進階搜尋


 
系統識別號 U0026-1609201016035000
論文名稱(中文) 溫度與溼度對PBI/H3PO4燃料電池特性影響之研究
論文名稱(英文) Effects of Temperature and Humidity on Characteristics of Phosphoric Acid Doped Polybenzimidazole Fuel Cells
校院名稱 成功大學
系所名稱(中) 航空太空工程學系碩博士班
系所名稱(英) Department of Aeronautics & Astronautics
學年度 99
學期 1
出版年 99
研究生(中文) 陳震宇
研究生(英文) Chen-Yu Chen
電子信箱 p4894101@mail.ncku.edu.tw
學號 P4894101
學位類別 博士
語文別 英文
論文頁數 141頁
口試委員 指導教授-賴維祥
召集委員-江滄柳
口試委員-鄭金祥
口試委員-溫志湧
口試委員-顏維謀
口試委員-翁炳志
口試委員-鄭名山
中文關鍵字 電池  聚苯並咪唑  磷酸  阻抗  水吸附  水竄透  水群聚 
英文關鍵字 Proton exchange membrane fuel cell (PEMFC)  Polybenzimidazole (PBI)  Phosphoric acid  Electrochemical impedance spectroscopy (EIS)  Water adsorption  Water crossover  Water clustering 
學科別分類
中文摘要 PBI/磷酸為目前最具潛力之高溫型質子交換膜燃料電池之一。因此,為求得PBI/磷酸型質子交換膜燃料電池於高溫操作時之優缺點間的平衡,同時為瞭解於應用系統中之電池性能與阻抗特性,本論文針對此型燃料電池在不同溫度與溼度下進行性能測試。另一方面,為瞭解薄膜含水對電池阻抗與操作壽命之影響,本論文亦進行了PBI/磷酸型膜電極組於in situ情況下之含水研究。
本研究量測電池於不同溫度與溼度下之性能曲線,同時利用交流阻抗分析法,並搭配等效電路模擬來量化薄膜阻抗、電荷轉移阻抗與質傳阻抗,同時運用Kramers-Kronig轉換驗證阻抗量測之可靠性。另外,為瞭解水對質子傳導性及電池壽命之影響,並幫助釐清水傳輸與質子傳導機制,本論文針對電池於in situ狀態下之含水及竄透(water crossover)現象進行探討。
性能測試結果顯示,電池溫度對性能有顯著的影響,但濕度對性能之影響則不顯著。在溫度與濕度對電池阻抗影響方面,當溫度低於130℃時,薄膜阻抗隨著溫度增加而降低,當溫度高於130℃時,磷酸開始分解成焦磷酸與水,因此薄膜阻抗開始增加。增加反應氣體溼度可增加薄膜含水量,進而增加質子擴散速率或質子跳躍機率,因此可降低薄膜阻抗。提升溫度能降低電荷轉移阻抗,但濕度對於電荷轉移阻抗之影響則取決於界面電荷轉移阻抗於不同電流密度範圍之行為。由質傳阻抗與溫度、溼度及電流密度之關係圖得知,於乾燥之條件下,氣體擴散率主導質傳阻抗,於濕潤之條件下,氣體濃度主導質傳阻抗。因此,提高溫度與降低溼度可分別增加氣體擴散率與反應氣體濃度,進而降低質傳阻抗。
水吸附研究顯示,於ex situ狀況下,PBI/磷酸型膜電極組水吸附現象被擴散機制所主導,但於in situ狀況下,必須同時考慮擴散作用與水群聚作用(water clustering)。在水竄透研究方面,由實驗得知,由陰極竄透至陽極之水量約為產生量之9-14%。水通量(water flux)之增率隨著電流提高而增加,此現象說明由陰極至陽極之擴散機制主導了薄膜內之水竄透行為。另一方面,溫度增加使得擴散係數增加,因而提高陰極至陽極之水通量。由吸水與水竄透研究中所獲得之回歸曲線將有助進行PBI/磷酸型質子交換膜燃料電池之數值模擬,更深一層探討膜含水量對於薄膜阻抗及電池性能之影響,並進一步增加吾人對於PBI/磷酸型質子交換膜燃料電池水傳輸機制之瞭解。
英文摘要 The polybenzimidazole-based phosphoric acid-doped (PBI/H3PO4) fuel cell is currently one of the most promising high temperature polymer electrolyte membrane fuel cell (HT-PEMFC) systems. To obtain a trade-off between the advantages and drawbacks of an operation at a high temperature and to understand the behavior of a PBI/H3PO4 fuel cell in a real application system, it is essential to study the effects of temperatures and gas humidity levels on the fuel cell performance. On the other hand, to further understand the influence of the water content on the cell resistance and the operational life, the understanding of water adsorption by the membrane electrode assembly (MEA) under in situ conditions becomes an important task.
The author evaluated the performance of PBI/H3PO4 HTM fuel cells at different temperatures and gas humidity levels, and quantified and discriminated the membrane resistance, charge transfer resistance, and the mass transfer resistance by the electrochemical impedance spectroscopy (EIS) method and the equivalent circuit. The Kramers-Kronig (K-K) transform was also used to check the validity of the impedance data. Furthermore, this author reported data suitable for understanding changes in the ratio of water to H3PO4 at various temperatures and water vapor pressures in a PBI/H3PO4 MEA under in situ conditions.
The results of the performance tests indicated that increasing the temperature significantly improved the cell performance. In contrast, no improvement was observed when the gas humidity was increased. On the other hand, the EIS results showed that the membrane resistance was reduced for elevated temperatures. This development can be interpreted by the increase in membrane conductivity, as reflected by the Arrhenius equation. As the formation of H4P2O7 and the self-dehydration of H3PO4 start around 130-140 oC in PBI, they increase the membrane resistance at temperatures that are higher than 130 oC. In addition, the membrane resistance was reduced for elevated gas humidity levels. This is because an increase in humidity leads to an increase of the membrane hydration level. The resistance of the catalyst kinetics mainly contributes to the charge transfer resistance. However, under certain conditions, the interfacial charge transfer resistance is also important. It was concluded that the gas diffusion is the main contributor to the mass transfer resistance under dry conditions while it is the gas concentration under humid conditions.
The results of the in situ water adsorption of PBI/H3PO4 MEA showed that the mechanism of the water adsorption in the low current density region was different from that in the high current density region. The results of comparison between the in situ and the ex situ water adsorption measurement showed that the mechanism of water adsorption changed when the electrochemical reaction rate changed. When the electrochemical reaction in the fuel cell is weak, the diffusion dominates the water adsorption mechanism in the PBI/H3PO4 membrane. On the contrary, when the electrochemical reaction is strong, both the diffusion and the water clustering control the water adsorption.
The rate of water crossover and the water flux of a PBI/H3PO4 MEA were also obtained in this study. The results showed that the back diffusion of water was the main contributor in the water transport mechanism of PBI/H3PO4 MEA than the electro-osmotic effect when the current density was increased. In addition, the water crossover from the cathode to the anode increased with increasing temperatures due to an increase of the diffusion coefficient at elevated temperatures. The water adsorption and water flux data in this study can be used in the mathematical model for understanding the water transport mechanism and the water transport distribution in the PBI/H3PO4 MEA, and for the further in situ conductivity and life prediction of the MEA.
論文目次 摘要.......................................................i
第一章 緒論...............................................iii
第二章 研究背景與理論........................................v
第三章 實驗設備與量測系統....................................vi
第四章 燃料電池阻抗分析....................................vii
第五章 溫度與溼度對燃料電池性能與阻抗之影響.................viii
第六章 PBI/磷酸膜電極組吸水與水竄透之特性研究.................x
第七章 結論與未來工作建議...................................xi
ABSTRACT...............................................xiii
誌 謝...................................................xvi
CONTENT................................................xvii
LIST OF TABLES...........................................xx
LIST OF FIGURES.........................................xxi
NOMENCLATURE...........................................xxvi
CHAPTER Ⅰ INTRODUCTION...................................1
1.1 Background........................................1
1.2 Working Mechanism of Proton Exchange Membrane Fuel Cells....................................................7
1.3 Motivation and Objectives.......................10
CHAPTER Ⅱ BACKGROUND AND THEORY........................15
2.1 Polarization Curve..................................15
2.1.1 Activation Loss...................................16
2.1.2 Fuel Crossover and Internal Current................17
2.1.3 Ohmic Loss.........................................18
2.1.4 Mass Transport Loss...............................19
2.2 Theory of Electrochemical Impedance Spectroscopy.....21
2.2.1 EIS Analysis of A PEMFC............................23
2.2.2 EIS Equivalent Circuits............................25
CHAPTER Ⅲ EXPERIMENTAL SETUP AND INSTRUMENTS............30
3.1 Fuel Cell Specification..............................30
3.1.1 Fuel Cell Figure...................................30
3.1.2 MEA................................................31
3.1.3 Leaking Test of The Fuel Cell......................31
3.2 Polarization Curve Measurement...................33
3.3 Resistance Measurement...............................37
3.3.1 The EIS Measurement................................37
3.3.2 The High Frequency Resistance (HFR)................39
3.3.3 The Current Interruption...........................40
3.4 In Situ Water Adsorption Measurement.................41
3.4.1 In Situ Test for The Water Uptake of The PBI Membrane.................................................41
3.4.2 The In Situ Test for The Water Crossover...........45
CHAPTER Ⅳ ANALYSIS OF FUEL CELL IMPEDANCE...............50
4.1 Equivalent Circuit Fitting..........................50
4.2 Kramers-Kronig Transformations......................52
CHAPTER Ⅴ TEMPERATURE AND HUMIDITY EFFECTS ON FUEL CELL PERFORMANCE AND RESISTANCE...............................57
5.1 Effects of Current on Fuel Cell Resistance...........57
5.1.1 Membrane Resistance versus Current Density.........58
5.1.2 Charge Transfer Resistance versus Current Density..63
5.1.3 Mass Transfer Resistance versus Current Density....65
5.2 Effect of Temperature on Fuel Cell Performance and Resistance...............................................68
5.2.1 Temperature Effects on Fuel Cell Performance.......68
5.2.2 Effects of Temperature on Fuel Cell Resistance.....70
5.2.3 Fuel Cell Performance and Resistance Before and After the Test at 70 oC........................................76
5.3 Effect of Humidity on Fuel Cell Performance and Resistance...............................................78
5.3.1 Effects of Humidity on Fuel Cell Performance.......78
5.3.2 Effects of Humidity on Fuel Cell Resistance........83
5.4 Preliminary Life Test of The PBI/H3PO4 Fuel Cell.....88
CHAPTER Ⅵ WATER ADSORPTION AND CROSSOVER OF THE PBI/H3PO4 MEA......................................................93
6.1 Water Adsorption of The PBI/H3PO4 MEA............93
6.1.1 In Situ Test for The Water Adsorption of The PBI/H3PO4 MEA............................................94
6.1.2 Comparison of In Situ and Ex Situ Water Adsorption..96
6.2 Water Crossover of The PBI/H3PO4 MEA.................104
CHAPTER Ⅶ CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK...114
7.1 Conclusions......................................114
7.2 Suggestions for Future Work......................116
REFERENCES...............................................118
APPENDIX A EX SITU WATER ADSORPTION by a PBI/H3PO4 MEA..129
PUBLICATION LIST.........................................137
VITA.....................................................141
參考文獻 [1] Tang Y, Zhang J, Song C, Liu H, Zhang J, Wang H, et al. Temperature Dependent Performance and In Situ AC Impedance of High-Temperature PEM Fuel Cells Using the Nafion-112 Membrane. Journal of The Electrochemical Society. 2006;153(11):pp. A2036-A43.
[2] Zhang J, Wang H, Wilkinson DP, Song D, Shen J, Liu Z-S. Model for the contamination of fuel cell anode catalyst in the presence of fuel stream impurities. Journal of Power Sources. 2005;147(1-2):pp. 58-71.
[3] Sone Y, Ekdunge P, Simonsson D. Proton Conductivity of Nafion 117 as Measured by a Four-Electrode AC Impedance Method. Journal of The Electrochemical Society. 1996;143(4):p. 1254-9.
[4] Larminie J, Dicks A, eds. Fuel Cell Systems Explained. 2nd ed: John Wiley &Sons Ltd 2003.
[5] Vielstich W, Lamm A, Gasteiger HA, eds. Handbook of Fuel Cells-Fundamentals Technology and Applications: John Willy & Sons Ltd 2003.
[6] Li Q, Jensen JO, Savinell RF, Bjerrum NJ. High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Progress in Polymer Science. 2009;34:pp. 449–77.
[7] Xing B, Savadogo O. The effect of acid doping on the conductivity of polybenzimidazole (PBI). Journal of New Materials for Electrochemical Systems. 1999;2(2):pp. 95-101.
[8] Kim YM, Choi SH, Lee HC, Hong MZ, Kim K, Lee H-I. Organic–inorganic composite membranes as addition of SiO2 for high temperature-operation in polymer electrolyte membrane fuel cells (PEMFCs). Electrochimica Acta. 2004;49(26):pp.4787-96.
[9] Hogarth WHJ, Costa JCDd, Lu GQM. Solid acid membranes for high temperature (>140 oC) proton exchange membrane fuel cells. Journal of Power Sources. 2005;142:pp. 223-37.
[10] Vengatesan S, Kim H-J, Lee S-Y, Cho EA, Ha HY, Oh I-H, et al. High temperature operation of PEMFC:Anovel approach usingMEA with silica in catalyst layer. International Journal of Hydrogen Energy. 2008;33(1):pp.171-8.
[11] Wainright JS, Wang J-T, Weng D, Savinell RF, Litt M. Acid-Doped Polybenzimidazoles: A New Polymer Electrolyte. Journal of The Electrochemical Society. 1995;142:pp. L121-L3.
[12] Weng D, Wainright JS, Landau U, Savinell RF. Electro-osmotic Drag Coefficient of Water and Methanol in Polymer Electrolytes at Elevated Temperatures. Journal of The Electrochemical Society. 1996;143(4):pp. 1260-3
[13] Ren X, Henderson W, Gottesfeld S. Electro-osmotic Drag of Water in Ionomeric Membranes. Journal of The Electrochemical Society. 1997;144(9):pp. L267-L70.
[14] Samms SR, Wasmus S, Savinell RF. Thermal Stability of Proton Conducting Acid Doped Polybenzimidazole in Simulated Fuel Cell Environments. Journal of The Electrochemical Society. 1996;143(4):pp. 1225-32
[15] He R, Li Q, Bach A, Jensen JO, Bjerrum NJ. Physicochemical properties of phosphoric acid doped polybenzimidazole membranes for fuel cells. Journal of Membrane Science. 2006;277:pp. 38-45.
[16] Li Q, He R, Gao J-A, Jensen JO, Bjerrum NJ. The CO Poisoning Effect in PEMFCs Operational at Temperatures up to 200°C. Journal of The Electrochemical Society. 2003;150(12):pp. A1599-A605.
[17] Holladay JD, Wainright JS, Jones EO, Gano SR. Power generation using a mesoscale fuel cell integrated with a microscale fuel processor. Journal of Power Sources. 2004;130(1-2):pp. 111-8.
[18] Jalani NH, Ramani M, Ohlsson K, Buelte S, Pacifico G, Pollard R, et al. Performance analysis and impedance spectral signatures of high temperature PBI–phosphoric acid gel membrane fuel cells. Journal of Power Sources. 2006;160:pp. 1096–103.
[19] Chung T-S. A Critical Review of Polybenzimidazoles : Historical Development and Future R&D. Polymer Reviews. 1997;37(2):pp. 277-301.
[20] Ma Y-L, Wainright JS, Litt MH, Savinell RF. Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells. Journal of The Electrochemical Society. 2004;151(1):pp. A8-A16.
[21] Kumbharkar SC, Karadkar PB, Kharul UK. Enhancement of gas permeation properties of polybenzimidazoles by systematic structure architecture. Journal of Membrane Science. 2006;286(1-2):pp. 161-9.
[22] Liu Z, Wainright JS, Litt MH, Savinell RF. Study of the oxygen reduction reaction (ORR) at Pt interfaced with phosphoric acid doped polybenzimidazole at elevated temperature and low relative humidity. Electrochimica Acta. 2006;51(19):pp. 3914-23.
[23] Parthasarathy A, Srinivasan S, Appleby AJ, Martin CR. Temperature Dependence of the Electrode Kinetics of Oxygen Reduction at the Platinum/Nafion® Interface—A Microelectrode Investigation. Journal of The Electrochemical Society. 1992;139(9):pp. 2530-7.
[24] Pang J, Zhang H, Li X, Wang L, Liu B, Jiang Z. Synthesis and characterization of sulfonated poly(arylene ether)s with sulfoalkyl pendant groups for proton exchange membranes. Journal of Membrane Science. 2008;318(1-2):pp. 271-9.
[25] Liu B, Robertson GP, Kim D-S, Sun X, Jiang Z, Guiver MD. Enhanced thermo-oxidative stability of sulfophenylated poly(ether sulfone)s. Polymer. 2010;51(2):pp. 403-13.
[26] Schmidt TJ, Baurmeister J. Properties of high-temperature PEFC Celtec®-P 1000 MEAs in start/stop operation mode. Journal of Power Sources. 2008;176:pp.428-34.
[27] Lebæk J, Ali ST, Møller P, Mathiasen C, Nielsen LP, Kær SK. Quantification of in situ temperature measurements on a PBI-based high temperature PEMFC unit cell. International Journal of Hydrogen Energy. 2009;in press.
[28] Xie J, III DLW, Wayne DM, Zawodzinski TA, Atanassov P, Borupa RL. Durability of PEFCs at High Humidity Conditions. Journal of The Electrochemical Society. 2005;152(1):pp. A104-A13
[29] Yasuda K, Taniguchi A, Akita T, Ioroi T, Siroma Z. Platinum dissolution and deposition in the polymer electrolyte membrane of a PEM fuel cell as studied by potential cycling. Phys Chem Chem Phys. 2006;8:pp. 746-52.
[30] Zhang J, Tang Y, Song C, Zhang J. Polybenzimidazole-membrane-based PEM fuel cell in the temperature range of 120–200 oC. Journal of Power Sources. 2007;172:pp. 163–71.
[31] Oono Y, Sounai A, Hori M. Influence of the phosphoric acid-doping level in a polybenzimidazole membrane on the cell performance of high-temperature proton exchange membrane fuel cells. Journal of Power Sources. 2009;189(2):pp. 943-9
[32] Oono Y, Fukuda T, Sounai A, Hori M. Influence of operating temperature on cell performance and endurance of high temperature proton exchange membrane fuel cells. Journal of Power Sources. 2010;195:pp. 1007–14.
[33] Ashcroft AT, Cheetham AK, Green MLH, Vernon PDF. Partial oxidation of methane to synthesis gas using carbon dioxide. Nature. 1991;352:pp. 225-6.
[34] Vagia EC, Lemonidou AA. Thermodynamic analysis of hydrogen production via steam reforming of selected components of aqueous bio-oil fraction. International Journal of Hydrogen Energy. 2007;32:pp. 212-23.
[35] Horng R-F, Huang H-H, Lai M-P, Wen C-S, Chiu W-C. Characteristics of hydrogen production by a plasma–catalyst hybrid converter with energy saving schemes under atmospheric pressure. International Journal of Hydrogen Energy. 2008;33:pp. 3719-27.
[36] Horng R-F, Lai M-P, Huang H-H, Chang Y-P. Reforming performance of a plasma-catalyst hybrid converter using low carbon fuels. Energy Conversion and Management. 2009;50:pp. 2632-7.
[37] Hwang JJ, Wang DY, Shih NC. Development of a lightweight fuel cell vehicle. Journal of Power Sources. 2005;141:pp. 108-15.
[38] Hsin-Ping Chang, Chao-Ling Chou, Yong-Song Chen, Tien-I Hou, Weng B-J. The design and cost analysis of a portable PEMFC UPS system. International Journal of Hydrogen Energy. 2007;32:pp. 316-22.
[39] Wee J-H. Applications of proton exchange membrane fuel cell systems. Renewable and Sustainable Energy Reviews. 2007;11:pp. 1720–38.
[40] He R, Li Q, Xiao G, Bjerrum NJ. Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors. Journal of Membrane Science. 2003;226:pp. 169-84.
[41] Li Q, He R, Berg RW, Hjuler HA, Bjerrum NJ. Water uptake and acid doping of polybenzimidazoles as electrolyte membranes for fuel cells. Solid State Ionics. 2004;168:pp. 177-85.
[42] Lobato J, Ca˜nizares P, Rodrigo MA, Linares JeJ. PBI-based polymer electrolyte membranes fuel cells Temperature effects on cell performance and catalyst stability. Electrochimica Acta. 2007;52:pp. 3910–20.
[43] Jaffe M, Chen P, Choe E-W, Chung T-S, Makhija S. High performance polymer blends. Advances in Polymer Science. 1994;117:pp. 297-327.
[44] Iwamoto N. A property trend study of polybenzimidazole using molecular modeling. Polymer Engineering & Science. 1994;34(5):pp.434-7.
[45] Daletou MK, Kallitsis JK, Voyiatzis G, Neophytides SG. The interaction of water vapors with H3PO4 imbibed electrolyte based on PBI/polysulfone copolymer blends. Journal of Membrane Science. 2009;326:pp. 76-83.
[46] Qian G, Smith DW, Benicewicz JBC. Synthesis and characterization of high molecular weight perfluorocyclobutyl-containing polybenzimidazoles (PFCB-PBI) for high temperature polymer electrolyte membrane fuel cells. Polymer. 2009;50:pp. 3911-6.
[47] Yu S, Zhang H, Xiao L, Choe E-W, Benicewicz BC. Sysnthesis of Poly (2,2’-(1,4-phenylene 5,5’-bibenzimidazole) (para-PBI) and Phosphoric Acid Doped Membrane for Fuel Cells. Fuel Cells. 2009;9(4):pp. 318-24.
[48] Freire TJP, Gonzalez ER. Effect of membrane characteristics and humidification conditions on the impedance response of polymer electrolyte fuel cells. Journal of Electroanalytical Chemistry. 2001;503:pp. 57-68.
[49] Burnett DJ, Garcia AR, Thielmann F. Measuring moisture sorption and diffusion kinetics on proton exchange membranes using a gravimetric vapor sorption apparatus. Journal of Power Sources. 2006;160:pp.426-30.
[50] Kongstein OE, Berning T, Børresen B, Seland F, Tunold R. Polymer electrolyte fuel cells based on phosphoric acid doped polybenzimidazole (PBI) membranes. Energy. 2007;32:pp. 418-22.
[51] Diaz LA, Abuin GC, Corti HR. Water and phosphoric acid uptake of poly [2,5-benzimidazole] (ABPBI) membranes prepared by low and high temperature casting. Journal of Power Sources. 2009;188:pp. 45-50.
[52] Yu S, Xiao L, Benicewicz BC. Durability of PBI-based High Temperature PEMFCs. Fuel Cells. 2008;8(3-4):pp. 165-74.
[53] Castro EB, Cuscueta DJ, Milocco RH, Ghilarducci AA, Salva HR. An EIS based study of a Ni–MH battery prototype. Modeling and identification analysis. International Journal of Hydrogen Energy. 2010;35(11):pp. 5991-8.
[54] Zhang SS, Xu K, Jow TR. EIS study on the formation of solid electrolyte interface in Li-ion battery. Electrochimica Acta. 2006;51(8-9):pp. 1636-40.
[55] Aurbach D, Markovsky B, Weissman I, Levi E, Ein-Eli Y. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochimica Acta. 1999;45(1-2):pp. 67-86.
[56] Titz J, Wagner GH, Lorenz WJ. In situ EIS studies of localized corrosion processes in research and industrial practice. Electrochimica Acta. 1992;37(12):pp. 2309-20.
[57] Liu L, Li Y, Zeng C, Wang F. Electrochemical impedance spectroscopy (EIS) studies of the corrosion of pure Fe and Cr at 600 °C under solid NaCl deposit in water vapor. Electrochimica Acta. 2006;51(22):pp. 4736-43.
[58] Liu C, Bi Q, Matthews A. EIS comparison on corrosion performance of PVD TiN and CrN coated mild steel in 0.5 N NaCl aqueous solution. Corrosion Science. 2001;43(10):pp. 1953-61.
[59] Song R-H, Kim D-J, Kim C-S, Shin D-R. Electrochemical evaluation of single cell in phosphoric acid fuel cell by ac impedance technique. Journal of New Materials for Electrochemical Systems. 2001;4:pp. 47-50.
[60] Romero-Castan˜o´n T, Arriaga LG, Cano-Castillo U. Impedance spectroscopy as a tool in the evaluation of MEA’s. Journal of Power Sources. 2003;118:pp. 179-82.
[61] Xiaozi Yuan, HaijiangWang, Jian Colin Sun, Zhang J. AC impedance technique in PEM fuel cell diagnosis—A review. International Journal of Hydrogen Energy. 2007;32:pp. 4365-80.
[62] Hakenjos A, Zobel M, Clausnitzer J, Hebling C. Simultaneous electrochemical impedance spectroscopy of single cells in a PEM fuel cell stack. Journal of Power Sources. 2006;154:pp. 360-3.
[63] Yuan X, Sun JC, Blanco M, Wang H, Zhang J, Wilkinson DP. AC impedance diagnosis of a 500W PEM fuel cell stack Part I: Stack impedance. Journal of Power Sources. 2006;161:pp. 920-8.
[64] Yuan X, Sun JC, Wang H, Zhang J. AC impedance diagnosis of a 500W PEM fuel cell stack Part II: Individual cell impedance. Journal of Power Sources. 2006;161:929-37.
[65] Diard J-P, Glandut N, Landaud P, Gorrec BL, Montella C. A method for determining anode and cathode impedances of a direct methanol fuel cell running on a load. Electrochimica Acta. 2003;48:pp. 555-62.
[66] Lang M, Auer C, Eismann A, Szabo P, Wagner N. Investigation of solid oxide fuel cell short stacks for mobile applications by electrochemical impedance spectroscopy. Electrochimica Acta. 2008;53(25):pp. 7509-13.
[67] Yang S-H, Chenb C-Y, Wang W-J. An impedance study for the anode micro-porous layer in an operating direct methanol fuel cell. Journal of Power Sources. 2010;195(11):pp. 3536-45.
[68] Yuan X-Z, Song C, Wang H, Zhang J. Electrochemical Impedance Spectroscopy in PEM Fuel Cells : Fundamentals and Applications: Springer 2010.
[69] Büchi FN, Scherer GG. In-situ resistance measurements of Nafion® 117 membranes in polymer electrolyte fuel cells. Journal of Electroanalytical Chemistry. 1996;404(1):pp.37-43.
[70] Andreaus B, Scherer GG. Proton-conducting polymer membranes in fuel cells—humidification aspects. Solid State Ionics. 2004;168(3-4):pp. 311-20.
[71] Kaltbeitzel A, Schauff S, Steininger H, Bingöl B, Brunklaus G, Meyer WH, et al. Water sorption of poly(vinylphosphonic acid) and its influence on proton conductivity. Solid State Ionics. 2007;178:pp. 469-74.
[72] Greenway SD. Understanding the electrochemical impedance of a proton exchange membrane fuel cell. Columbia: University of South Carolina; 2007.
[73] Nakamura S, Nishikawa H, Aoki T, Ogami Y. The diffusion overpotential increase and appearance of overlapping arcs on the Nyquist plots in the low humidity temperature test conditions of polymer electrolyte fuel cell. Journal of Power Sources. 2009;186(2):pp. 278-85.
[74] Zhu WH, Payne RU, Tatarchuk BJ. PEM stack test and analysis in a power system at operational load via ac impedance. Journal of Power Sources. 2007;168:pp. 211-7.
[75] Barsoukov E, Macdonald JR. Impedance Spectroscopy Theory, Experiment, and Applications: John Wiley & Sons 2005.
[76] Fouquet N, Doulet C, Nouillant C, Dauphin-Tanguy G, Ould-Bouamama B. Model based PEM fuel cell state-of-health monitoring via ac impedance measurements. Journal of Power Sources. 2006;159:pp. 905-13.
[77] Cooper KR, Smith M. Electrical test methods for on-line fuel cell ohmic resistance measurement. Journal of Power Sources. 2006;160:pp. 1088-95.
[78] Lee C-G, Nakano H, Nishina T, Uchida I, Kuroe S. Characterization of a 100 cm2 Class Molten Carbonate Fuel Cell with Current Interruption. Journal of The Electrochemical Society. 1998;145(8):pp. 2747-51.
[79] Lee W-K, Shimpalee S, Zee JWV. Verifying Predictions of Water and Current Distributions in a Serpentine Flow Field Polymer Electrolyte Membrane Fuel Cell. Journal of The Electrochemical Society. 2003;150(3):pp. A341-A8.
[80] Colinart T, Chenu A, Didierjean S, Lottin O, Besseb S. Experimental study on water transport coefficient in Proton Exchange Membrane Fuel Cell. Journal of Power Sources. 2009;190(2):pp. 230-40.
[81] Yan Q, Toghiani H, Wu J. Investigation of water transport through membrane in a PEM fuel cell by water balance experiments. Journal of Power Sources. 2006;158:pp. 316-25.
[82] Zhao X, Fan X, Wang S, Yang S, Yi B, Xin Q, et al. Determination of ionic resistance and optimal composition in the anodic catalyst layers of DMFC using AC impedance. International Journal of Hydrogen Energy. 2005;30(9):pp. 1003-10.
[83] Chakraborty D, Chorkendorff I, Johannessen T. Electrochemical impedance spectroscopy study of methanol oxidation on nanoparticulate PtRu direct methanol fuel cell anodes: Kinetics and performance evaluation. Journal of Power Sources. 2006;162(2):pp. 1010-22.
[84] Macdonald DD, Urquidi-Macdonald M. Application of Kramers-Kronig Transforms in the Analysis of Electrochemical Systems. Journal of The Electrochemical Society. 1985;132(10):pp. 2316-9.
[85] Barsoukov E, Macdonald JR, eds. Impedance Spectroscopy Theory, Experiment, and Applications. 2nd ed: John Wiley & Sons, Inc. 2005.
[86] Zhang L, Liu Y, Song H, Wang S, Zhou Y, Hu SJ. Estimation of contact resistance in proton exchange membrane fuel cells. Journal of Power Sources. 2006;162:pp. 1165–71.
[87] Zhou P, Wu CW, Ma GJ. Contact resistance prediction and structure optimization of bipolar plates. Journal of Power Sources. 2006;159:pp. 1115–22.
[88] Wu Z, Zhou Y, Lin G, Wang S, Hu SJ. An improved model for predicting electrical contact resistance between bipolar plate and gas diffusion layer in proton exchange membrane fuel cells. Journal of Power Sources. 2008;182:pp. 265–9.
[89] Song C, Tang Y, Zhang JL, Zhang J, Wang H, Shen J, et al. PEM fuel cell reaction kinetics in the temperature range of 23–120 °C. Electrochimica Acta. 2007;52(7):pp. 2552-61
[90] Hwang JJ, Chao CH. Species-electrochemical transports in a free-breathing cathode of a PCB-based fuel cell. Electrochimica Acta. 2007;52:pp. 1942–50.
[91] Chen-Yu Chen, Wei-Hsiang Lai, Biing-Jyh Weng, Huey-Jan Chuang, Ching-Yuan Hsieh, Kung C-C. Planar array stack design aided by rapid prototyping in development of air-breathing PEMFC. Journal of Power Sources. 2008;179:pp. 147-54.
[92] Chen C-Y, Wen Y-C, Lai W-H, Chou M-C, Weng B-J, Hsieh C-Y, et al. Fast Design And Manufactured On Complex Flow Channel By Rapid Prototyping For Air-Breathing Polymer Electrolyte Membrane Fuel Cells. Accepted to piblish in Journal of Fuel Cell Science and Technology.
[93] Yan W-M, Chena C-Y, Meia S-C, Soong C-Y, Chen F. Effects of operating conditions on cell performance of PEM fuel cells with conventional or interdigitated flow field. Journal of Power Sources. 2006;162(2):pp. 1157–64.
[94] Weng F-B, Su A, Jung G-B, Chiu Y-C, Chan S-H. Numerical prediction of concentration and current distributions in PEMFC. Journal of Power Sources. 2005;145(2):pp. 546-54
[95] Shimpalee S, Beuscher U, Zee JWV. Investigation of gas diffusion media inside PEMFC using CFD modeling. Journal of Power Sources. 2006;163(1):pp. 480-9.
[96] Shimpalee S, Spuckler D, Zee JWV. Prediction of transient response for a 25-cm2 PEM fuel cell. Journal of Power Sources. 2007;167(1):pp. 130-8.
[97] Springer TE, Zawodzinski TA, Gottesfeld S. Polymer Electrolyte Fuel Cell Model. Journal of The Electrochemical Society. 1991;138(8):2334-42.
[98] Lobato J, Cañizares P, Rodrigo MA, Linares JJ, Manjavacas G. Synthesis and characterisation of poly[2,2-(m-phenylene)-5,5-bibenzimidazole] as polymer electrolyte membrane for high temperature PEMFCs. Journal of Membrane Science. 2006;280(1-2):pp. 351-62.
[99] Wippermann K, Wannek C, Oetjen H-F, Mergel J, Lehnert W. Cell resistances of poly(2,5-benzimidazole)-based high temperature polymer membrane fuel cell membrane electrode assemblies: Time dependence and influence of operating parameters. Journal of Power Sources. 2010;195(9):pp. 2806–9.
[100] Pu H, Meyer WH, Wegner G. Proton transport in polybenzimidazole blended with H3PO4 or H2SO4. Journal of Polymer Science Part B: Polymer Physics. 2002;40(7):pp. 663-9.
[101] Bouchet R, Siebert E. Proton conduction in acid doped polybenzimidazole. Solid State Ionics. 1999;118(3-4):pp. 287-99.
[102] Kreuer KD. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. Journal of Membrane Science. 2001;185(1):pp. 29-39.
[103] Liu F, Yi B, Xing D, Yu J, Hou Z, Fu Y. Development of novel self-humidifying composite membranes for fuel cells. Journal of Power Sources. 2003;124(1):pp. 81-9.
[104] Cooper KR, Ramani V, Fenton JM, Kunz HR. Experimental Methods and Data Analyses for Polymer Electrolyte Fuel Cells. 2005.
[105] Gruszkiewicz MS, Simonson JM, Burchell TD, Cole DR. Water Adsorption And Desorption On Microporous Solids At Elevated Temperature. Journal of Thermal Analysis and Calorimetry. 2005;81:pp. 609-15.
[106] Su A, F-B.Weng, Hsu C-Y, Chen Y-M. Studies on flooding in PEM fuel cell cathode channels. International Journal of Hydrogen Energy. 2006;31:1031-9.
[107] Liu K, Cruzan JD, Saykally RJ. Water Clusters. Science. 1996;271(5251):pp. 929-33.
[108] Maheshwary S, Patel N, Sathyamurthy N, Kulkarni AD, Gadre SR. Structure and Stability of Water Clusters (H2O)n, n= 8-20: An Ab Initio Investigation. Journal of Physical Chemistry A. 2001;105:pp. 10525-37.
[109] Takata H, Mizuno N, Nishikawa M, Fukada S, Yoshitake M. Adsorption properties of water vapor on sulfonated perfluoropolymer membranes. International Journal of Hydrogen Energy. 2007;32(3):pp. 371-9.
[110] Hatakenaka S, Takata H, Mizuno N, Mamiya Y, Nishikawa M, Fukada S, et al. Adsorption of water vapor on a polymer electrolyte membrane. International Journal of Hydrogen Energy. 2008;33(13):pp. 3368-72.
[111] Springer TE, Zawodzinski TA, Wilson MS, Gottesfeld S. Characterization of Polymer Electrolyte Fuel Cells Using AC Impedance Spectroscopy. Journal of The Electrochemical Society. 1996;143(2):pp. 587-99.
[112] Hinatsu JT, Mizuhata M, Takenaka H. Water Uptake of Perfluorosulfonic Acid Membranes from Liquid Water and Water Vapor. Journal of The Electrochemical Society. 1994;141(6):pp. 1493-8.
[113] Lu GQ, Liu FQ, Wang C-Y. An approach to measuring spatially resolved water crossover coefficient in a polymer electrolyte fuel cell. Journal of Power Sources. 2007;164(1):pp. 134-40.
[114] Xu C, Zhao TS. In situ measurements of water crossover through the membrane for direct methanol fuel cells. Journal of Power Sources. 2007;168(1):pp. 143-53.
[115] Liu F, Lu G, Wang C-Y. Water transport coefficient distribution through the membrane in a polymer electrolyte fuel cell. Journal of Membrane Science. 2007;287(1):pp. 126-31.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-09-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-09-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw