11時,吸附量下降至54 mg/g,但使層間間距擴張了17 Å。熱重分析顯示,四環素的熱裂解溫度是230 °C,插層後的四環素其熱裂解溫度則為410~420 °C,另外加熱到450 °C,層間間距減少5 Å,驗證了熱重分析的結果。紅外光譜分析表現出向高頻率移動5~20 cm-1,說明雷托石礦物表面與插層的四環素間的強交互作用。(2)玻縷石的吸附能力在pH=8.7時,達到最大吸附量210 mg/g,且在反應後2小時達到平衡,但因其纖維條狀結構,並未使層間擴張;在 pH=11時,吸附量則下降至50 mg/g。離子效應顯示高離子濃度與四環素之間產生離子競爭而使吸附量降低。溫度效應顯示此反應為一自發性的吸熱過程,正熵變值(△S)說明吸附在玻縷石礦物表面的四環素分子是無序排列的。紅外光譜(FTIR) 也表現出向高頻率移動了 10~15 cm-1波數,也說明玻縷石礦物與四環素之間的強交互作用。(3)伊利石的吸附能力在pH=4~6時,達到最大吸附量32 mg/g,但並未使伊利石的層間間距擴張。FTIR光譜也表現出向高頻率移動了20 cm-1波數,亦說明了伊利石礦物與四環素之間的強交互作用。(4) SWy-2、SAz-1、SHCa-1 和SYn-1四個蒙脫石的吸附能力在pH=1.5時,SAz-1、SWy-2、SYn-1分別達到最大吸附量468 mg/g、404 mg/g、217 mg/g;在pH=8.7時,SHCa-1達到最大吸附量375 mg/g。層間間距分析顯示SWy-2、SAz-1和SHCa-1蒙脫石表現出大半高寬,代表插層進入層間間距的四環素是多層次的堆棧(stacking)並造成黏土礦的層狀剝離(delamination),反應出四環素插層後,黏土礦物的結晶度降低,這樣的大半高寬係由2~3層的四環素所堆棧造成的。此外,四環素與SYn-1的吸附行為是在外表面進行。
在脫附研究中,於三種脫附劑下進行之研究結果顯示脫附在6小時後達到平衡,並符合pseudo-second-order模式。SAz-2蒙脫石在吸附量為400 mg/g及0.05 M的AlCl3、CaCl2、NaCl脫附劑下,其脫附量分別為133, 83和50 mg/g,顯示高電荷的陽離子比低電荷更易使四環素脫附。層間間距分析顯示脫附的四環素大部分來自外表面,代表插層在SAz-2蒙脫石上的四環素相當穩定。反覆脫附的結果顯示隨著脫附次數的增加,四環素從SAz-2表面移除的困難度增加,也再次驗證了插層的四環素相當穩定。
英文摘要 In this research, the clay minerals were used as adsorbents to study the mechanism of the adsorption-desorption of tetracycline in water. This research focused on the Langmuir isotherm curves, kinetic adsorption curve, cation exchange, adsorption curves of different pH, the analysis of d-spacing of clay minerals, the effect of ionic strength, temperature effect, infrared spectroscopy (FTIR) and thermal gravimetric analyses (TGA). The results show that clay minerals within 24 hours have reached equilibrium and were well fitted to pseudo-second-order mode except illite which was fitted to Elovich model. For adsorption isotherm, illite fitted to the Freundlich model and the others were well fitted to the Langmuir model. On the other hand, the desorbed cationic analysis indicated that the adsorption mechanism of rectorite, palygorskite, illite, SAz-1、SWy-2 and SHCa-1 montmorillonite was cation exchange, but for SYn-1 montmorillonite the adsorption mechanism was surface complexation.
For adsorption studies, the results showed : (1) the adsorption capacity of rectorite was reached to maximum adsorption amount of 140 mg/g in the pH=4~5. The montmorillonite layer in rectorite has d-spacing expansion of 10 Å. At pH=11, the adsorption amount was decreased to 54 mg/g, but with the interlayer spacing expansion of 17 Å. TGA analysis showed that tetracycline decomposition temperature is 230 °C and the intercalated tetracycline decomposition temperature was changed to 410~420 °C. After heating to 450 °C, the d-spacing was reduced to 12 Å, indicating that the result of thermal gravimetric analysis was correct and caused the decrease of d-spacing. The bonding position of infrared spectroscopy exhibited to shift to the higher frequency 5~20 cm-1, indicating the strong interaction between the rectorite surface intercalation of tetracycline. (2) palygorskite at pH=8.7 achieved the maximum adsorption capacity of 210 mg/g, and reached to equilibrium 2 hours later, but because of its fiber structure, palygorskite did not expand the d-spacing. In addition, at pH=11, the adsorption amount decreased to 50 mg/g. The ionic effect supported that competition on palygorskite surface between the addition of ions and tetracycline. Temperature effect indicated that the reaction is a spontaneous endothermic process, and small positive entropy value (△S) indicated that tetracycline molecules adsorbed on the surface of palygorskite are in a random arrangement. Infrared (FTIR) spectroscopy also showed to shift towards the high frequency of 10~15 cm-1, and showed a strong interaction between palygorskite and tetracycline. (3) the maximum adsorption amount of 32 mg/g of illite at pH=4~6 did not expand the d-spacing. FTIR results also showed a shift to the high frequency of 20 cm-1, as same as rectorite and palygorskite, which means that the strong interaction between illite and tetracycline. (4) the maximum adsorption amounts of SAz-1, SWy-2 and SYn-1 montmorillonites are 468 mg/g, 404 mg/g, 217 mg/g, respectively, at pH=1.5, compared to those of 375 mg/g at pH=8.7 for SHCa-1. The significant broadening of the (0 0 1) peak was seen after TC intercalation as indicated by the width at half maximum, suggesting that TC intercalation caused extensive delamination. Again, the large FWHMs reflected that the crystallinity of SAz-1 became much lower after intercalation of TC, with a stack of 2 to 3 layers. In addition, the TC was adsorbed on SYn-1 surface.
The uptake of cationic drugs, such as tetracycline (TC), was attributed to cation exchange. The stability of adsorbed TC on a Ca-montmorillonite SAz-2 was studied using cationic solutions of different valence charges under different pH conditions. At the initial loading of 356 mg/g, the amounts of TC desorbed by 0.05 M AlCl3, CaCl2, and NaCl were 133±4, 83±6, and 50±4 mg/g, respectively, or 37, 23, and 14 %. However, when the amount or percentage of TC desorbed was normalized to the equivalence of each cation, the values were in the range of 44–50 mg/g or 11–14 % per 10 mmol of charge. The kinetics of TC desorption were moderately fast and almost reached equilibrium at 6 h. The results followed the pseudo-second-order kinetic model with reaction rate in the order of AlCl3 > CaCl2 > NaCl at a higher initial TC loading level. The total amount of TC desorbed after five desorption cycles followed the order of AlCl3 > CaCl2 > NaCl, too, suggesting that cations with higher positive charges, thus, less hydrated, are preferred to remove adsorbed cationic drugs. The FTIR analyses showed larger band shift when Al3+ was used as the desorbing reagent. The XRD patterns before and after TC desorption revealed no changes in basal spacing, even after five desorption cycles, suggesting that the removal of TC from SAz-2 was largely from the external surfaces.
論文目次 目  錄
摘要………………………………………………………………Ⅰ
Abstract…………………………………………………………Ⅲ
誌謝………………………………………………………………Ⅶ
目錄………………………………………………………………Ⅸ
表目錄…………………………………………………………ⅩⅣ
圖目錄…………………………………………………………ⅩⅦ

第一章  緒論 1
1-1  前言 1
1-2 研究動機與目的 4
1-3 本研究背景與重要性 6
1-4  四環素類抗生素簡介 7
1-5  環境中四環素類抗生素的殘留 9
1-5-1 糞肥中四環素類抗生素殘留 9
1-5-2 土壤中四環素類抗生素殘留 11
1-5-3 水體中四環素類抗生素殘留 12
1-6  四環素類抗生素在環境中的吸附、遷移、降解 13
1-6-1 吸附與遷移 14
1-6-2 降解 15
1-7 影響抗生素吸附於黏土礦物上的主要因素 18
1-7-1 陽離子交換能力(CEC) 18
1-7-2 pH值 19
1-7-3 溫度 20
1-7-4 離子強度及多價態金屬離子 20
1-7-5 配位鍵與陽離子偶極鍵 21
1-7-6 氫鍵 22
1-8  黏土礦物的分類及特性 22
1-8-1 混層型(mixed-layer group):雷托石(rectorite)、人工合成雲母蒙脫石(SYn-1) 23
1-8-2 玻縷石型(palygorskite group):玻縷石(palygorskite) 23
1-8-3 伊利石型(illite group):伊利石(illite) 24
1-8-4 膨潤石型(smectite group):SAz-1、SAz-2、SHCa-1、SWy-2 24
1-9  吸附現象 25
1-9-1 吸附理論 25
1-10  吸附動力學上的研究 27
1-10-1 Pseudo-second order kinetic model 27
1-10-2 The Elovich rate equation 28
1-11 吸附模式 29
1-11-1 Langmuir等溫吸附模式 29
1-11-2 Freundlich Equation 30
1-12 吸附熱力學上的研究 31
第二章 實驗材料與方法 33
2-1 實驗材料與設備 33
2-1-1 吸附質 33
2-1-2 吸附劑 36
2-1-3 脫附劑 43
2-1-4 實驗設備 43
2-2 實驗步驟、條件與分析方法 45
2-2-1 系列批次吸附/脫附 45
2-2-2 個別批次吸附/脫附及樣品與儀器分析 48
2-2-3 控制批次 52
第三章  結果與討論 54
3-1 吸附動力學研究 54
3-1-1 雷托石 54
3-1-2 玻縷石 54
3-1-3 伊利石 55
3-1-4 蒙脫石(SAz-1、SWy-2、SHCa-1、SYn-1) 56
3-1-5 綜合討論 57
3-2 吸附等溫曲線 58
3-2-1 雷托石 58
3-2-2 玻縷石 59
3-2-3 伊利石 61
3-2-4 蒙脫石(SAz-1、SWy-2、SHCa-1、SYn-1) 61
3-2-5 綜合討論 65
3-3 陽離子交換 69
3-3-1 雷托石 69
3-3-2 玻縷石 70
3-3-3 伊利石 71
3-3-4 蒙脫石 73
3-3-5 綜合討論 80
3-4 pH值對四環素吸附的影響 81
3-4-1 雷托石 81
3-4-2 玻縷石 81
3-4-3 伊利石 82
3-4-4 蒙脫石 84
3-4-5 綜合討論 88
3-5 離子效應對四環素吸附的影響 90
3-5-1 雷托石 90
3-5-2 玻縷石 91
3-5-3 伊利石 92
3-5-4 蒙脫石 92
3-5-5 綜合討論 94
3-6 溫度效應對四環素吸附的影響 95
3-6-1 雷托石、玻縷石、伊利石、蒙脫石 95
3-6-4 綜合討論 99
3-7 黏土礦物之層間間距分析 99
3-7-1 雷托石 99
3-7-2 玻縷石 105
3-7-3 伊利石 106
3-7-4 蒙脫石 106
3-7-5 綜合討論 110
3-8 吸附前後四環素與黏土礦物之紅外光譜分析 116
3-8-1 雷托石 116
3-8-2 玻縷石 120
3-8-3 伊利石 122
3-8-4 蒙脫石 124
3-8-5 綜合討論 126
3-9 吸附前後四環素與黏土礦物之熱裂解分析 127
3-9-1 雷托石 127
3-9-2 玻縷石 128
3-9-3 綜合討論 129
3-10 吸附機制 130
3-11 四環素在膨潤石型黏土礦物—鈣蒙脫石(SAz-2)上的脫附行為 133
3-11-1 引言 133
3-11-2 吸附/脫附動力學研究 135
3-11-3 吸附等溫曲線與脫附量變化 137
3-11-4 pH值對四環素脫附的影響 139
3-11-5 脫附次數對四環素脫附的影響 140
3-11-6 鈣蒙脫石層間間距分析 142
3-11-7 紅外光譜分析 144
3-12 環境的意義 148
3-13 吸附後之黏土礦物處置 150
第四章 主要發現與影響力 152
4-1 動力式吸附模式 152
4-2 等溫吸附模式 152
4-3 pH值效應 153
4-4 離子效應與溫度效應 153
4-5 吸附機制 154
4-6 脫附行為 154
第五章 結論與展望 156
5-1 結論 156
5-2 展望 162
參考文獻 164


表 目 錄
表1-1 四環素類抗生素於畜禽產品之殘留標準 4
表1-2 物理吸附與化學吸附之特性差異 27
表2-1 黏土礦物的基本性質 42
表2-2 黏土礦物的化學組成 42
表2-3 官能基簡介 44
表2-4 有機化合物官能基之紅外光譜峰位置及可能出現的強度 45
表2-5 動力式吸附曲線之實驗條件 46
表2-6 等溫吸附曲線之實驗條件 46
表2-7 溫度效應實驗條件 46
表2-8 離子強度效應實驗條件 47
表2-9 pH值效應實驗條件 47
表2-10 動力式吸/脫附曲線(脫附實驗)之實驗條件 47
表2-11 pH值效應(脫附實驗) 47
表2-12 反覆脫附實驗條件 47
表3-1 不同黏土礦物之動力式吸附模式各項參數值 58
表3-2 四環素與雷托石等溫吸附之Langmuir模式的各項參數值 59
表3-3 四環素與玻縷石等溫吸附之Langmuir模式的各項參數值 61
表3-4 四環素與蒙脫石等溫吸附之Langmuir模式的各項參數值 65
表3-5 不同黏土礦物的零電點,及在4個pH值下,最大四環素吸附量與其CEC值 68
表3-6 不同黏土礦物在pH值效應下之四環素吸附量變化值 90
表3-7 不同黏土礦物對四環素吸附之離子效應影響程度 95
表3-8 四環素與雷托石在溫度效應下之熱力學參數值 97
表3-9 四環素與玻縷石在溫度效應下之熱力學參數值 97
表3-10 四環素與伊利石在溫度效應下之熱力學參數值 98
表3-11 四環素與蒙脫石在溫度效應下之熱力學參數值 99
表3-12 在pH=4~5下,四環素插層至雷托石後(00l)面各項值的變化 104
表3-13 在pH=8.7下,四環素插層至雷托石後(00l)面各項值的變化 105
表3-14 四環素在不同黏土礦物之層間間距最大膨脹量 115
表3-15 單分子四環素在不同黏土礦物表面佔據面積的分配 116
表3-16 四環素在不同吸附量下之波數變化值 119
表3-17 玻縷石於吸附四環素前後,在不同pH值下的FTIR波數變化 121
表3-18 在pH=1.5下,四環素被吸附後的波數變化 122
表3-19 吸附後四環素的波數變化 123
表3-20 吸附後四環素與四種蒙脫石在吸附不同量的四環素下的波數變化 126
表3-21 不同黏土礦物與四環素的交互作用 127
表3-22 不同黏土礦物吸附四環素前後之熱裂解溫度 130
表3-23 四環素於不同黏土礦物上之吸附量與陽離子脫附量比、主要脫附陽離子及吸附機制 132
表3-24 動力學脫附模式之各項參數 137
表3-25 四環素在0.05 M脫附劑下之脫附量變化 141
表3-26 在四種脫附劑下,四環素脫附後之FTIR波數變化 147
表4-1 四環素在黏土礦物上的吸附行為 155


圖 目 錄
圖2-1 四環素在不同pH值下的型態 35
圖2-2 四環素的分子結構圖(修改自Stephens et al., 1956) 36
圖2-3 四環素常見的兩種結構體(a)平躺型,(b)扭曲型(修改自Othersen et al., 2003) 36
圖2-5 實驗步驟流程圖 48
圖2-6 HPLC流路示意圖 51
圖3-1 四環素與雷托石之動力式吸附曲線 54
圖3-2 四環素與玻縷石之動力式吸附曲線 55
圖3-3 四環素與伊利石之動力式吸附曲線 55
圖3-4 四環素與SAz-1(a), SWy-2(b), SHCa-1(c), SYn-1(d)吸附後之動力式吸附曲線 56
圖3-5 四環素與雷托石的Langmuir吸附擬合曲線 59
圖3-6 四環素與玻縷石的Langmuir吸附擬合曲線 60
圖3-7 四環素與伊利石的Langmuir吸附擬合曲線 61
圖3-8 四環素與SAz-1蒙脫石的Langmuir吸附擬合曲線 62
圖3-9 四環素與SWy-2蒙脫石的Langmuir吸附擬合曲線 63
圖3-10 四環素與SYn-1蒙脫石的Langmuir吸附擬合曲線 63
圖3-11 四環素與SHCa-1蒙脫石的Langmuir吸附擬合曲線 64
圖3-12 等溫吸附下,雷托石之陽離子脫附量變化 70
圖3-13 等溫吸附下,玻縷石之陽離子脫附量變化 71
圖3-14 等溫吸附下,伊利石之陽離子脫附量變化 72
圖3-15 等溫吸附下,SAz-1之陽離子脫附量變化 77
圖3-16 等溫吸附下,SWy-2之陽離子脫附量變化 78
圖3-17 等溫吸附下,SHCa-1之陽離子脫附量變化 78
圖3-18 等溫吸附下,SYn-1之陽離子脫附量變化 78
圖3-19 蒙脫石在不同初始濃度下吸附後的pH值變化 79
圖3-20 蒙脫石在不同初始濃度下吸附後H+的吸附量變化 79
圖3-21 四環素吸附量與H+吸附量變化 79
圖3-22 蒙脫石在不同初始濃度下H+/TC的比值 80
圖3-23 四環素與雷托石在pH=2~11的吸附量變化 81
圖3-24 四環素與玻縷石在pH=2~11的吸附量變化 82
圖3-25 四環素與伊利石在pH=2~11的吸附量變化 84
圖3-26 在pH=2~11下,伊利石之陽離子脫附量變化 84
圖3-27 四環素與(a)SAz-1, (b)SWy-2, (c)SHCa-1, (d)SYn-1蒙脫石在pH=2~11的吸附量變化 87
圖3-28 隨pH值增高之鋁基團變化(修改自Theng, 1974) 87
圖3-29 四環素與雷托石在不同濃度的離子效應下的吸附量變化 91
圖3-30 四環素與玻縷石在不同濃度的離子效應下之吸附量變化 91
圖3-31 四環素與伊利石在不同濃度的離子效應下之吸附量變化 92
圖3-32 四環素與(a)SAz-1、(b)SWy-2、(c)SHCa-1、(d)SYn-1蒙脫石在不同濃度的氯化鈉離子效應下之吸附量變化 94
圖3-33 四環素與雷托石在溫度效應下吸附量的變化 96
圖3-34 四環素與玻縷石在溫度效應下吸附量的變化 97
圖3-35 四環素與伊利石在溫度效應下吸附量的變化 98
圖3-36 四環素與(a)SAz-1、(b)SWy-2、(c)SHCa-1、(d)SYn-1蒙脫石於溫度效應下吸附量的變化 98
圖3-37 在pH=1時,於不同吸附量下雷托石層間間距的變化 102
圖3-38 在pH=4~5時,於不同吸附量下雷托石層間間距的變化 102
圖3-39 加熱至250和450℃後,於不同吸附量下雷托石層間間距的變化 103
圖3-40 在pH=8.7時,於不同吸附量下雷托石層間間距的變化 103
圖3-41 在pH=11時,於不同吸附量下雷托石層間間距的變化 104
圖3-42 四環素於同初始濃度但不同pH值(a)及同pH值但不同初始濃度下,(b)吸附後玻縷石層間間距的變化 105
圖3-43 四環素於同pH值但不同初始濃度(a)及同初始濃度但不同 平衡時間下,(b)吸附後伊利石層間間距的變化 106
圖3-44 在pH=4~5時,SAz-1在四環素於不同吸附量下之層間間距變化 109
圖3-45 在pH=4~5時,SWy-2在四環素於不同吸附量下之層間間距變化 109
圖3-46 (a)蒙脫石標準品之XRD圖譜,(b)插層後之層間間距變化 110
圖3-47 四環素插層蒙脫石的可能型態(a)以扭曲型呈45°傾斜插層,(b)以平躺型呈45°傾斜插層(修改自Wang et al., 2010) 115
圖3-48 於pH=1時,最大和最小四環素吸附量之FTIR圖譜 118
圖3-49 四環素與雷托石吸附後,在不同pH值下四環素的FTIR圖譜 119
圖3-50 四環素與玻縷石吸附後,在不同pH值下四環素的FTIR圖譜 121
圖3-51 吸附前後四環素之FTIR圖譜 123
圖3-52 吸附前後四環素在四種蒙脫石上之FTIR圖譜 125
圖3-53吸附前後四環素與雷托石熱裂解溫度的變化 128
圖3-54 吸附前後四環素與玻縷石熱裂解溫度的變化 129
圖3-55 四環素在鈣蒙脫石上之(a)吸附動力曲線,(b)AlCl3促進脫附動力曲線,(c)CaCl2促進脫附動力曲線,(d)NaCl促進脫附動力曲線 137
圖3-56 四環素在鈣蒙脫石之吸附等溫曲線與脫附量變化:(a)吸附等溫曲線,(b)於三種脫附劑下之脫附量變化 139
圖3-57 在pH值效應下,四環素在鈣蒙脫石上之脫附量變化 140
圖3-58 四環素在鈣蒙脫石反覆脫附之脫附量變化:(a)在吸附量187 mg/g,(b)在吸附量400 mg/g 141
圖3-59 脫附後,鈣蒙脫石層間間距的變化 143
圖3-60 在AlCl3(a), CaCl2(b), NaCl(c)和去離子水(d)四種脫附劑下,於五次脫附次數後四環素之FTIR圖譜 146
參考文獻 參考文獻
王瑾,韓劍眾。飼料中重金屬和抗生素對土壤和蔬菜的影響。生態與農村環境學報,24(4),90–93,2008。
王恬,邱梅平。藥物性飼料添加劑使用的環境風險及轉歸。今日畜牧獸醫,11,1–3,2009。
朱成晶,王小娟,趙厚民。組織中的四環素族藥物殘留的HPLC檢測方法的改進。化學分析計量,28(2),46–47,2009。
任春玲,孫振均,宋經元。藥物飼料添加劑對環境影響的研究進展。飼料工業,26(20),5–10,2005。
行政院衛生署中華藥典編修委員會。「中華藥典」。行政院衛生署,第四版,2088頁,1995。
沙米(Ali Abdullah Al-Sahmi)。台灣南部雞肉及牛肉中四環素類與黃胺劑殘留檢測。碩士論文,國立屏東科技大學熱帶農業暨國際合作研究所,115頁,2002。
沈穎,魏源送,郭睿。超高效液相色譜串聯質譜檢測豬糞中殘留的四環素類抗生素。環境化學,5,145–150,2009。
佟建明。飼用抗生素的促生長作用機制及其替代技術研究。飼料工業,27(2),1–4,2006。
阮喜文,施宗雄。熱處理對於畜產品中抗生素殘留量之影響。農林學報,30,91–102,1981。
武庭瑄,周敏,萬建新,陳慧。膨潤土和高嶺土對四環素吸附的影響。農業環境科學學報,28(5),914–918,2009。
施養志,鍾月容,林志豪。食品中殘留配尼西尼類抗生素之多重殘留分析。行政院衛生署九十二年自行研究計劃,藥物食品檢驗局編印,台北,2003。
胡佶,王江濤。四環素在海洋沉積物上的吸附。高等學校化學學報,31(2),320–324,2010。
洪珮菱。猪肉、猪內臟、雞肉及雞內臟中殘留四環黴素類抗生素之檢測。碩士論文,國立臺灣大學動物科學技術學系,88頁,2005。
徐維海,張幹,鄒世春。香港維多利亞港和珠江廣州河段水體中抗生素的含量特徵及其季節變化。環境科學,27(12),2458– 2462,2006。
馬豔,高乃雲,李聰。高鐵酸鉀去除飲用水源中鹽酸四環素試驗研究。土木建築與環境工程,32(4),108–112,2010。
張登欽。抗生素在鴨組織之殘留及其消長,。中華民國獸醫學會雜誌,3,41–48,1977。
張致平,蔡年生。幾類重要抗生素的發展現狀與主要研究方向。中國抗生素雜誌,18(2),106–119,1993。
張有義,郭蘭生。「膠體及界面化學入門」。高立圖書有限公司, 1999。
張德銘,黃勤鎮,林鉅鋃。「抗生素濫用影響國人健康」專案調查報告。凱倫出版社,台北,2000。
張樹清,張夫道,劉秀梅。規模化養殖場畜禽糞中主要有害成分測定分析研究。植物營養與肥料學報,11,822–829,2005。
張勁強,董元華。諾氟沙星在4種土壤中的吸附-解吸特徵。環境科學,28(9),2007。
張浩,羅義,周啟星。四環素類抗生素生態毒性研究進展。農業環境科學學報。27(2),407–413,2008。
張慧敏,章明奎,顧國平。浙北地區畜禽糞便和農田土壤中四環素類抗生素殘留。生態與農村環境學報,24(3),69–73,2008。
馮敏,石松。「工業廢水處理技術」。海洋出版社,1992。
焦少俊,孫兆海,鄭壽榮,尹大強,浦海清,陳良燕。四環素在烏柵土中的吸附與解吸。農業環境科學學報,27(5),1732–1736,2008。
陳立治,曾弘智,陳志朗。食肉組織中抗生素殘留及其消長。中華農業學報。新84,113–123,1972。
陳小泉,李芳柏,李新軍,柳松,古國榜。二氧化鈦/蒙脫土複合光催化劑製備及對亞甲基藍的催化降解。土壤與環境,10(1),30–32,2001。
陳雨新。動物防疫檢疫的現況與展望(二)。酪協月刊,57(3),4,2002。
陳建,王京平,王靜,孫傑,孫成。四環素在石墨上的吸附行為研究。環境工程學報,4(1),17–20,2010。
陳華,任曉惠,羅漢金,董婷婷,胡冰潔。改性納米零價鐵的製備及其去除水中的四環素。環境工程學報,5(4),767–771,2011。
陳瑞萍,張麗,于潔,陶芸,張忠品,李克勳,劉東方。活性污泥對四環素的吸附性能研究。環境科學,33(1),156–162,2012。
董玉瑛,張陽,郭幸麗,李丹,郝苗。畜牧業中抗生素的環境歸趨、危害與防治。安徽農業科學,36(6),2512–2513、2519,2008。
黃富昌。土壤結構及化性對有機污染物吸/脫附特性之研究。博士論文,國立中央大學環境工程研究所,237頁,2005。
黃昭先,黃健花,王興國。四環素在改性凹凸棒土中的吸附。非金屬礦,35(1),63–66,2012。
萬鑫森譯。「基礎土壤物理學 初版」。國立編譯館,1987。
萬瑩,鮑豔宇,周啟星。四環素在土壤中的吸附與解吸以及鎘在其中的影響。業環境科學學報,29(1),85–90,2010。
鄒星,吳小蓮,莫測輝,李彥文,高鵬,黃顯東,劉利偉。蒙脫石對四環素類抗生素的吸附平衡及動力學。高校化學工程學報,25(3),524–528,2011。
賀德春,許振成,吳根義,丘錦榮,秦國建。四環素類抗生素的環境行為研究進展。動物醫學進展,32(4),98–102,2011。
齊會勉,呂亮,喬顯亮。抗生素在土壤中的吸附行為研究進展。土壤,41(5),703–708,2009。
劉虹。貴陽城市污水、河流及養魚水域抗生素的地球化學行為。碩士論文,中國科學院廣州地球化學研究所,117頁,2008。
劉雨霞,鮑豔宇。土壤中四環素類抗生素污染研究進展。環境污染與防治,33(8),81–86,2011。
劉秉濤,李雲霞,李國亭,陳靜。活性炭纖維電吸附去除四環素的研究。工業水處理,31(4),23–25,2011。
潘秋金。以陽離子介面活性劑合成有機黏土吸附有機化合物之研究。碩士論文,國立成功大學資源工程系,104頁,2002。
魏瑞成,葛峰,陳明等。江蘇省畜禽養殖場水環境中四環類抗生素污染研究。農業環境科學學報,29(6),1205–1210,2010。
蘇佳棋。非離子聚合物插層電荷縮減蒙脫石漿料之穩定及流變性研究。博士論文,國立成功大學資源工程系,149頁,2009。
Alexander, N., Arieh, S., Rheological Properties of Aqueous Suspensions of Palygorskite. Soil Sci. Soc. Am. J., 64, 427–436, 2000.
Akyüz, S., Akyüz, T., Davies, J., Eric, D., Adsorption of 2,2′-bipyridyl onto sepiolite, attapulgite and smectite group clay minerals from anatolia: The FT-IR and FT-Raman spectra of surface and intercalated species. J. Incl. Phenom. Macrocycl. Chem., 18(2), 123–135, 1994.
Akyuz, S., Akyuz, T., Study on the interaction of nicotinamide with sepiolite, loughlinite and palygorskite by IR spectroscopy, J. Mol. Struct., 744–747, 47–52, 2005.
Aochi, Y.O., Farmer, W.J., Spectroscopic Evidence for the Rate-Limited Accumulation of a Persistent Fraction of 1,2Dichloroethane Sorbed onto Clay Minerals, Environ. Sci. Technol., 29(7), 1760–1765, 1995.
Arikan, O.A., Sikora, L.J., Mulbry, W., Composting rapidly reduces levels of extract able oxytetracycline in manure from the rapeutically treated beef calves. Bioresource Technol., 98(1), 169–176, 2007.
Aust, M.O., Godlinski, F., Travis, G.R., Hao, X., McAllister, T.A., Leinweber, P., Sören, T.B., Distrubtion of sulfamethazine, chlortetracycline and tylosin in manure and soil of Canadian feedlots after subtherapeutic use in cattle. Environ. Pollut., 156(3), 1243–1251, 2008.
Bao, Y., Zhou, Q., Wan, Y., Yu, Q., Xie, X., Effects of soil/solution ratios and cation types on adsorption and desorption of tetracycline in soils. Soil Sci. Soc. Am. J. 74, 1553–1561, 2010.
Bao, Y., Zhou, Q., Wan, Y., Adsoption characteristics of tetracycline by two soils: assessing the role of soil organic matter. Soil Research, 47(3), 286–295, 2009.
Batt, A.L., Bruce, I.B., Aga, D.S., Evaluating the vulnerability of surfacewaters to antibiotic contamination from varying wastewater treatment plant discharges. Environ.Pollut., 142 (2), 295–302, 2006.
Benbrook, C. M., Antibiotic drug use in U.S. Aquaculture. Institute for Aquaculture and Trade Policy Report. www.iatp.org/library/ antibiotics, 2002.
Bewick, M.W.M., The adsorption and release of tylosin by clays and soils. Plant and Soil, 51, 363–372, 1979.
Borden, D., Giese, R.F., Baseline studies of the clay minerals society source clays: cation exchange capacity measurements by the ammonia-electrode method, Clay Clay Miner., 49, 444–445, 2001.
Bradbury, M.H., Baeyens, B., Sorption modeling on illite part I: titration measurements and the sorption of Ni, Co, Eu and Sn. Geochimica et Cosmochimica Acta, 73, 990–1003, 2009.
Bradley, W.F., The structural scheme of attapulgite. Am. Mineral. 25 (6), 405–410, 1940.
Browne, J.E., Feldkamp, J.R., White, J.L., Hem, S.L., Acid–base equilibria of tetracycline in sodium montmorillonite suspensions. J. Pharm. Sci., 69, 811–815, 1980.
Brown, K. D., Kulis, J., Thomson, B., Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico. Sci. Total Environ., 366(2-3), 772–783, 2006.
Brunauer, S., Emmett, P.H., Teller, E., Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc., 60 (2), 309–319, 1938.
Bundy, M.M., Doucette, W.J., McNeill, L., Ericson, J.F., Removal of pharmaceuticals and related compounds by a bench-scale drinking water treatment system. J. Water Supply: Res. and Tech.-Aqua, 56, 105–115, 2007.
Caminati, G., Focardi, C., Gabrielli, G., Gambinossi, F., Mecheri, B., Nocentini, M., Puggelli, M., Spectroscopic investigation of tetracycline interaction with phospholipid Langmuir– Blodgett films. Mater. Sci. and Enginee., 22, 301–305, 2002.
Chander,Y., Kumar, K., Goyal, S.M., Gupta, S.C., 2005. Antibacterial activity of soil-bound antibiotics. J. Environ. Qual., 34, 1952–1957.
Chang, P., Yu, S., Chen, T., Ren, A., Chen, C., Wang, X., Effect of pH, ionic strength, fulvic acid and humic acid on sorption of Th(IV) on Narectorite, J. Radioanal. Nucl. Chem. 274, 153–160, 2007.
Chang, P.H., Jean, J.S., Jiang, W.T., Li, Z.H., Removal of tetracycline from water by rectorite, Colloids Surf. A Physicochem. Eng. Asp., 339, 94–99, 2009.
Chang, P.H., Li, Z.H., Yu, T.L., Munkhbayer, S., Kuo, T.H., Hung, Y.C., Jean, J.S., Lin, K.H., Sorptive removal of tetracycline from water by palygorskite. J. Hazard. Mater., 165, 48–155, 2009c.
Chang, P.H., Li, Z.H., Jiang, W.T., Jean, J.S., Adsorption and intercalation of tetracycline by swelling clay minerals. Appl. Clay Sci., 46, 27–36, 2009.
Charlet, L., Schindler, P.W. Spadini, L., Furrer, G., Zysset, M., Cation adsorption on oxides and clays: The aluminum case. Aquatic Sci., 55, 291–303, 1993.
Chen, C.L., Yang, X., Wei, J., Tan, X.I., Wang, X.K., Eu(III) uptake on rectorite in the presence of humic acid: A macroscopic and spectroscopic study. J. Colloid. Interf. Sci., in press, 2012.
Chen, W.R., Huang, C.H., Adsorption and transformation of tetracycline antibiotics with aluminum oxide. Chemosphere, 79, 779–785, 2010.
Chen, H., Zhao, Y., Wang A., Removal of Cu(II) from aqueous solution by adsorption onto acid-activated palygorskite, J. Hazard. Mater., 149, 346–354, 2007.
Cheng, G., Karthikeyan, K. G., Sorption of the antibiotic tetracycline to humic-mineral complexes. Environ. Qual., 37, 704–711, 2008.
Chiari, G., Giustetto, R., Ricchiardi, G., Crystal structure refinements of palygorskite and Maya Blue from molecular modelling and powder synchrotron diffraction, Eur. J. Miner., 15, 21–33, 2003.
Chipera, S.J., Bish, D.L., Baseline studies of the clay minerals society source clays: powder X-ray diffraction analyses. Clay Clay Miner., 49, 398–409, 2001.
Chowdhury, S., Mishra, R., Saha, P., Kushwaha, P., Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk, Desalination, 265(1-3) , 159–168, 2011.
Christoph, V., Jorn, L., Fischer, R.X., Investigation of the clay fraction(<2 mm) of the clay minerals society reference clays, Clay Clay Miner, 50(3), 388–400, 2002.
Collaizzi, J.L., Klink, P.R., pH partition behavior of tetracyclines, J. Pharm. Sci., 58, 1184–1189, 1969.
Davidson, J., Genetic exchange between bacteria in the environment. Plasmid, (42), 73–91, 1999.
Davis, J.G., Truman, C.C., Kim, S.C., Antibiotic transport via runoff and soil loss. Environ. Qual., 35, 2250–2260, 2006.
Dogan, A.U., Dogan, M., Onal, M., Sarikaya, Y., Aburub, A., Wurster, D.E., Baseline studies of the Clay Minerals Society source clays: Specific surface area by Brunauer Emmett Teller (BET) method. Clay Clay Miner., 54, 62–66, 2006.
Doi, A.M., Stoskopf, M.K., The kinetics of oxytetracycline degradation in deionized water under varying temperature, pH, light, substrate and organic matter. Aquatic Animal Health, 12, 246–253, 2000.
Dolliver, H., Kumar, K., Gupt, S., Sulfamethazine uptake by plants from manure-amended soil. Environ. Qual., 36, 1224–1230, 2007.
Doner, H.E., Mortland, M.M., Benzene complexes with copper(II)– montmorillonite: Sci., 166, 1406–1407, 1969.
Dror, A., Orna, P., Igal, G., Hadas, M., Sorption of sulfonamides and tetracyclines to montmorillonite clay. Water, Air & Soil Pollut., 29(14), 439–450, 2010.
Duarte, H.A., Carvalho, S., Paniago, E.B., Simas, A.M., Importance of tautomers in the chemical behavior of tetracyclines, J. Pharm. Sci., 88(1), 111–120, 1999.
Du, Q., Sun, Z., Forsling, W., Tang, H., Adsorption of copper at aqueous illite surfaces. J. Colloid. Interf. Sci., 187, 232–242, 1997.
Dugger, B.M., A product of the continuing search for new antibiotics. Ann. N.Y. Acad. Sci. 51, 177–181, 1948.
Elena, M.C., Gonzale-Barreiro, Sigri, S., Oliver, G., Environ- mental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environ. Pollut., 148(2), 570–579, 2007.
Fernandes, N.S., Filho, M.A.S.C., Mendes, R.A., Ionashiro, M., Thermal decomposition of some chemotherapic substances, J. Braz. Chem. Soc., 10, 459–462, 1999.
Figueroa, R.A., Leonard, A., MacKay, A.A., Modeling tetracycline antibiotic sorption to clays. Environ. Sci. Technol., 38, 476–483, 2004.
Figueroa, R.A., Mackay, A.A., Sorption of oxytetracycline to iron oxides and oxide-rich soils, Environ. Sci. Technol., 39, 6664–6671, 2005.
Finlay, A.C., Hobby, G.L. Pan,S.Y., Regna, P.P., Routien, J.B., Shull, G.M., Sobin, B.A. Solomons, I.A. and Vinson, J.H., Terramycin, a new antibiotic. Sci., 111, 85, 1950.
Fred, E.H., Mechanism of action of antibacterial agents, Springer-Verlag Berlin Heidelberg, New York, 1979.
Freundlich, H., Ueber die Adsorption in Loesungen. Zeitschrift fr Physikalische Chemie, 57 A, 385–470, 1907.
Frost, R.L., Ding, Z., Controlled rate thermal analysis and differential scanning calorimetry of sepiolites and palygorskites, Thermochim. Acta, 397, 119–128, 2003.
Galan, E., Properties and applications of palygorskite-sepiolite clay Clay Miner., 31, 443–453, 1996.
Gambinossi, F., Mecheri, B., Nocentini, M., Puggelli, M., Caminati, G., Effect of the phospholipid head group in antibiotic–phospholipid association at water–air interface. Biophys. Chem., 110, 101–117, 2004.
Ghouti, M. A., Khraisheh, M.A.M., Ahmad, M.N.M., Allen, S., Thermodynamic behaviour and the effect of temperature on the removal of dyes from aqueous solution using modified diatomite: A kinetic study, J. Colloid. Interf. Sci., 287, 6–13, 2005.
Goldberg, S., Glaubig, R.A., Boron adsorption and silicon release by the clay minerals kaolinite, montmorillonite and illite. Soil Sci. Soc. Am. J., 50,1442–1448, 1986.
Grim, R.E., Clay Mineralogy. 2nd ed.(Book), McGraw-Hill, New York, 1968.
Grim, R.E., Bray, R.H., Bradley, W.F., The mica in argillaceous sediments, Amer. Mineral., 22, 813–829, 1937.
Gu, C., Karthikeyan, K.G., Interaction of tetracycline with aluminum and iron hydrous oxides. Environ. Sci. Technol., 39, 2660–2667, 2005a.
Gu, C., Karthikeyan, K.G., Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides. Environ. Sci. Technol., 39(23), 9166–9173, 2005b.
Gu, C., Karthikeyan, K.G., Sibley, S.D., Pedersen, J.A., Complexation of the antibiotic tetracycline with humic acid. Chemosphere, 66(8), 1494–1501, 2007.
Gu, C., Karthikeyan, K.G., Sorption of the antibiotics tetracycline to humic-mineral complexes. J. Environ. Qual., 37, 704–711, 2008.
Halling-Sørensen, B., Nors Nielsen, S., Lanzky, P.F., Ingerslev, F., Holten Lützhøft, H.C., Jørgensen, S.E., Occurrence, fate, and effects of pharmaceutical substances in the environment – A review. Chemosphere, 36(2), 357–393, 1998.
Hamscher, G., Sczesny, S., Hoper, H., Nau, H., Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal. Chem., 74(7), 1509–1518, 2002.
Hersberg, G., “Molecular Spectra and Molecular Structure II. Infrared and Roman Spectra of Polyatomic Molecules”, van Nostrand Reihold Company Inc.,(Book), New York, 1945.
Hirsch, R., Ternes, T., Haberer, K., Occurrence of antibiotics in the aquatic environment. Sci. Total Environ., 225 (1-2), 109–118, 1999.
Ho, Y.S., McKay, G., Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465, 1999.
Hong, H.L., Jiang, W.T., Zhang, X., Tie, L., Li, Z.H., Adsorption of Cr(VI) on STAC-Modified Rectorite. Appl. Clay Sci., 44, 292–299, 2008.
Hsu, S.Y., Effect of cooking and processing on oxytetracycline residues in chicken bones and muscle tissues. J. Chinese Agric. Chem. Soc., 35(5), 573–579, 1997.
Hu, X., Zhou, Q., Luo, Y., Occurance and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, Northern China. Environ. Pollut., 158(9), 2992–2998, 2010.
Jaycock, M.J., Parfitt, G.D., Chemistry of Interfaces, (Book), Chichester, Ellis Horwood, p.12–13, 1981.
Jefferys, E.G., The Stability of Antibiotics on Soils. Microbiol., 7, 295–312, 1952.
Ji, L.l., Chen, W., Zheng, S., Xu, Z., Zhu, D., Adsorption of sulfonamide antibiotics to multiwalled carbon nanotubes. Langmuir, 25(19), 11608–11613, 2009.
Jia, D.A., Zhou, D.M., Wang, Y.J., Zhu, H.W., Chen, J.L., Adsorption and cosorption of Cu(II) and tetracycline on two soils with different characteristics. Geoderma, 146, 224–230, 2008.
Joanne, C.C.S., Roderick, I.M., Satoshi, K., Ivan, G. K., Lin, Y.F., Yannarell, A.C., Maxwell S., and Aminov, R.I., Fate and transport of antibiotic residues and antibiotic resistance genes following l and application of manure waste, Environ. Qual., 38, 1086–1108, 2009.
Johnston, C.T., Tipton, T., Trabue, S.L., Erickson, C., Stone, D.A., Vapor phase sorption of p-xylene on Co- and Cu-exchanged SAz-1 montmorillonite. Environ. Sci. Technol., 26, 382–390, 1992.
Ju, D.J., Byun, I.G., Park, J.J., Lee, C.H., Ahn, G.H. Park, T.J., Biosorption of a reactive dye(Rhodamine-B) from an aqueous solution using dried biomass of activated sludge. Bioresou. Technol., 99( 17), 7971–7975, 2008.
Jutter, VP., David, L., Sorption of tetracycline and chlor- tetracycline on K- and Ca-saturated soil clays, humic substances and clay-humic complexes. Environ. Sci. Technol., 41(6), 1928–1933, 2004.
Kahle, M., Stamm, C., Time and pH-dependent sorption of the veterinary antimicrobial sulfathiazole to clay minerals and ferrihydrite. Chemosphere, 68, 1224–1231, 2007.
Karthikeyan, K.G., Meyer, M.T., Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Sci. Total Environ., 361, 196–207, 2006.
Kay, P., Blackwell, P.A.. Boxall, A.B., Fate of veterinary antibiotics in a macroporous tile drained clay soil. Environ. Toxicol. Chem., 23(5), 1136–1144, 2004.
Kay, P., Blackwell, P.A., Boxall, A.B.A., Column studies to investigate the fate of veterinary antibiotics in clay soils following slurry application to agricultural land. Chemosphere, 60, 497–507, 2005.
King, A.G., Research advances. J. Chem. Educ., 83, 186–190, 2006.
Kithome, M., Paul, J.W., Lavkulich, L.M., Bomke, A.A., Kinetics of ammonium adsorption and desorption by the natural zeolite clinoptilolite. Soi. Sci. Soc. of Amer. J., 62, 622–629, 1998.
Kolpin, D.W., Furlong, E.T., Meyer, M.T., Thurman, E.M., Zaugg, S.D., Barber, L.B., Burton, H.T.. Pharmaceuticals, hormones, and others organic wastewater contaminants contaminants in U.S. streams, 1999–2000: a national reconnaissance, Environ. Sci. Technol., 36, 1202–1211, 2002.
Körner, U., Kühne, M., Wenzel, S., Tetracycline residues in meat and bone meals. Part I: Methodology and examination of field samples. Food Addit. and Contam. 18(4), 293–302, 2001.
Kuchta, S.L., Cessna, A.J., Elliott, J.A., Transport of lincomycin to surface and groundwater from manure amended cropland. Environ. Qual., 38, 1719–1727, 2009.
Kühne, M., Körner, U., Wenzel, S., Tetracycline residues in meat and bone meals. Part II: The effect of heat treatments on bound tetracycline residues. Food Addit. and Contam. 18(7), 593–600, 2001a.
Kühne, M., Hamscher, G., Körner, U., Schedl, D., Wenzel, S., Formation of anhydrotetracycline during a high-temperature treatment of animal-derived feed contaminated with tetracycline. Food Chem. 75(4), 423–429, 2001b.
Kühne, M., Ihnen, D., Miller, G., Stability of tetracycline in water and liquid manure. Vet Med: Series A, 47(6), 379–384, 2001c.
Kulshrestha, P., Giese, Jr., R.F., Aga, D.S., Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil. Environ. Sci. Technol., 38, 4097–4105, 2004.
Kumar, K., Gupta, S.C., Baidoo, S.K., Antibiotic uptake by plants from soil fertilized with animal manure. Environ. Qual., 34, 2082–2085, 2005.
Kümmerer, K., Antibiotics in the aquatic environment-A review : Part I. Chemosphere, 75, 417–434, 2009.
Lan, Y.Q., Deng, B.I. Kim, C.S., Thornton, E.C., Influence of soil minerals on chromium(VI) reduction by sulfide under anoxic conditions. Geochemical Transactions, 8:4, 2007.
Langmuir, I., The adsorption of gases on plane surfaces of glass, mica and platinum. J. Amer. Chem. Soc., 40(9), 1361–1403, 1918.
Leeson, L.J., Krueger, J.E., Nash, I.A., Concerning the Structural Assignment of the Second and Third Acidity Constants. Tetrahedron Lett, 18, 1155–1160, 1963.
Li, Z.H., Chang, P.H., Jean, J.S., Jiang, W.T., Wang, C.J., Interaction between tetracycline and smectite in aqueous solution. J. Colloid Interf. Sci., 341, 311–319, 2010.
Li, Z.H., Schulz, L., Ackley, C., Fenske, N., Adsorption of tetracycline on kaolinite with pH-dependent surface charges. J. Colloid Interf. Sci., 351, 254–260, 2010b.
Li, B., Zhang, T., Xu, Z.Y., Rapid analysis of 21 antibiotics of multiple classes in municipal wastewater using ultra performance liquid chromatography-tandem mass spectr- ometry. Analytica Chimica Acta, 645(1-2), 64–72, 2009.
Liguoro, M.D., Cibin V., Capolongo, F., Halling-Sørensen, B., Montesissa, C., Use of oxytetracycline and tylosin in intensive calf farming, evaluation of transfer to manure and soil. Chemosphere, 52, 203–212, 2003.
Leypold, C.F., Reiher, M., Brehm, G., Schmitt, M.O., Schneider, S., Matousek, P., Towrie, M., Tetracycline and derivatives— assignment of IR and Raman spectra via DFT calculations. Phys. Chem. 5, 1149–1157, 2003.
Loke, M.L., Tjørnelund, J., Halling-Sørensen, B., Determination of the distribution coefficient(logKd)of oxytetracycline, tylosin A, olaquindox and metronidazole in manure. Chemosphere, 48(3), 351–361, 2002.
Mackay, A.A., Canterbury, B., Oxytetracycline sorption to organic matter by metal-bridging. J. Environ. Qual., 34(6), 1964–1971, 2005.
Mackie, R. I., Koike, S., Krapac, I., Joanne, C.S., Maxwell, S., Aminov., R.I., Tetracycline residues and tetracycline resistance genes in groundwater impacted by swine production facilities. Anim Biotechnol, 17(2), 157–176, 2006.
Madejová, J., Komadel, P., Baseline studies of the clay minerals society source clays: infrared methods. Clay Clay Miner. 49, 410–432, 2001.
Martinez, E.E., Shimoda, W., Liquid chromatographic determination of epimerization of chlortetracycline residue to 4-epi-chlortetracycline residue in animal feed, using McIlvain's buffer as extractant. J Assoc Off Anal Chem., 72(5), 848–50, 1989.
Mellon, M., Benbrook, C., Benbrook, L., Estimates of Antimicrobial Abusein Live-stock. Union of Concerned Scientists Publications, Washington D.C., 7–9, 2001.
Mermut, R.A., Lagaly, G., Baseline Studies of the Clay Minerals Society Source Clays: Layer-Charge Determination and Characteristics of those Minerals Containing 2:1 Layers. Clays Clay Miner., 49(5), 393–397, 2001.
Miao, X.S., Bishay, F., Chen, M., Metcalfe, C.D., Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada. Environ. Sci. Technol., 38, 3533–3541, 2004.
Michal, R., Alvarez, P.J.J., Amplification and attenuation of tetracycline resistance in soil bacteria: qauifer column experiments. Water Research, 38, 3705–3712, 2004.
Migliore, L., Brambilla, G., Gasoria, P., Effects of sulphadimethoxine on barley in laboratory terrestrial models. Agric. Ecosyst. Environ., 60, 121–128, 1996.
Miller, G.H., Smith, H.L., Rock, W.L., Hedberg, S., Antibacterial structure–activity relationships obtained with resistant microorganisms. I: Inhibition of R-factor resistant Escherichia coli by tetracyclines. J. Pharm. Sci., 66, 88–92, 1977.
Missana, T., Garcia-Gutierrez, M., Alonso, U., Sorption of strontium onto illite/smectite mixed clays. Phys. Chem. Earth., 33, 156–162, 2008.
Mitscher, L.A., Chemistry of the Tetracycline Antibiotics, 1st ed(Book). New York, Marcel Dekker, 54, 1978.
Montero, M. T., Freixas, J., Hernandez-Borrell, J., Expression of the partition coefficients of a homologous series of 6- fluoroquinolones. Int. J. Pharm., 149, 161–170, 1997.
Montforts, H.M.M., Kalf, D.F., Vlaardingen, P.L.A., Linders, B.H.J., The exposure assessment for veterinary medicinal products. Sci. Total Environ., 225, 119–133, 1999.
Nygaard, K., Lunestad, B.T., Hektoern, H., Resistance to oxytetracycline oxolinic acid and furazolidone in bacteria from marine sediments. Aquaculture, 104(122), 31–36, 1992.
Oka, H., Ito, Y., Ikai, Y., Matsumoto, H., Kato, K., Yamamoto, I., Shimizu, M., Kawamura, N., Miyazaki, Y., Nojiri, T., Okumura, M. Ohmi, S., Sato, T. and Mori, G., Survey of residual tetracyclines in kidneys of diseased animals in Aichi Prefecture,Japan (1985~1997). J. AOAC Int., 84(2), 350–353, 1985–1997.
Onji, Y., Onu, M., Tanigawa, K., Liquid chromatographic determination of tetracycline residues in meat and fish. J. AOAC Int., 67(6), 1135–1137, 1984.
Othersen, O.G., Beierlein, F., Lanig, H., Clark, T., Conformations and tautomers of tetracycline. J. Phys. Chem. B, 107, 13743–13749, 2003.
Panagiota, S., Kiriaki, L., Dimitrios, G., Thomas, S. G., Yiannis, D., Physicochemical study of novel organoclays as heavy metal ion adsorbents for environmental remediation, J. Colloid Interf. Sci., 316, 298–309, 2007.
Parolo, M.E., Savini, M.C., Valles, J.M., Baschini, M.T., Avena, M.J., Tetracycline adsorption on montmorillonite: pH and ionic strength effects, Appl. Clay Sci., 40, 179–186, 2008.
Parolo, M.E., Avena, M.J., Pettinari, G.R., Baschini, M.T., Influence of Ca2+ on tetracycline adsorption on montmor- illonite. J. Colloid Interf. Sci., 368, 420–426, 2012.
Pawelzick, H. T., Hoper, H., Nau H., A survey of the occurrence of various tetracyclines and sulfamethazine in sandy soils in northwestern Germany fertilized with liquid manure. SETAC Euro 14th Annual Meeting, Prague: Czech Republic, 18–22, 2004.
Pena, A.L.S., Lino, C.M., Silveira, I.N., Determination of oxytetracycline, tetracycline, and chlortetracycline in milk by liquid chromatography with post column derivatization and fluorescence detection. J. AOAC Int., 82, 55–59, 1999.
Picó, Y., Andren, V., Fluoroquinolones in soil risks and challenges. Analyt. and Bioanalyt. Chem., 387(4), 1287– 1299, 2007.
Pils, J.R., Laird, D.A., Sorption of tetracycline and chlor- tetracycline on K- and Ca-saturated soil clays, humic substances, and clay–humic complexes. Environ. Sci. Technol., 41, 1928–1933, 2007.
Polubesova, T., Zadaka, D., Groisman, L., Nir, S., Water remediation by micelle-clay system: Case study for tetracycline and sulfonamide antibiotics. Water Research, 40, 2369–2374, 2006.
Porubcan, L.S., Serna, C.J., White, J.L., Hem, S.L., Mechanism of adsorption of clindamycin and tetracycline by montmorillonite, J. Pharm. Sci., 67, 1081–1087, 1978.
Rose, M.D., Bygrave, J., Farrington, W.H.H., and Shearer, G., The effect of cooking on veterinary drug residues in food : 4. Oxytetracycline. Food Addit. and Contam., 13, 275–286, 1996.
Potgieter, J.H., Potgieter-Vermaak, S.S., Kalibantonga, P.D., Heavy metals removal from solution by palygorskite. Clay, Miner. Eng., 19, 463–470, 2006.
Rabølle, M., Spliid, N.H., Sorption and mobility of metronidazole, olaquindox, oxytetracycline, and tylosin in soil. Chem- osphere, 40(7), 715–722, 2000.
Reynolds, Jr., R.C., Reynolds, R.C., NEWMOD for Windows™. The Calculation of One-Dimensional X-ray Diffraction Patterns of Mixed-Layered Clay Minerals (software). Hanover, New Hampshire, U.S.A, 1996.
Richardson, B.J., Larn, P.K.S., Martin M., Emerging chemicals of concern: Pharmaceuticals and personal care products ( PPCPs) in Asia, with particular reference to Southern China, Marine Pollut. Bull., 50(9), 913–920, 2005.
Ruthven, D.M., Principles of Adsorption and Adsorption Processes., (Book), John Wiley, New York, 1984.
Sacher, F., Lange, F., Brauch, H., Pharmaceuticals in groundwater:analytical methods and results of a monitoring program in baden-wurttemberg, Gernmny, Chrom. A, 938, 199–210, 2001.
Sarmah, A.K., Meyer, M.T., Boxall, A.B., A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65, 725–759, 2006.
Sassman, S. A., Lee, L.S., Sorption of three tetracyclines by several soils: as ses sing the role of pH and cation exchange. Environ. Sci. Technol., 39(19), 7452–7459, 2005.
Schlecht, K.D., Dix, R.B., Tamul, M.J., Internal Reflection Spectra of Several Tetracyclines, Appl. Spectrosc., 28(1), 38–40, 1974.
Shanmukh, S., Dluhy, R.A., 2D IR analyses of rate processes in lipid-antibiotic monomolecular films, Vib. Spectrosc., 36, 167–177, 2004.
Shirvani, M., Shariatmadari, H., Kalbasi, M., Nourbakhsh, F., Najafi, B., Sorption of cadmium on palygorskite, sepiolite and calcite: equilibria and organic ligand affected kinetics, Colloids Surf. A: Physicochem. Eng. Aspects, 287, 182–190, 2006.
Sibley, S.D., Pedersen, J.A., Interaction of the macrolide antimicrobial clarithromycin with dissolved humic acid. Environ. Sci. Technol., 42, 422–428, 2008.
Sithole, B.B., Guy, R.D., Models for tetracycline in aquatic environment. 1. Interaction with bentonite clay systems, Water Air Soil Pollut., 32, 303–314, 1987.
Sparks, D.L., Kinetics of Soil Chemical Processes. (Book), Academic Press, San Diego, CA, 1989.
Stadler, M. and Schindler, R.W., Modeling of H+ and Cu2+ adsorption on calcium montmorillonite. Clay Clay Miner., 41, 288–296, 1993.
Stephene, A., Sassman, S., Lee, L.S., Sorption of three tetracyclines by several soils: assessing the role of pH and cation exchange. Environ. Sci. Technol., 39(19), 7452–7459, 2005.
Stephens, C.R., Murai, K., Brunings, K.J., Woodward, R.B., Acidity Constants of the Tetracycline Antibiotics. J. Am. Chem. Soc., 78, 4155–4158, 1956.
Terada, H., Inagi, T., Proposed partition mechanism of tetracycline. Chem. Pharm. Bull., 23(9),1960–1968, 1975.
Theng, B.K.G., The Chemistry of Clay-Organic Reactions, (Book), Halstead Press, New York, p.160, 1974.
Tolls, J., Sorption of veterinary pharmaceuticals in soils: a review, Environ. Sci. Technol., 35(17), 3397–406, 2001.
Tombácz, E., Surface Charging and particle interactions in aqueous dispersions of metal oxides and clay minerals. 12th Ostwald-Kolloquium, March 25-26, Kiel, German, 2004.
Turku, I., Sainio, T., Paatero, E., Thermodynamics of tetracycline adsorption on silica. Environ. Chem. Lett., 5, 225–228, 2007.
Varsanyi, G., “Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives”, (Book), Wiley, New York, 1974.
Van Olphen, H., Clay Colloids Chemistry, (Book), Interscience, New York, p.89, 1963.
Viseras, C., Lopez-Galindo, A., Pharmaceutical applications of some spanish clays(sepiolite, palygorskite, bentonite): some preformulation studies, Appl. Clay Sci., 14, 69–82, 1999.
Verma, B., Headley, J.V., Robarts, R.D., Behaviour and fate of tetracycline in river and wet land water southern Canadian Northern Great Plains. Environ Sci Health, Part A, 42(2), 109–117, 2007.
Wasch, K.D., Okerman, L., Croubels, S., Brabander, H.D., Hoof, J.V. and Backer, P.D., Detection of residues of tetracycline antibiotics in pork and chicken meat: correlation between results of screening and confirmatory tests. Analyst. 123(12), 2737–2741, 1998.
Wan, Y., Bao, Y., Zhou, Q., Simultaneous adsorption and desorption of cadmium and tetracycline on cinnamon soil. Chemosphere, 80, 807–812, 2010.
Wang, Q.Q., Yates, S.R., Laboratory study of oxytetracycline degradation kinetics in animal manure and soil. Environ. Pollut., 156(3), 1243–1251, 2008.
Wang, C.J., Li, Z.H., Jiang, W.T., Jean, J.S., Liu, C.C., Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite. J. Hazard. Mater., 183, 309–314, 2010.
Watts, C.D., Craythorne, B., Fielding, M., Nonvolatile organic compounds in treated waters. Environ. Health Persp., 46, 87–89, 1982.
Wang, Y.J., Jia, D.A., Sun, R.J., Zhu, H.W., Zhou, D.M., Adsorption and cosorption of tetracycline and copper(II) on montmorillonite as affected by solution pH. Environ. Sci. Technol., 42(9), 3254–3259, 2008.
Wessels, J.M., Ford, W.E., Szymczak, W., Schneider, S., The complexation of tetracycline and anhydrotetracycline with Mg2+ and Ca2+: a spectroscopic study. J. Phys. Chem. B, 102, 9323–9331, 1998.
Wise, R., Antimicrobial resistance: priorities for action. J. Antimicrob. Chemoth., 49(4), 585–586, 2002.
Xia, L.Y., Zhong, H., Liu, G.Y., Huang, Z.Q., Chang, Q.W., Li, X.G., Comparative studies on flotation of illite, pyrophyllite and kaolinite with Gemini and conventional cationic surfactants. Trans. Nonferrous Met. Soc. China, 19, 446– 453, 2009.
Xu, X.R., Li, X.Y., Sorption and desorption of antibiotic tetracycline on marine sediments. Chemosphere, 78, 430–436, 2010.
Yan, W., Hu, S., Jing, C.Y., Enrofloxacin sorption on smectite clays: Effects of pH, cations, and humic acid. J. Colloid Interf. Sci., 372, 141–147, 2012.
Zhang, Y. H., Luo, Z. W., Zhao, Y. X., The effect of averment on the activity of soil microbiology. Jiamusi Univ(Natural Science Edition), 20(1), 49–51, 2002.
Zhao, L., Dong, Y., Hua, W., Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. Sci. Total Environ., 48(5), 1069–1075, 2010.
Zhao, Y.P., Geng, J., Wang, X.R., Tetracycline adsorption on kaolinite: pH, metal cations and humic acid effects. Ecotoxicology, 20, 1141–1147, 2011.
Zhao, Z., Wang, X.Q., Zhao, C., Zhu, X.G., Du, S.Y., Adsorption and desorption of antimony acetate on sodium montmorillonite. J. Colloid. Interf. Sci, 345, 154–159, 2010.
Zhimin, Q., Craig, A., Potentiometric determination of acid dissociation constants(pKa) for human and veterinary antibiotics, Water Research, 38(12), 2874–2890, 2004.
Zupancic, M., Arcon, I., Bukovec, P., Kodre, A., A physico- chemical study of the interaction of cobalt (II) ion with ciprofloxacin. Croat. Chem. Acta., 75, 1–12, 2002.
Zysset, M., Die protoneninduzierte Auflösung von K- Montmorillonit(Ph.D. Thesis). Bern University, Bern, Switzerland, 1992.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-01-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-01-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw