進階搜尋


下載電子全文  
系統識別號 U0026-1610201314501600
論文名稱(中文) 具高介電係數介電層的有機薄膜電晶體與Ni摻雜有機磁性半導體之研究
論文名稱(英文) The study of organic thin-film transistors with high-k gate dielectrics and Ni-doped magnetic organic semiconductors
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 102
學期 1
出版年 102
研究生(中文) 何宗曄
研究生(英文) Tsung-Yeh Ho
學號 L78961034
學位類別 博士
語文別 英文
論文頁數 152頁
口試委員 指導教授-周維揚
口試委員-鄭弘隆
口試委員-李玉華
口試委員-唐富欽
口試委員-李明威
口試委員-胡裕民
口試委員-劉世鈞
中文關鍵字 五環素  聚亞醯胺  有機薄膜電晶體  有機半導體磁性質  拉曼光譜  複合式軟模  奈米壓印 
英文關鍵字 pentacene  polyimide  organic thin-film transistor  magnetic properties of organic semiconductor  Raman spectrum  flexible composite stamp  nano-imprint lithography 
學科別分類
中文摘要 有機材料因為它可應用在可撓式塑膠基板上、並且具製作成本低,和可在低溫條件下製造的能力等特性,已成為一個新興的研究領域。本論文針對有機半導體材料特性的研究與應用分成三個部分,第一部分是有機薄膜電晶體應用與研究,第二部分是有機材料磁特性研究,第三部分是複合式軟膜轉印技術研究。在第一部分的研究中,我們利用五環素作為半導體材料,並在高介電係數的介電層上加入聚亞醯胺作為修飾層,成功製作出具有良好的電特性(次臨界擺幅小於1伏特、載子遷移率大於0.1 V-1 s-1以上,開關比大於105),與低於5伏特操作電壓的有機薄膜電晶體。製程上是將聚亞醯胺(polyimind)以旋轉塗佈的方式旋塗在高介電係數的絕緣層上作為有機材料的修飾層,可有效降低基板的表面能與降低介面陷阱電荷,數量級約在~1010 cm-2 eV-1,以電力顯微鏡(Electric Force Microscope, EFM)與阻抗導納(impedance-admittance)方法分別分析有機修飾層與無機絕緣體的表面性質,利用原子力顯微鏡(Atomic Force Microscope, AFM)與X光繞射(X-ray diffraction, XRD)圖譜分析發現,當五環素成長在聚亞醯胺修飾層表面的晶粒尺寸比直接成長在高介電係數的無機介電層上大,而且結晶度也較佳,雖然在閘極上多加入一層聚亞醯胺會降低閘極的電場大小,但因聚亞醯胺的側鍊上會誘導許多電偶極,其產生的電偶極電場可有效補償部分在閘極降低的電場。
高效率的非揮發性記憶體是近年來許多消費性電子產品中不可或缺的重要元件,因此需積極研究開發出具有高速寫入與讀取、高儲存密度、寫入讀取穩定、長久的儲存記憶時間與具低消耗功率等特性的非揮發性記憶體,而論文的第二部分是將磁性材料鎳與有機材料五環素利用共蒸鍍的方式成長在具有聚亞醯胺薄膜的基板上,利用原子力顯微鏡與磁力顯微鏡(Magnetic Force Microscopy, MFM)掃描出來的影像分析發現,有機磁性薄膜磁區的分佈與五環素晶粒分佈很類似,而以X光繞射圖譜分析發現,有機磁性五環素成長於聚亞醯胺層上,其主要晶相為薄膜相(thin-film phase),並且在超導量子干涉元件(SQUID)量測磁性有機薄膜,磁矩-磁場(M-H)與磁矩-溫度(M-T)特性發現,所有有機磁性薄膜樣品在室溫時皆具有鐵磁的特性,而從偏極拉曼光譜的分析結果發現五環素的π電子雲扮演類似“橋樑”的功能,讓鎳原子的電子自旋態以間接偶和方式同步傳遞。
利用聚亞醯胺製作出具次微米等級的圖形,在科學研究上或是商業應用上皆具有相當重要的應用價值,例如可運用在薄膜電晶體(TFT)、太陽能電池、有機發光二極體(OLED),光學偵測器,等光電元件上,在論文的第三部分中,我們利用h-PDMS/PDMS材料成功從矽母模(silicon master mold)複製出線寬400、600、800和1200 nm的h-PDMS/PDMS複合式軟模,並且以此h-PDMS/PDMS複合式軟模利用奈米壓印技術,成功製作出線寬400、600、800和1200 nm等週期性的聚亞醯胺奈米溝槽。
英文摘要 The organic material has become an emerging research field because of its flexibility, low cost, and low temperature process capabilities. The work presented in this dissertation is divided into three parts according to the type of organic material.
Part one deals low voltage-operating organic thin-film transistors with high-dielectric constant (high-K) materials for the device’s gate dielectrics. The surface properties of these high-K materials must match those of organic semiconductors. A modification material coated on high-K dielectric is needed, and polyimide (PI) is a promising modifier to reduce the surface energy and the interface trap states (in the level of 1010 cm-2 eV-1) of the high-K dielectrics. In this study, surface characteristics of the dielectrics were identified and interface analyses at the dielectric/organic semiconductor interface were conducted through combined electrical force microscopy and impedance-admittance investigation. When the organic semiconductor pentacene was grown on the PI-modified dielectrics, the atomic force microscopy (Atomic Force Microscope, AFM) images and X-ray diffraction (XRD) analyses showed larger grain size and higher crystallinity than those on native high-K dielectrics. Although the gate field was decreased by inserting a PI layer, the effective gate field was compensated by an electric dipole-induced dipole field embedded in the PI layer. Using polyimide-modified high-K materials as the gate dielectric, high performances (S. S. < 1 V per decade,  above 0.1 cm2 V-1 s-1, and on/off ratio > 105) and low voltage-operating (< 5 V) pentacene-based thin-film transistors were achieved.
Recently, a great demand for high-performance nonvolatile memory devices has arisen for use in portable electronic devices. Therefore, active research has been performed to study the fabrication of high performance nonvolatile memory devices with fast writing/reading, high density data storage, writing/reading stability, long retention time and low power consumption. The part two of this dissertation, magnetic material nickel and an organic material pentacene were co-deposited on top of the PI layer. The AFM and magnetic force microscopy (MFM) images show that the magnetic domain distribution of nickel is very similar to the morphology of the pentacene grain. Magnetic organic pentacene film was attributed to the thin-film phase, as determined from XRD results. The magnetic-field- and temperature-dependent magnetic moments analyses by superconducting quantum interference device (SQUID) show that all the samples exhibited room-temperature ferromagnetism. Polarized Raman spectra of magnetic organic films show that the local π-electron clouds of pentacene form “bridges”, giving the nickel electrons a coherent spin transport.
Topographically patterned polymer films and surfaces, having sub-micron scale resolutions are important in a host of scientific and commercial applications like thin film transistors (TFT), solar cells, organic light emitting diodes (OLED), optical sensors, optoelectronic devices, etc. In part three, flexible composite micro/nano molds (h-PDMS/PDMS) with four ridge widths (400, 600, 800, and 1200 nm) were replicated from silicon molds. For the nano-imprinting fabrication process, four types of PI nano-groove with ridge widths of 400, 600, 800, and 1200 nm were created.
論文目次 摘要 I
Abstract IV
誌謝 VII
Table of contents IX
List of Tables XIII
List of Figures XIV
Chapter1. Introduction 1
1.1 Background 1
1.2 Organic materials 2
1.3 Organic thin film transistor 4
1.3.1 Basic OTET structure 4
1.3.2 Dielectrics materials for OTFT 5
1.4 OTFT device characteristics and operation 6
1.5 Magnetic induction and magnetization 9
1.6 The types of the magnetic substance 13
1.6.1 Paramagnetism 13
1.6.2 Diamagnetism 17
1.6.3 Ferromagnetism 18
1.6.4 Superparamagnetism 21
1.6.5 MAGNETIC ANISOTROPY 23
Reference 33
Chapter2. Samples preparation and structure analysis 39
2.1 Physical vapor deposition 39
2.2 Molecular Beam Epitaxy 41
2.3 Surface characterization 43
2.3.1 Electron Spectroscopy for Chemical Analysis 43
2.3.2 Thin film X-ray Diffraction 45
2.3.3 Microscope Raman 47
2.3.4 High-Resolution Scanning Electron Microscopy 49
2.3.5 Surface Energy measurements 51
2.3.6 Atomic Force Microscopy 54
2.3.7 Electric Force Microscopy 56
2.3.8 Magnetic Force Microscopy 58
2.3.9 Superconducting Quantum Interference Device vibrating sample magnetometer 60
Reference 73
Chapter3. Gate Field Induced Ordered Electric Dipoles in a Polymer Dielectric for Low-Voltage Operating Organic Thin-Film Transistors 75
3.1 Introduction 75
3.2 Experiments 78
3.3 Results and discussion 80
3.4 Conclusions 86
Reference 96
Chapter4. Ni-doped magnetic organic semiconductors 102
4.1 Introduction 102
4.2 Experiments 104
4.3 Results and discussion 108
4.3.1 Surface morphology 108
4.3.2 Crystalline structure 108
4.3.3 Ni atom location 109
4.3.4 Magnetic properties 111
4.4 Conclusion 115
Reference 125
Chapter5. Nano-Imprinting by soft mold lithography for fabricate nanostructure 129
5.1 Introduction 129
5.2 Nano-Imprinting lithography 130
5.2.1 Preparation of silicon molds 130
5.2.2 Preparation of flexible composite imprinting stamp 131
5.2.3 Nano-imprinting fabrication process 133
5.3 Conclusions 134
Reference 143
Chapter6. Future studies 145
6.1 Ni atoms embedded in bulk phase pentacene material 145
6.2 Magnetic organic material with a nanostructure 146
Reference 151
參考文獻 Chapter1
1.Lilienfeld, J. E., “Method and apparatus for controlling electric current”, US Patent 1 745 175 (1930).
2.Ebisawa, F.; kurokawa, T.; Nara, S., “Electrical-properties of polyacetylene polysiloxane interface”, Jpn. J. Appl. Phys., 54, 3255-3259 (1983).
3.Tsumura, A.; Koezuka, H.; Ando, T., “Macromolecular electronic device-field-effect transistor with a polythiophene thin-film”, Appl. Phys. Lett., 49, 1210-1212 (1986).
4.Kudo, K.; Yamashina, M.; Moriizumi, T., “Field effect measurement of organic dye films”, Jpn. J. Appl. Phys., 23, 130 (1984).
5.Rang, Z.; Haraldsson, A.; Kim, D. M.; Ruden, P. P.; Nathan, M. I.; Chesterfield, R. J.; Frisbie, C. D., “Hydrostatic-pressure dependence of the photoconductivity of single-crystal pentacene and tetracene”, Appl. Phys. Lett., 79, 2731-2733 (2001).
6.Dimitrakopoulos, C.D.; Brown, A.R.; Pomp, “A molecular beam deposited thin films of pentacene for organic field effect transistor applications”, J. Appl. Phys., 80, 2501-2508 (1999).
7.Chang, P. C.; Lee, J.; Huang, D.; Subramanian, V.; Murphy, A. R.; Frechet, J. M. J., “Film morphology and thin film transistor performance of solution-processed oligothiophenes”, Chem. Mat., 16, 4783-4789 (2004).
8.Wang, C. L.; Dong, H. L.; Hu, W. P.; Liu, Y. Q.; Zhu, D. B., “Semiconducting pi-Conjugated Systems in field-effect transistors: a material odyssey of organic electronics”, Chem. Rev., 112, 2208-2267 (2012).
9.Eley, D. D., “Phthalocyanines as Semiconductors”, Nature, 162, 819-819 (1948).
10.Clarisse, C.; Riou, M. T.; Gauneau, M.; Lecontellec, M., “Field-effect transistor with diphthalocyanine thin-film”, Electron. Lett., 24, 674-675 (1988).
11.Schmidt, R.; Oh, J. H.; Sun, Y. S.; Deppisch, M.; Krause, A. M.; Radacki, K.; Braunschweig, H.; Konemann, M.; Erk, P; Bao, Z. A.; Wurthner, F., “High-performance air-stable n-channel organic thin film transistors based on halogenated perylene bisimide semiconductors”, J. Am. Chem. Soc., 131, 6215-6228 (2009).
12.Wen, Y. G.; Liu, Y. Q., “Recent progress in n-channel organic thin-film transistors”, Adv. Mater., 22, 1331-1345 (2010).
13.Park, J. H.; Cho, S. W.; Park, S. H.; Jeong, J. G.; Kim, H. J.; Yi, Y.; Cho, M. H., “The effect of copper hexadecafluorophthalocyanine (F16CuPc) inter-layer on pentacene thin-film transistors”, Synth. Met., 160, 108-112 (2010).
14.Kymissis, I., “Organic field effect transistors: theory, fabrication and characterization (integrated circuits and systems)”, Boston, M. A.: Springer Science, (2009).
15.Dimitrakopoulos, C. D.; Malenfant, P. R. L., “Organic thin film transistors for large area electronics”, Adv. Mater., 14, 99 (2002).
16.Crone, B.; Dodabalapur, A.; Gelperin, A.; Torsi, L.; Katz, H. E.; Lovinger, A. J.; Bao, Z., “Electronic sensing of vapors with organic transistors”, Appl. Phys. Lett., 78, 2229-2231 (2001).
17.Newman, C. R.; Frisbie, C. D.; da Silva, D. A.; Bredas, J. L.; Ewbank, P. C.; Mann, K. R., “Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors”, Chem. Mat., 16, 4436-4451 (2004).
18.Knipp, D.; Street, R. A.; Volkel, A.; Ho, J., “Pentacene thin film transistors on inorganic dielectrics: Morphology, structural properties, and electronic transport”, J. Appl. Phys., 93, 347-355 (2003).
19.Yoon, W. J.; Berger, P. R., “Atomic layer deposited HfO2 gate dielectrics for low-voltage operating, high-performance poly-(3-hexythiophene) organic thin-film transistors”, Org. Electron., 11, 1719-1722 (2010).
20.Chen, L. H.; Lin, P.; Ho, J. C.; Lee, C. C.; Kim, C.; Chen, M. C., “Polyimide/Ta2O5 nanocomposite gate insulators for enhanced organic thin-film transistor performance”, Synth. Met., 161, 15-16 (2011).
21.Rahman, M. A.; Kim, H.; Lee, Y. K.; Lee, C.; Nam, H.; Lee, J. S.; Soh, H.; Lee, J. K.; Lee, E. G.; Lee, J., “High performance flexible organic thin film transistors (otfts) with octadecyltrichlorsilane/Al2O3/Poly(4-vinylphenol) multilayer insulators”, J. Nanosci. Nanotechnol., 12, 1348-1352 (2012).
22.Alam, M. W.; Wang, Z. K.; Naka, S.; Okada, H., “Top contact pentacene based organic thin film transistor with bi-layer TiO2/Au electrodes”, J. Photopolym Sci. Technol., 25, 659-664 (2012).
23.Guo, Y. L.; Di, C. A.; Ye, S. H.; Sun, X. N.; Zheng, J.; Wen, Y. G.; Wu, W. P.; Yu, G.; Liu, Y. Q., “Multibit storage of organic thin-film field-effect transistors”, Adv. Mater., 21, 1954-1959 (2009).
24.Yun, Y. J.; Pearson, C.; Petty, M. C., “Pentacene thin film transistors with a poly (methyl methacrylate) gate dielectric: Optimization of device performance”, J. Appl. Phys., 105, 034508 (2009).
25.Kim, J.; Jeong, J.; Cho, H. D.; Lee, C.; Kim, S. O.; Kwon, S. K.; Hong, Y., “All-solution-processed bottom-gate organic thin-film transistor with improved subthreshold behaviour using functionalized pentacene active layer”, J. Phys. D-Appl. Phys., 42, 115107 (2009).
26.Dieter K. S., “Semiconductor material and device characterization”, Wiley-IEEE Press, New York, (2006).
27.Ryu, K.; Kymissis, I.; Bulovic, V.; Sodini, C. G., “Direct extraction of mobility in pentacene OFETs using C-V and I-V measurements”, IEEE Electron Device Lett., 26, 716-718 (2005).
28.Gilles H., “Organic Semiconductors for new electronic devices”, Adv. Mater., 2, 287–292 (1990).
29.Chikazumi, S., “Physics of magnetism”, Wiley-Interscience: New York, (1964).
30.Warburg, E., “Magnetische Untersuchungen”, Ann. Physik., 13, 141-164 (1881).
31.Ewing, J. A., “Magnetic induction in iron and other metals”, New York, D. Van Nostrand Company, (1900).
32.Langevin, P., “Magnetism and electron theorem”, Annales de chcm. Et. Phys., 5, 70-127 (1995).
33.Jiles, D., “Introduction to magnetism and magnetic materials”, London ; New York : Chapman and Hall, (1991).
34.Weiss, P., “The variation of temperature ferromagnetism”, Compt. Rend., 143, 1136-1149 (1906).
35.Weiss, P., “The hypothesis of the molecular field and the ferromagnetic property”, J. de Phys., 6, 661-690 (1907).
36.Kittel, C., “Introduction to Solid State Physics”, Wiley-Interscience: New York, (2004).
37.Miyazaki, T.; Jin, H., “The physics of ferromagnetism”, Springer Berlin Heidelberg, (2012).
38.Aharoni, A., “Introduction to the theory of ferromagnetism”, Oxford ; New York: Oxford University Press, (2000).
39.Pankhurst, Q. A.; Connolly,J.; Jones, S. K.; Dobson, J., “Applications of magnetic nanoparticles in biomedicine”, J. Phys. D: Appl. Phys., 36, R167-R181 (2003).
40.Papaefthymiou, Georgia C., “Nanoparticle magnetism”, Nano Today, 4, 438-447 (2009).
41.Cullity, B. D.; Graham, C. D., “Introduction to magnetic materials”, Addison-Wesley, (1972).

Chapter2
1.Mattox, D. M., “Handbook of physical vapor deposition (PVD) processing”, Oxford, UK: William Andrew (2010).
2.John, L. V.; Werner, K., “Thin film processes”, New York: Academic Press (1978).
3.John, C. V.; Ian, S. G.; “Surface analysis: the principal techniques”, Hoboken, NJ: John Wiley & Sons. (2009).
4.Cowley, J. M., “Diffraction physics”, Amsterdam; New York: elsevier, (1995).
5.Leroy, A., “X-ray Diffraction Methods in Polymer Science”, Wiley-Interscience: New York, (1969).
6.Gardiner, D.J.; Bowley, P.R.; Heather, J.; Pierre, R.; Gardiner, D. J., “Practical Raman spectroscopy”, New York: Springer-Verlag, (1989).
7.Smith, E., “Modern Raman spectroscopy: a practical approach”, Hoboken, NJ: J. Wiley, (2005).
8.McMullan D., “Scanning electron microscopy”, Scanning, 17, 175-185 (1995).
9.Smith, K. C. A.; Oatley, C. W., “The scanning electron microscope and its fields of application”, J. Appl. Phys., 6, 391-399 (1995).
10.Owens1, D. K.; Wendt, R. C., “Estimation of the surface free energy of polymers”, J. Appl. Polym. Sci., 13, 1741-1747 (1969).
11.Israelachvili, J. N., “Intermolecular and surface forces”, Burlington, M. A.: Elsevier/Academic, (2011).
12.Eaton, P. J., “Atomic force microscopy”, Oxford: Oxford University, (2010).
13.Lennard, J., “On the Determination of Molecular Fields”, Proc. R. Soc. Lond. A, 106, 463–477 (1924).
14.Kim, J. “Investigation on charge deterioration of electrically charged filter media using electric force microscopy”, North Carolina State University, (2005).
15.Thierry, M.; Mariusz, Z.; David, B., “Scanning probe microscopy in nanoscience and nanotechnology nano science and technology” Springer, (2010).
16.Sarid, D., “Scanning force microscopy: with applications to electric, magnetic, and atomic forces”, New York: Oxford University, (1994).
17.Jaklevic, R. C.; Lambe, J.; Silver, A. H.; Mercereau, J. E., “Quantum Interference Effects in Josephson Tunneling”, Phys. Rev. Letters, 12, 159-160 (1964).
18.Clarke, J.; Braginski, A. I., “The SQUID handbook”, Weinheim: Wiley-VCH, (2004).

Chapter3
1.Yan, H.; Chen, Z. H. ; Zheng, Y.; Newman, C.; Quinn, J. R.; Dotz, F.; Kastler, M.; Facchetti, A., “A high-mobility electron-transporting polymer for printed transistors “, Nature, 457, 679-U1 (2009).
2.Lee, S. H.; Choi, M. H.; Han, S. H.; Choo, D. J.; Jang, J.; Kwon, S. K., “High-performance thin-film transistor with 6,13-bis(triisopropylsilylethynyl) pentacene by inkjet printing”, Org. Electron., 9, 721-726 (2008).
3.Sonar, P.; Singh, S. P.; Sudhakar, S.; Dodabalapur,A.; Sellinger, A., “High-mobility organic thin film transistors based on benzothiadiazole-sandwiched dihexylquaterthiophenes”, Chem. Mater., 20, 3184-3190 (2008).
4.He, Z. R.; Xiao, K.; Durant, Hensley, W.; D. K.; Anthony, J. E.; Hong, K. L.; Kilbey, S. M.; Chen, J. H.; Li, D. W., “Enhanced Performance Consistency in Nanoparticle/TIPS Pentacene-Based Organic Thin Film Transistors”, Adv. Funct. Mater., 21, 3617-3623 (2011).
5.Jeong, S. W.; Jeong, J. W.; Chang, S.; Oh, T. Y.; Kang, S. Y.; Cho, K. I.; Ju, B. K. S., “The study of the photo-response characteristics of organic photosensors integrated with pentacene based thin film transistors”, Sens. Actuators, B, 156, 657-661 (2011).
6.Gelinck, G.; Heremans, Nomoto, P.; K.; Anthopoulos, T. D., “Organic Transistors in Optical Displays and Microelectronic Applications”, Adv. Mater., 22, 3778-3798 (2010).
7.Roberts, M. E.; Sokolov, A. N.; Bao, Z. N., “Material and device considerations for organic thin-film transistor sensors”, J. Mater. Chem., 19, 3351-3363 (2009).
8.Guo, Y. L.; Di, C. A.; Ye, S. H.; Sun, X. N.; Zheng, J.; Wen, Y. G.; Wu, W. P.; Yu, G.; Y Liu,. Q., “Multibit Storage of Organic Thin-Film Field-Effect Transistors”, Adv. Mater., 21, 1954-1959 (2009).
9.Noh, Y. Y.; Sirringhaus, H., “Ultra-thin polymer gate dielectrics for top-gate polymer field-effect transistors”, Org. Electron., 10, 174-180 (2009).
10.Yoon, W. J.; Berger, P. R., “Atomic layer deposited HfO2 gate dielectrics for low-voltage operating, high-performance poly-(3-hexythiophene) organic thin-film transistors”, Org. Electron., 11, 1719-1722 (2010).
11.Chen, L. H.; Lin, P.; Ho, J. C.; Lee, C. C.; Kim, C.; Chen, M. C., “Polyimide/Ta2O5 Nanocomposite Gate Insulators for Enhanced Organic Thin-Film Transistor Performance”, Synth. Met., 161, 1527-1531 (2011).
12.Ma, H.; Acton, O.; Ting, G.; Ka, J. W.; Yip, H. L.; Tucker, N.; Schofield, R.; Jen, A. K. Y., “Low-voltage organic thin-film transistors with π-σ-phosphonic acid molecular dielectric monolayers “, Appl. Phys. Lett., 92, 113303 (2008).
13.Alam, M. W.; Wang, Z. K.; Naka, S.; Okada, H., “Top Contact Pentacene Based Organic Thin Film Transistor With Bi-layer TiO2 /Au Electrodes”, J. Photopolym Sci. Technol., 25, 659-664 (2012).
14.Chou, W. Y.; Kuo, C. W.; Cheng, H. L.; Chen, Y. R.; Tang, F. C.; Shu, D. Y.; Liao, C. C., “Effect of surface free energy in gate dielectric in pentacene thin-film transistors”, Appl. Phys. Lett., 89, 112126 (2006).
15.Sirringhaus, H., “Device Physics of Solution-Processed Organic Field-Effect Transistors”, Adv. Mater., 17, 2411-2425 (2005).
16.Brauer, B.; Kukreja, R.; Virkar, A.; Akkerman, H. B.; Fognini, A.; Tyliszczak, T.; Bao, Z. N., “Carrier mobility in pentacene as a function of grain size and orientation derived from scanning transmission X-ray microscopy”, Org. Electron., 12, 1936-1942 (2011).
17.Wang, S. D.; Dong, X.; Lee, C. S.; Lee, S. T., “Molecular orientation and film morphology of pentacene on native silicon oxide surface”, J. Phys. Chem. B, 109, 9892-9896 (2005).
18.Chou, W. Y.; Kuo, C. W.; Chang, C. W.; Yeh, B. L.; Chang, M. H., “Tuning surface properties in photosensitive polyimide. Material design for high performance organic thin-film transistors”, J. Mater. Chem., 20, 5474-5480 (2010).
19.Dinelli, F.; Murgia, M.; Levy, P.; Cavallini, M.; Biscarini, de Leeuw, F.; D. M., “Spatially Correlated Charge Transport in Organic Thin Film Transistors”, Phys. Rev. Lett., 92, 116802 (2004).
20.Ma, H.; Yip, H. L.; Huang, F.; Jen, A. K. Y., “Interface Engineering for Organic Electronics”, Adv. Funct. Mater., 20, 1371-1388 (2010).
21.Dibenedetto, S. A.; Facchetti, A.; Ratner, M. A.; Marks, T. J., “Molecular Self-Assembled Monolayers and Multilayers for Organic and Unconventional Inorganic Thin-Film Transistor Applications”, Adv. Mater., 21, 1407-1433 (2009).
22.Jonkheijm, P.; van Duren, J. K. J.; Kemerink, M.; Janssen, R. A. J.; Schenning, A. P. H. J.; Meijer, E. W., “Control of Film Morphology by Folding Hydrogen-Bonded Oligo (p-phenylenevinylene) Polymers in Solution”, Macromolecules, 39, 784-788 (2006).
23.Fukagawa, H.; Hosoumi, S.; Yamane, H.; Kera, S.; Ueno, N., “Dielectric properties of polar-phthalocyanine monolayer systems with repulsive dipole interaction”, Phys. Rev. B: Condens. Matter Mater. Phys., 83, 085304 (2011).
24.Tanga, J. X.; Lee, C. S.; Chan, M. Y.; Lee, S. T., “Enhanced electrical properties of pentacene based organic thin-film transistors by modifying the gate insulator surface”, Appl. Surf. Sci., 254, 7688-7692 (2008).
25.Nicollia, E. H.; Goetzber, A., “Mos conductance technique for measuring surface state parameters”, Appl. Phys. Lett., 7, 216 (1965).
26.Martens, K.; Chui, C. O.; Brammertz, G.; De Jaeger, B.; Kuzum, D.; Meuris, M.; Heyns, M. M.; Krishnamohan, Saraswat, T.; K.; Maes, H. E.; Groeseneken, G., “On the Correct Extraction of Interface Trap Density of MOS Devices With High-Mobility Semiconductor Substrates”, IEEE Trans. Electron Devices, 55, 547-556 (2008).
27.Chen, H. J; Guo, Y. L.; Yu, G.; Zhao, Y.; Zhang, J.; Gao, D.; Liu, H. T.; Liu, Y. Q., “Highly p-Extended Copolymers with Diketopyrrolopyrrole Moieties for High-Performance Field-Effect Transistors”, Adv. Mater., 24, 4618-4622 (2012).
28.Amin, A. Y.; Khassanov, A.; Reuter, K.; Meyer-Friedrichsen, T.; Halik, M., “Low-Voltage Organic Field Effect Transistors with a 2-Tridecyl[1]benzothieno[3,2-b][1]benzothiophene Semiconductor Layer”, J. Am. Chem. Soc., 134, 16548−16550 (2012).
29. Cheng, H. L.; Mai, Y. S.; Chou, W. Y.; Chang, L. R.; Liang, X. W., “Thickness-Dependent Structural Evolutions and Growth Models in Relation to Carrier Transport Properties in Polycrystalline Pentacene Thin Films”, Adv. Funct. Mater., 17, 3639-3649 (2007).
30.Leroy, A., “X-ray Diffraction Methods in Polymer Science”, A. Leroy, Wiley-Interscience: New York, (1969).
31.Engel-Herbert, R.; Hwang, Y.; Stemmer, S., “Comparison of methods to quantify interface trap densities at dielectric/III-V semiconductor interfaces”, J. Appl. Phys., 108, 124101 (2010).
32.Yakuphanoglu, F., “Interface control of conventional n-type silicon/metal by n-channel organic semiconductor”, Microelectron. Eng., 87, 1884-1888 (2010).
33.Nicollian, E. H.; Nicollian, E. H.; Brews, J. R., “MOS physics and technology”, Wiley-Interscience: New York, (1981).

Chapter4
1.Ohno, H.; Shen, A.; Matsukura, F.; Oiwa, A.; Endo, A.; Katsumoto, S.; Iye,Y., “(Ga, Mn)As: A new diluted magnetic semiconductor based on GaAs,” Appl. Phys. Lett., 69, 363-365 (1996).
2.Ohno, H.; Munekata, H.; Penney, T.; Molnár, S. von; Chang, L. L., “Magnetotransport properties of p-type (In, Mn)As diluted magnetic IIIV semiconductor,” Phys. Rev. Lett., 68, 2664-2667 (1992).
3.Ohno, H., “Making nonmagnetic semiconductors ferromagnetic,” Science, 281, 951-956 (1998).
4.Shi, L. B.; Liu, J. J.; Fei, Y., “Defect formation and magnetic properties of Co-doped GaN crystal and nanowire”, hysica B, 426, 45-51 (2013).
5.Davies, R. P.; Abernathy, C. R.; Pearton, S. J.; Norton, D. P.; Ivill, M. P.; Ren, F. “Review of recent advances in transition and lanthanide metal–doped GaN and ZnO”, Chem. Eng. Commun., 195, 1030-1053 (2009).
6.Basha, S. M.; Ramasubramanian, S.; Rajagopalan, M.; Kumar, J.; Kang, T. W.; Subramaniam, N. G.; Kwon, Y., “Investigations on cobalt doped GaN for spintronic applications”, J. Cryst. Growth, 218, 432-435 (2011).
7.Srinivas, K.; Vithal, M.; Sreedhar, B.; Raja, M. M.; Reddy, P. V., “Structural, Optical, and Magnetic Properties of Nanocrystalline Co Doped SnO2 Based Diluted Magnetic Semiconductors”, J. Phys. Chem. C, 113, 3543-3552 (2009).
8.Yoo, J. W.; Chen, C. Y.; Jang, H. W.; Bark, C. W.; Prigodin, V. N.; Eom, C.B.; Epstein, A. J., “Spin injection/detection using an organic-based magnetic semiconductor”, Nat. Mater., 9, 638-642 (2010).
9.Brauer, B.; Vaynzof, Y.; Zhao, W.; Kahn, A.; Li, W.; Zahn, D. R. T .; Fernandez, C. D. J.; Sangregorio, C.; Salvan, G., “Electronic and Magnetic Properties of Ni Nanoparticles Embedded in Various Organic Semiconductor Matrices”, J. Phys. Chem. B, 113, 4565-4570 (2009).
10.Chan, Y. L.; Hung, Y. J.; Wang, C. H.; Lin, Y. C.; Chiu, C. Y.; Lai, Y. L.; Chang, H. T.; Lee, C. H.; Hsu, Y. J.; Wei, D. H., “Magnetic Response of an Ultrathin Cobalt Film in Contact with an Organic Pentacene Layer”, Phys. Rev. Lett., 104, 177204 (2010).
11.Wei, D. H.; Wang, C. H.; Chang, H. C.; Chan, Y. L.; Lee, C. H.; Hsu, Y. J., “Direct imaging and spectral identification of the interfaces in organic semiconductor-ferromagnet heterojunction”, Appl. Phys. Lett., 101, 141605 (2012).
12.Zhang, X. M.; Mizukami, S.; Kubota, T.; Oogane, M.; Naganuma, H.; Ando, Y.; Miyazaki, T., “Interface effects on perpendicular magnetic anisotropy for molecular-capped cobalt ultrathin films”, Appl. Phys. Lett., 99, 162509 (2011).
13.Leroy, A., “X-ray Diffraction Methods in Polymer Science”, A. Leroy, Wiley-Interscience: New York, (1969).
14.Cheng,H. L.; Mai,Y. S.; Chou,W. Y.; Chang L. R.; Liang,X. W., “Thickness-Dependent Structural Evolutions and Growth Models in Relation to Carrier Transport Properties in Polycrystalline Pentacene Thin Films”, Adv. Funct. Mater., 17, 3639-3649 (2007).
15.Mattheus, C. C.; de Wijs, G. A.; de Groot, R. A.; Palstra, T. T. M., “Modeling the polymorphism of pentacene”, Journal of the American Chemical Society, 125, 6323-6330 (2003).
16.Mayer, A. C.; Ruiz, R.; Headrick, R. L.; Kazimirov, A.; Malliaras, G. G., “Early stages of pentacene film growth on silicon oxide”, Organic Electronics, 5, 257-263 (2004).
17.Bouchoms, I. P. M.; Schoonveld, W. A.; Vrijmoeth, J.; Klapwijk, T. M., “Morphology identification of the thin film phases of vacuum evaporated pentacene on SiO2 substrates”, Synthetic Metals, 104, 175-178 (1999).
18.Mattheus, C. C.; Dros, A. B.; Baas, J.; Meetsma, A.; de Boer, J. L.; Palstra, T. T. M., “Polymorphism in pentacene”, Acta Crystallographica Section C-Crystal Structure Communications, 57, 939-941 (2001).
19.Cheng, H. L.; Chou, W. Y.; Kuo, C. W.; Wang, Y. W.; Mai, Y. S.; Tang, F. C.; Chu, S. W., “Influence of Electric Field on Microstructures of Pentacene Thin Films in Field-Effect Transistors”, Adv. Funct. Mater. 18, 285-293 (2008).
20.Becke, A. D., “Density-functional exchange-energy approximation with correct asymptotic behavior”, Phys. Rev. A, 38, 3098-3100 (1988).
21.Yanai, T.; Tew, D.; Handy, N., “A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP)”, Chem. Phys. Lett., 393, 51-57 (2004).
22.Kim, K.; Jordan.K. D., “Comparison of Density Functional and MP2 Calculations on the Water Monomer and Dimer”, J. Phys. Chem. 98 (40), 10089-10094 (1994).
23.Stephens,P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J., “Ab-Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields”, J. Phys. Chem. 98 (45), 11623-11627 (1994).
24.Jentzsch, T.; Juepner, H. T.; Brzezinka, K.-W.; Lau, A., “Efficiency of optical second harmonic generation from pentacene films of different morphology and structure”, Thin Solid Films, 315, 273 (1998).
25.Faltermeier, D.; Gompf, B.; Dressel, M.; Tripathi, A. K.; Pflaum, J., “Optical properties of pentacene thin films and single crystals”, Phys. Rev. B, 74, 125416 (2006).
26.Davydov, A. S., “Theory of Molecular Excitons”, McGraw-Hill in NewYork (1971).
27.Cheng, H. L.; Liang, X. W.; Chou, W. Y.; Mai, Y. S.; Yang, C. Y.; Chang, L. R.; Tang, F. C., “Raman spectroscopy applied to reveal polycrystalline grain structures and carrier transport properties of organic semiconductor films: Application to pentacene-based organic transistors”, Org. Electron., 10, 289-298 (2009).

Chapter5
1.Jo, S. J.; Kim, C. S.; Lee, M. J.; Kim, J. B.; Ryu, S. Y.; Noh, J. H.; Ihm, K.; Baik, H. K. ; Kim, Y. S., “Inducement of Azimuthal molecular orientation of pentacene by imprinted periodic groove patterns for organic thin-film transistors”, Adv. Mater., 20, 1146-1153 (2008).
2.Sun, Q.; Kim, J. H.; Park, J. H.; Seo, S., “Characteristics of a pentacene thin film transistor with periodic groove patterned poly(methylmethacrylate) dielectrics”, Appl. Phys. Lett., 96, 103301 (2010).
3.Chou, W. Y.; Chang, M. H.; Cheng, H. L.; Yu, S. P.; Lee, Y. C.; Chiu, C. Y.; Lee, C. Y.; Shu, D. Y., “Application of nanoimprinting technology to organic field-effect transistors”, Appl. Phys. Lett., 96, 083305 (2010).
4.Uekusa, T.; Nagano, S.; Seki, T., “Highly Ordered In-Plane Photoalignment Attained by the Brush Architecture of Liquid Crystalline Azobenzene Polymer”, Macromolecules, 42, 312-318 (2009).
5.Yang, SH (Yang, Sheng-Hsiung); Hsu, C. S., “Liquid Crystalline Conjugated Polymers and Their Applications in Organic Electronics”, J. Polym. Sci. Pol. Chem., 47, 2713-2733 (2009).
6.Li, D. W.; Guo, L. J., “Organic thin film transistors and polymer light-emitting diodes patterned by polymer inking and stamping” J. Phys. D-Appl. Phys., 41, 105115-1-105115-7 (2008).
7.Jo, S. J.; Kim, C. S.; Lee, M. J.; Kim, J. B.; Ryu, S. Y.; Noh, J. H.; Ihm, K.; Baik, H. K.; Kim, Y. S., “Inducement of Azimuthal molecular orientation of pentacene by imprinted periodic groove patterns for organic thin-film transistors” Adv. Mater., 20, 1146-1153 (2008).
8.Landis, S.; Pirot, M.; Monna, R.; Lee, Y.; Brianceau, P.; Jourdan, J.; Mialon, S.; Ribeyron, P. J., “Silicon solar cells efficiency improvement with Nano Imprint Lithography technology”, Microelectron. Eng., 111, 224-228 (2013).
9.Cord, B.; Yang, J.; Duan, H. G.; Joy, D. C.; Klingfus, J.; Berggren, K. K., “Limiting factors in sub-10 nm scanning-electron-beam lithography”, J. Vac. Sci. Technol. B, 27, 2616-2621 (2009).
10.Lee, Y. C.; Chiu, C. Y., “Micro-/nano-lithography based on the contact transfer of thin film and mask embedded etching”, J. Micromech. Microeng., 18, 075013 (2008).
11.Xie, Z.; Zhou, X. C.; Tao, X. M.; Zheng, Z. J., “Polymer Nanostructures Made by Scanning Probe Lithography: Recent Progress in Material Applications”, Macromol. Rapid Commun., 33, 359-373 (2012).
12.Ganesan, R.; Dumond, J.; Saifullah, M. S. M..; Lim, S. H..; Hussain, H.; Low, H. Y., “Direct Patterning of TiO2 Using Step-and-Flash Imprint Lithography”, ACS Nano, 2, 1494-1502 (2012).
13.Perl, A.; Reinhoudt, D. N.; Huskens, J., “Microcontact Printing: Limitations and Achievements”, Adv. Mater., 22, 2257-2268 (2009).

Chapter6
1.Kafer, D.; Woll, C.; Witte, G., “Thermally activated dewetting of organic thin films: the case of pentacene on SiO2 and gold”, Appl. Phys. A-Mater. Sci. Process., 95, 273-284 (2009).
2.Yang, H.; Yang, C.; Kim, S. H.; Jang, M.; Park, C. E., “Dependence of Pentacene Crystal Growth on Dielectric Roughness for Fabrication of Flexible Field-Effect Transistors”, ACS Appl. Mater. Interfaces, 2, 391-396 (2010).
3.Yun, H. J.; Ham, Y. H.; Shin, H. S.; Jeong, K. S.; Park, J. G.; Choi, D. S.; Lee, G. W., “Study of Surface-Modified PVP Gate Dielectric in Organic Thin Film Transistors with the Nano-Particle Silver Ink Source/Drain Electrode”, J. Nanosci. Nanotechnol., 11, 5640-5644 (2011).
4.Chou, W. Y.; Chang, M. H.; Cheng, H. L.; Yu, S. P.; Lee, Y. C.; Chiu, C. Y.; Lee, C. Y.; Shu, D. Y., “Application of nanoimprinting technology to organic field-effect transistors”, Appl. Phys. Lett., 96, 083305-1-083305-3 (2010).
5.Chang, M. H.; Chou, W. Y.; Lee, Y. C.; Cheng, H. L.; Chung, H. Y.; Chang, C. C.; Chiu, C.Y.; Ho, T. Y., “Polymorphic transformation induced by nanoimprinted technology in pentacene-film early-stage growth”, Appl. Phys. Lett., 97, 183301-1-183301-3 (2010).
6.Chou, W. Y. Cheng, H. L., “An Orientation-Controlled Pentacene Film Aligned by Photoaligned Polyimide for Organic Thin-Film Transistor Applications”, Adv. Funct. Mater., 14, 811-815 (2004).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-10-23起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-10-23起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw