進階搜尋


下載電子全文  
系統識別號 U0026-1611201616082600
論文名稱(中文) 二次擠製成型對鎂合金微管植體動態降解特性及生物相容性之影響
論文名稱(英文) The Influence of Double Extrusion Process on the in-vitro Dynamic Degradation Properties and Biocompatibility of Mg-Zn-Zr Mini-tubes
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 105
學期 1
出版年 105
研究生(中文) 劉恒瑞
研究生(英文) Heng-Jui Liu
電子信箱 vulbjobjo@hotmail.com
學號 P86021029
學位類別 碩士
語文別 英文
論文頁數 81頁
口試委員 指導教授-葉明龍
口試委員-洪飛義
口試委員-甘宗旦
中文關鍵字 鎂合金微管  二次擠製成型  動態降解 
英文關鍵字 magnesium mini-tube  double extrusion  dynamic corrosion 
學科別分類
中文摘要 依據2011年世界衛生組織的調查報告,冠狀動脈心血管疾病為全球非傳染性疾病的最大死因,佔比高達31%,其中冠狀動脈阻塞更是佔了極大部分。臨床上目前主要採用氣球擴張術搭配支架植入來維持病患血管通暢,傳統上使用由316L不銹鋼、鈦合金、鈷鉻合金來做為永久性金屬支架的材料,然而永久性金屬支架具有一些固有的缺點,不但限制了它的應用性,更重要的是高達25%的案例有血管再窄縮的情形發生。而經臨床證實,血管的修復期約為6~12個月,也因此可降解支架的開發有其必要性。
鎂合金做為可降解金屬支架的材料具有其獨特優勢,足夠的強度以及可降解的特性,更重要的是高度的生物相容性讓它受到高度關注,然而其所面臨最大的瓶頸在於其在體內過快的降解速率使其無法迎合周圍組織修復的速率。
本研究首先透過二次擠製成型並以半連續製程成功做出符合心血管支架管徑與厚度的微管,探討不同的擠型比以及成型溫度與速度對於微觀組織的影響,輔以電化學阻抗測試、模擬體循環動態腐蝕測試和生物相容性測試,成功歸納出在低擠型比二次擠製成型最優化的製程條件除了有平均晶粒大小2μm 的均勻細晶結構,也具備350MPa的降伏強度和近12%的延伸率,更重要的是在動態降解的結果顯示其抗腐蝕性有顯著提升,腐蝕速率在14天的平均來到接近1 mmy-1,優於過往文獻的靜態腐蝕速率。而細胞毒性測試以及溶血率測試也顯示其具有良好的生物相容性。
英文摘要 According to the statistic reports from WHO on 2011, cardiovascular diseases (CVDs) are the number one cause of death (31%) in non-communicable diseases globally. Among them, the coronary artery clogging plays the most significant role due to cholesterol pileup. Clinically, balloon angioplasty combined with stent implantation (60%) is performed to effectively maintain the blood flow. Traditionally, 316L stainless steel, titanium and Co-Cr alloys are widely used. However, they have some inherent disadvantages that restrict their widely use, and most importantly about 25% of patients suffered from restenosis. Also, being clinically proven, the self-healing of the vessel is about 6~12 months, thus the investigation of biodegradable stent is necessary.
Magnesium alloy has its unique advantages to become the biodegradable material as a stent. Adequate high strength and most importantly excellent biocompatibility make it highly attentioned. However, the obstacle that researchers are facing is the high degradation rate of magnesium alloy in human body which may not be able to catch up with the healing rate of surrounding tissue.
In this study, magnesium mini-tube that fits the diameter of cardiovascular stents was successfully made using double extrusion methods by semi-continuous process. The influence of extrusion ratio, temperature, extrusion speed on microstructure were examined. Accompanied with electrochemical test, dynamic corrosion test and biocompatibility test, the best criterion among low extrusion ratio double extrusion process was defined. It not only preserved homogeneous fine grain structure with 2μm of grain size, but also containd 350MPa yielding strength and nearly 12% elongation property. Most importantly, the results of dynamic corrosion rate was excellent, coming to average value of 1 mmy-1 after 14 days, which was even better than the static corrosion rate of other reports. Nonetheless, the cytotoxicity test and hemolysis test also proved the nice biocompatibility of ZK60.
論文目次 口試通過證明書 I
摘要 II
Abstract III
Acknowledgement IV
Table of Contents VII
List of Figures IX
List of Tables XI
Chapter 1 Introduction 1
1.1. The development of metallic biomaterials 1
1.2. Clinical needs 2
1.2.1. Coronary stents and restenosis 3
1.2.2. Biodegradable stents 4
1.3. The strengths of magnesium alloys as biomaterials 4
1.4. The weakness of magnesium alloys as biomaterials 5
1.5. Strategies to improve the anti-corrosion property of magnesium alloys 6
1.6. Grain refinement of magnesium alloy 7
1.7. Sliding system of magnesium alloy 9
1.8. Recrystallization of magnesium alloy 11
1.9. Nomenclature of magnesium alloy 12
1.10. Effect of alloying elements 13
1.11. Research motivation and purpose 16
Chapter 2 Materials and Methods 17
2.1 Experimental setup 17
2.1.1. Experimental materials 17
2.1.2. Experimental instruments 18
2.2. Formation of mini-cylinders and mini-tubes 19
2.3. Compression test 21
2.4. Hot extrusion 22
2.5. Heat treatments 24
2.6. Mechanical properties 24
2.6.1. Tensile test 24
2.6.2. Vickers hardness test 25
2.7. Electrochemical test 26
2.7.1. Simulated body fluid (r-SBF) 27
2.7.2. Open Circuit Potential (OCP) at different timing 27
2.7.3. Potential-dynamic polarization curve 27
2.8. Dynamic corrosion test 28
2.9. Microstructure observation 31
2.9.1. Metallurgical analysis 31
2.9.2. Surface morphology and elemental analysis 31
2.10. In vitro test 32
2.10.1. Cell culture 32
2.10.2. Cytotoxicity assay 32
2.10.3. Hemolysis test 33
Chapter 3 Results and Discussion 34
3.1. Metallurgical analysis 34
3.1.1. Comparison between lubricants 34
3.1.2. Compression test 35
3.1.3. Effect of extrusion ratio 37
3.1.4. Effect of extrusion temperature 38
3.1.5. Effect of extrusion speed 41
3.2. Tensile test 49
3.3. Electrochemical test 54
3.4. Dynamic corrosion test 58
3.5. Cell viability test 65
3.6. Hemolysis test 68
Chapter 4 Conclusion 70
References 72
Appendix A[31]. 78

List of Figures
Figure 1 Grain boundary sliding (GBS)[23] 9
Figure 2 Hexagonal close-packed structure of Mg. 10
Figure 3 The sliding system of Mg alloys[25]. 10
Figure 4 The relation between the sliding system and critical resolved shear stress (CRSS) of single crystal Mg[25]. 11
Figure 5 Mg-Zn phase diagram[32] 15
Figure 6 Mg-Zr phase diagram[32] 15
Figure 7 The flow chart of this experiment. 17
Figure 8 ZK60 ingot, as-extruded 12mm diameter rod, and CNC machined tube specimen. 20
Figure 9 Schematic diagram of compression test. 21
Figure 10 3D model of the extrusion mold. 23
Figure 11 Schematic diagram of the extrusion mold. 24
Figure 12 Picture of the four-jaw chucks and tube specimen. 25
Figure 13 The schematic diagram of the five-necked bottle for electrochemical tests. 26
Figure 14 Pictures and schematic figure of dynamic corrosion system. 30
Figure 15 Extrusion force of ZK60 mini-tubes using different lubricants under same extrusion temperature and speed. 34
Figure 16 Compression test of ZK60 cylindrical specimens under different temperature and extrusion speed. 36
Figure 17 Stress-Strain curve of AZ61 at different temperature[39]. 40
Figure 18 Density of dislocation around grain boundary[40]. 40
Figure 19 Engineering Stress-Strain curve of 18_350 group under tensile test. 51
Figure 20 The ultimate tensile strength (UTS), yielding strength (YS), elongation (EL) of selected conditions. 51
Figure 21 SEM fraction surface images of 7_350 group after tension test. 52
Figure 22 SEM fraction surface images of 18_350 group after tension test. 53
Figure 23 Polarization resistance and corresponding metallurgical images of selected groups. 56
Figure 24 Polarization resistance of AZ31 from Song et al[54]. 57
Figure 25 Surface morphology of selected groups after electrochemical test. a: 18_350_R75, b: 18_350_R75HT, c: 18_350_R120, d: 7_350_R75, e: 7_400_R15 57
Figure 26 The dispersion of precipitates. a: 18_350_R75, b: 18_350_R75HT, c: 7_400_R15 58
Figure 27 Surface morphology of selected groups after dynamic corrosion under SEM. 61
Figure 28 The outward appearance of selected groups after dynamic corrosion at different time points. 62
Figure 29 Weight loss of selected groups in dynamic corrosion system after 1, 3, 7, 14 days. The bars eith patterns represent the weight percent of oxidants, and the bars without patterns represent the overall percentage of weight loss after eliminationg the oxidants. 63
Figure 30 Average corrosion rate of selected groups in dynamic corrosion system after 1, 3, 7, 14 days. 63
Figure 31 Longitudinal section of the selected group after 14 days dynamic corrosion. 64
Figure 32 Average corrosion rate and volume ratio of residual AZ31 after static and dynamic degradation tests for 7 days[63]. 64
Figure 33 Cell viability test of selected groups following ISO 10993-5. 66
Figure 34 Corresponding cell pictures of cell viability test. 67
Figure 35 Hemolysis of selected group. 69
Figure 36 Hemolysis of selected groups after immersion in DMEM for 24 hours. 69
參考文獻 1. Andersson, R.L., V. Ström, U.W. Gedde, P.E. Mallon, M.S. Hedenqvist and R.T. Olsson, Micromechanics of ultra-toughened electrospun PMMA/PEO fibres as revealed by in-situ tensile testing in an electron microscope. Scientific reports, 2014. 4.
2. Blokhuis, T.J., M.F. Termaat, F.C. den Boer, P. Patka, F.C. Bakker and J.T.M. Henk, Properties of calcium phosphate ceramics in relation to their in vivo behavior. Journal of Trauma and Acute Care Surgery, 2000. 48(1): p. 179.
3. Bačáková, L., E. Filova, F. Rypáček, V. Švorčík and V. Starý, Cell adhesion on artificial materials for tissue engineering. Physiol Res, 2004. 53(Suppl 1): p. S35-S45.
4. Hench, L.L. and J.M. Polak, Third-generation biomedical materials. Science, 2002. 295(5557): p. 1014-1017.
5. Organization, W.H., Global status report on noncommunicable diseases 2014. 2014.
6. Moravej, M. and D. Mantovani, Biodegradable metals for cardiovascular stent application: interests and new opportunities. International journal of molecular sciences, 2011. 12(7): p. 4250-4270.
7. Erne, P., M. Schier and T.J. Resink, The road to bioabsorbable stents: reaching clinical reality? Cardiovascular and interventional radiology, 2006. 29(1): p. 11-16.
8. Chan, A.W. and D.J. Moliterno, In-stent restenosis: update on intracoronary radiotherapy. Cleveland Clinic journal of medicine, 2001. 68(9): p. 796-803.
9. Peuster, M., P. Wohlsein, M. Brügmann, M. Ehlerding, K. Seidler, C. Fink, et al., A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal—results 6–18 months after implantation into New Zealand white rabbits. Heart, 2001. 86(5): p. 563-569.
10. Colombo, A. and E. Karvouni, Biodegradable stents “fulfilling the mission and stepping away”. Circulation, 2000. 102(4): p. 371-373.
11. Kojima, Y. Platform science and technology for advanced magnesium alloys. in Materials Science Forum. 2000. Trans Tech Publ.
12. Musso, C.G., Magnesium metabolism in health and disease. International urology and nephrology, 2009. 41(2): p. 357-362.
13. Nishimuta, M., N. Kodama, E. Morikuni, Y.H. Yoshioka, H. Yamada, H. Kitajima, et al., Balance of magnesium positively correlates with that of calcium. Journal of the American College of Nutrition, 2004. 23(6): p. 768S-770S.
14. Hartzell, H.C. and R.E. White, Effects of magnesium on inactivation of the voltage-gated calcium current in cardiac myocytes. The Journal of general physiology, 1989. 94(4): p. 745-767.
15. Wolf, F.I. and A. Cittadini, Chemistry and biochemistry of magnesium. Molecular aspects of medicine, 2003. 24(1): p. 3-9.
16. Vormann, J., Magnesium: nutrition and metabolism. Molecular aspects of medicine, 2003. 24(1): p. 27-37.
17. Song, G. and S.-z. Song, A possible biodegradable magnesium implant material. Advanced Engineering Materials, 2007. 9(4): p. 298-302.
18. Erinc, M., W. Sillekens, R. Mannens and R. Werkhoven. Applicability of existing magnesium alloys as biomedical implant materials. in Magnesium Technology 2009, 15 February 2009 through 19 February 2009, San Francisco, CA, USA, Conference code: 76923, 209-214. 2009.
19. Gu, X., Y. Zheng, Y. Cheng, S. Zhong and T. Xi, In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials, 2009. 30(4): p. 484-498.
20. Fatemi-Varzaneh, S., A. Zarei-Hanzaki and M. Haghshenas, The room temperature mechanical properties of hot-rolled AZ31 magnesium alloy. Journal of Alloys and Compounds, 2009. 475(1): p. 126-130.
21. Zberg, B., P.J. Uggowitzer and J.F. Löffler, MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nature Materials, 2009. 8(11): p. 887-891.
22. Li, L., J. Gao and Y. Wang, Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid. Surface and Coatings Technology, 2004. 185(1): p. 92-98.
23. Kaibyshev, O., A. Pshenichniuk and V. Astanin, Superplasticity resulting from cooperative grain boundary sliding. Acta materialia, 1998. 46(14): p. 4911-4916.
24. Mostaed, E., M. Vedani, M. Hashempour and M. Bestetti, Influence of ECAP process on mechanical and corrosion properties of pure Mg and ZK60 magnesium alloy for biodegradable stent applications. Biomatter, 2014. 4(1).
25. WILEY, J., Magnesium and its alloys. USA: Sons Inc, 1960. 177.
26. Zhang, K., D. Yin and D. Wu, Formability of AZ31 magnesium alloy sheets at warm working conditions. International Journal of Machine Tools and Manufacture, 2006. 46(11): p. 1276-1280.
27. Wang, Y. and J. Huang, The role of twinning and untwinning in yielding behavior in hot-extruded Mg–Al–Zn alloy. Acta materialia, 2007. 55(3): p. 897-905.
28. Agnew, S.R. and Ö. Duygulu, Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B. International Journal of plasticity, 2005. 21(6): p. 1161-1193.
29. Yoshinaga, H. and R. Horiuchi, Deformation mechanisms in magnesium single crystals compressed in the direction parallel to hexagonal axis. Transactions of the Japan Institute of Metals, 1963. 4(1): p. 1-8.
30. Oh-ishi, K., C.L. Mendis, T. Homma, S. Kamado, T. Ohkubo and K. Hono, Bimodally grained microstructure development during hot extrusion of Mg–2.4 Zn–0.1 Ag–0.1 Ca–0.16 Zr (at.%) alloys. Acta Materialia, 2009. 57(18): p. 5593-5604.
31. Ding, Y., C. Wen, P. Hodgson and Y. Li, Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: a review. Journal of Materials Chemistry B, 2014. 2(14): p. 1912-1933.
32. Massalski, T.B., H. Okamoto, P. Subramanian, L. Kacprzak and W.W. Scott, Binary alloy phase diagrams. Vol. 1. 1986: American Society for Metals Metals Park, OH.
33. Chen, Y., Q. Wang, J. Peng, C. Zhai and W. Ding, Effects of extrusion ratio on the microstructure and mechanical properties of AZ31 Mg alloy. Journal of Materials Processing Technology, 2007. 182(1–3): p. 281-285.
34. Doriot, P.-A., P.-A. Dorsaz, L. Dorsaz, E. De Benedetti, P. Chatelain and P. Delafontaine, In‐vivo measurements of wall shear stress in human coronary arteries. Coronary artery disease, 2000. 11(6): p. 495-502.
35. Mabuchi, M., T. Asahina, H. Iwasaki and K. Higashi, Experimental investigation of superplastic behaviour in magnesium alloys. Materials science and technology, 1997. 13(10): p. 825-831.
36. Lin, H. and J. Huang, High Strain Rate and/or Low Temperature Superplasticity in AZ31 Mg Alloys Processed by Simple High-Ratio Extrusion Methods. Materials Transactions, 2002. 43(10): p. 2424-2432.
37. Mukai, T., H. Watanabe and K. Higashi. Grain refinement of commercial magnesium alloys for high-strain-rate-superplastic forming. in Materials Science Forum. 2000. Trans Tech Publ.
38. Rongshi, C., J. Blandin, M. Suery, W. Qudong and H. Enhou, Thermomechanical processing and superplasticity of AZ91 magnesium alloy. 材料科学技术学报 (英文版, 2004. 20(3).
39. Lin, H. and J. Huang, Fabrication of low temperature superplastic AZ91 Mg alloys using simple high-ratio extrusion method. Key Engineering Materials(Switzerland), 2002. 233: p. 875-880.
40. Liu, L., H. Zhou, Q.-d. Wang, Y. Zhu and W. Ding, Dynamic recrystallization behavior of AZ 61 magnesium alloy. Advances in Technology of Materials and Materials Processing Journal(ATM), 2004.
41. Langdon, T.G., An evaluation of the strain contributed by grain boundary sliding in superplasticity. Materials Science and Engineering: A, 1994. 174(2): p. 225-230.
42. Yu, H., S.H. Park, B.S. You, Y.M. Kim, H.S. Yu and S.S. Park, Effects of extrusion speed on the microstructure and mechanical properties of ZK60 alloys with and without 1wt% cerium addition. Materials Science and Engineering: A, 2013. 583: p. 25-35.
43. Somekawa, H. and T. Mukai, Fracture toughness in Mg–Al–Zn alloy processed by equal-channel-angular extrusion. Scripta materialia, 2006. 54(4): p. 633-638.
44. Takara, A., Y. Nishikawa, H. Watanabe, H. Somekawa, T. Mukai and K. Higashi, Secondary processing of AZ31 magnesium alloy concomitant with grain growth or dynamic recrystallization. Materials transactions, 2004. 45(7): p. 2377-2382.
45. Lin, J., Q. Wang, L. Peng and H.J. Roven, Microstructure and high tensile ductility of ZK60 magnesium alloy processed by cyclic extrusion and compression. Journal of Alloys and Compounds, 2009. 476(1): p. 441-445.
46. Kim, W., S. Hong, Y. Kim, S. Min, H. Jeong and J. Lee, Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing. Acta Materialia, 2003. 51(11): p. 3293-3307.
47. Somekawa, H. and T. Mukai, Effect of texture on fracture toughness in extruded AZ31 magnesium alloy. Scripta materialia, 2005. 53(5): p. 541-545.
48. Watanabe, H., A. Takara, H. Somekawa, T. Mukai and K. Higashi, Effect of texture on tensile properties at elevated temperatures in an AZ31 magnesium alloy. Scripta Materialia, 2005. 52(6): p. 449-454.
49. Bohlen, J., S. Yi, D. Letzig and K.U. Kainer, Effect of rare earth elements on the microstructure and texture development in magnesium–manganese alloys during extrusion. Materials Science and Engineering: A, 2010. 527(26): p. 7092-7098.
50. Aung, N.N. and W. Zhou, Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy. Corrosion Science, 2010. 52(2): p. 589-594.
51. Hamu, G.B., D. Eliezer and L. Wagner, The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy. Journal of Alloys and Compounds, 2009. 468(1): p. 222-229.
52. Ben-Haroush, M., G. Ben-Hamu, D. Eliezer and L. Wagner, The relation between microstructure and corrosion behavior of AZ80 Mg alloy following different extrusion temperatures. Corrosion Science, 2008. 50(6): p. 1766-1778.
53. Neil, W., M. Forsyth, P. Howlett, C. Hutchinson and B. Hinton, Corrosion of magnesium alloy ZE41–The role of microstructural features. Corrosion Science, 2009. 51(2): p. 387-394.
54. Izumi, S., M. Yamasaki and Y. Kawamura, Relation between corrosion behavior and microstructure of Mg–Zn–Y alloys prepared by rapid solidification at various cooling rates. Corrosion Science, 2009. 51(2): p. 395-402.
55. Song, G.-L. and Z. Xu, Effect of microstructure evolution on corrosion of different crystal surfaces of AZ31 Mg alloy in a chloride containing solution. Corrosion Science, 2012. 54: p. 97-105.
56. Bhattacharjee, T., T. Nakata, T. Sasaki, S. Kamado and K. Hono, Effect of microalloyed Zr on the extruded microstructure of Mg–6.2 Zn-based alloys. Scripta Materialia, 2014. 90: p. 37-40.
57. Cunningham, K.S. and A.I. Gotlieb, The role of shear stress in the pathogenesis of atherosclerosis. Laboratory investigation, 2005. 85(1): p. 9-23.
58. Li, N., C. Guo, Y. Wu, Y. Zheng and L. Ruan, Comparative study on corrosion behaviour of pure Mg and WE43 alloy in static, stirring and flowing Hank's solution. Corrosion Engineering, Science and Technology, 2012. 47(5): p. 346-351.
59. Chen, Y., S. Zhang, J. Li, Y. Song, C. Zhao and X. Zhang, Dynamic degradation behavior of MgZn alloy in circulating m-SBF. Materials Letters, 2010. 64(18): p. 1996-1999.
60. Jafarzadeh, K., T. Shahrabi and A. Oskouei, Novel approach using EIS to study flow accelerated pitting corrosion of AA5083-H321 aluminum–magnesium alloy in NaCl solution. Journal of applied electrochemistry, 2009. 39(10): p. 1725-1731.
61. Lévesque, J., H. Hermawan, D. Dubé and D. Mantovani, Design of a pseudo-physiological test bench specific to the development of biodegradable metallic biomaterials. Acta biomaterialia, 2008. 4(2): p. 284-295.
62. Hiromoto, S., A. Yamamoto, N. Maruyama, H. Somekawa and T. Mukai, Influence of pH and flow on the polarisation behaviour of pure magnesium in borate buffer solutions. Corrosion Science, 2008. 50(12): p. 3561-3568.
63. Willumeit, R., F. Feyerabend and N. Huber, Magnesium degradation as determined by artificial neural networks. Acta biomaterialia, 2013. 9(10): p. 8722-8729.
64. Wang, J., V. Giridharan, V. Shanov, Z. Xu, B. Collins, L. White, et al., Flow-induced corrosion behavior of absorbable magnesium-based stents. Acta biomaterialia, 2014. 10(12): p. 5213-5223.
65. Standard, A., F138–08 Standard Specification for Wrought 18Chromium-14Nickel-2.5 Molybdenum Stainless Steel Bar and Wire for Surgical Implants (UNS S31673). West Conshohocken, PA: ASTM International, 2008.
66. Hermawan, H., M. Moravej, D. Dubé, M. Fiset and D. Mantovani. Degradation behaviour of metallic biomaterials for degradable stents. in Advanced Materials Research. 2007. Trans Tech Publ.
67. Gu, X.-N. and Y.-F. Zheng, A review on magnesium alloys as biodegradable materials. Frontiers of Materials Science in China, 2010. 4(2): p. 111-115.
68. Witte, F., N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. Willumeit, et al., Degradable biomaterials based on magnesium corrosion. Current opinion in solid state and materials science, 2008. 12(5): p. 63-72.
69. Hänzi, A.C., A.S. Sologubenko and P.J. Uggowitzer. Design strategy for microalloyed ultra-ductile magnesium alloys for medical applications. in Materials Science Forum. 2009. Trans Tech Publ.
70. Hänzi, A.C., P. Gunde, M. Schinhammer and P.J. Uggowitzer, On the biodegradation performance of an Mg–Y–RE alloy with various surface conditions in simulated body fluid. Acta biomaterialia, 2009. 5(1): p. 162-171.
71. Hänzi, A.C., I. Gerber, M. Schinhammer, J.F. Löffler and P.J. Uggowitzer, On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg–Y–Zn alloys. Acta biomaterialia, 2010. 6(5): p. 1824-1833.
72. Chen, Y., J. Yan, C. Zhao, S. Zhang, S. Yu, Z. Wang, et al., In vitro and in vivo assessment of the biocompatibility of an Mg–6Zn alloy in the bile. Journal of Materials Science: Materials in Medicine, 2014. 25(2): p. 471-480.
73. Zhang, J., N. Kong, Y. Shi, J. Niu, L. Mao, H. Li, et al., Influence of proteins and cells on in vitro corrosion of Mg–Nd–Zn–Zr alloy. Corrosion Science, 2014. 85: p. 477-481.
74. Sternberg, K., M. Gratz, K. Koeck, J. Mostertz, R. Begunk, M. Loebler, et al., Magnesium used in bioabsorbable stents controls smooth muscle cell proliferation and stimulates endothelial cells in vitro. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2012. 100(1): p. 41-50.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-01-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw