進階搜尋


下載電子全文  
系統識別號 U0026-1608201915454700
論文名稱(中文) 以有限元素法模擬震動特徵對加勁擋土牆動態行為之影響
論文名稱(英文) FEM investigations of dynamic effects in geosynthetic reinforced walls under various seismic characteristics
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 許德仲
研究生(英文) Tak-Chung Hui
學號 n66064412
學位類別 碩士
語文別 中文
論文頁數 109頁
口試委員 指導教授-洪瀞
口試委員-柯永彥
口試委員-林冠瑋
口試委員-洪啟耀
口試委員-郭治平
中文關鍵字 加勁擋土牆  回包式牆面  剛性牆面  有限元素法模擬  動態反應  震動特徵 
英文關鍵字 geosynthetic reinforced walls  wrapped face  rigid face  Finite-element approach  dynamic effects  seismic characteristics 
學科別分類
中文摘要 本研究透過有限元素法PLAXIS對回包式及剛性牆面加勁擋土牆進行動態分析。首先,以縮尺度加勁擋土牆模型驗證土體參數轉換、材料邊界及邊界條件等設定,獲得良好結果;再設計高為3 m、長為5.65 m、五層加勁層之全尺度回包式及剛性牆面加勁擋土牆以最大地表加速度 0.1 g - 0.5 g 與加載頻率 3 Hz - 9Hz 組成共 20 組具有不同震動特徵之簡諧波,加上集集地震與阪神地震兩組真實地動訊號作為全尺度模型之動態加載條件,以探討不同地震特徵與加勁擋土牆受震之動態行為的影響。研究發現,剛性牆面加勁擋土牆在低頻率(3 Hz)簡諧震動波加載下,加速度放大係數(A_rms)能體現與加載能量的遞增有正比關係;加勁擋土牆在兩組真實地震波加載下也都能明顯體現加速度放大效應,且與高程或加載能量的遞增有正比關係。在兩組真實地震波模擬中,回包式牆面與剛性牆面沒有按照最大地表加速度增加而出現相應之位移增加,認為原因在於牆面系統的整體剛度反應出不同的牆面位移分布,且真實地震波之加速度會隨時間變化,造成單純以最大地表加速度估計加勁擋土牆之動態反應可能造成錯估;加勁擋土牆之牆面變形及位移則與每層加勁材之最大應變趨勢相似,認為是與加勁材與土體之互制作用有關。所有模擬組之加勁材最大應變亦在5 %以下,認為在本研究之數值模型條件下,加勁材都有足夠之剛度應付具有不同震動條件之動態加載而不致破壞。
英文摘要 This paper presents dynamic effects on numerical models of geosynthetic reinforced walls considering wrapped or rigid faces, using a Finite-element approach. Development of the numerical models for simulating the published results on seismic responses are firstly presented. Then, it is scaled up to a size of 3 m high and 5.65 m long geosynthetic reinforced wall models with both wrapped and rigid faces. 0.1g to 0.5g sinusoidal waves with frequency from 3 Hz, 5 Hz, 7 Hz, 9 Hz, and the Chi-chi earthquake from Taiwan and the Kobe earthquake from Japan, are applied. The results show that for the rigid faced reinforced wall models, the acceleration (A_rms) amplifications increase with increasing of seismic energy under low frequency (3 Hz) sinusoidal waves. All of the models show that the acceleration amplifications increase with the increasing of seismic energy under real earthquakes. There are different tendencies between the results of wrapped and/or rigid face walls according to the two real earthquakes. There are similar tendencies between wall face deformations and maximum reinforcement strains because of the interaction between the soil and reinforcement. All of the maximum of reinforcement strain obtained by the models are lower than 5 %. It is found that the reinforcements are stiffness enough to handle any situations in study.
論文目次 摘要 I
Extended Abstract II
FEM investigations of dynamic effects in geosynthetic reinforced walls under various seismic characteristics III
誌謝 XII
目錄 XV
表目錄 XVIII
圖目錄 XIX
符號說明 XXII
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究內容 3
1.3 研究流程 3
第二章 文獻回顧 5
2.1 加勁擋土牆 5
2.1.1 加勁擋土牆型式 5
2.1.2 加勁材種類 6
2.1.3 加勁擋土牆破壞機制 7
2.2 地震引致加勁擋土牆破壞 10
2.3 加勁擋土牆動態行為 13
2.3.1 極限平衡法分析 13
2.3.2砂箱實驗 14
2.3.3 數值模擬 16
2.4 地震特徵參數 18
第三章 縮尺模型之驗證與討論 20
3.1 PLAXIS 有限元素法分析 20
3.2 建模步驟 21
3.2.1 回包式加勁擋土牆 22
3.2.2 剛性牆面加勁擋土牆 23
3.3 材料性質 25
3.3.1 組成律模型與參數 26
3.3.2 阻尼 31
3.3.3 材料界面 32
3.4 邊界條件 32
3.4.1 變形邊界條件 33
3.4.2 動態邊界條件 33
3.5 輸入加載 34
3.6 驗證結果 36
3.6.1 模型自然頻率 36
3.6.2 不同模型條件之影響 37
3.6.2.1 土體材料參數 37
3.6.2.2 材料界面 39
3.6.2.3 動態邊界條件 41
3.6.3 小尺度振動台試驗模擬 47
3.6.3.1 回包式加勁擋土牆 47
3.6.3.2 剛性牆面加勁擋土牆 48
第四章 全尺度模型之成果與討論 51
4.1 全尺度加勁擋土牆數值模型 51
4.2輸入動態加載 55
4.2.1 簡諧震動波 55
4.2.2 真實地震波 56
4.3 結果與討論:簡諧震動波 58
4.3.1加速度放大效應 58
4.3.2牆面變形與位移 65
4.3.3加勁材受拉行為 71
4.4 結果與討論:真實地震波 76
4.4.1加速度放大效應 76
4.4.2牆面變形與位移 81
4.4.3加勁材受拉行為 84
第五章 結論與建議 92
5.1 結論 92
5.2 建議 93
參考文獻 94
附錄 97
附錄A 剛性牆面加勁材與牆面板鍵接 98
附錄B 加勁擋土牆網格劃分 100
附錄C 頂部加載之影響 103
附錄D 材料界面設定補充 104
附錄E 模型自然頻率補充 106
附錄F 口試委員提問回覆 107

參考文獻 1. Atkinson, J. H. and Sallfors, G. (1991). Experimental determination of soil properties, In Proc. 10th ECSMFE, 3, 915-956.
2. Bathurst, R. j., Vlachopoulos, N., Walters, D. L., Burgess, P. G. and Allen, T. M. (2006). The influence of facing stiffness on the performance of two geosynthetic reinforced soil retaining walls, Can. Geotech. J. 43, NRC Canada, 1225-1237.
3. Bathurst, R. j., Walters, D. L., Vlachopoulos, N., Burgess, P. G. and Allen, T. M. (2000). Full scale testing of geosynthetic reinforced walls, ASCE Special Publication, Proceedings of GeoDenver 2000, Denver, Colorado, 1-17.
4. Benz, T. (2007)). Small-strain stiffness of soils and its numerical consequences, Ph.D. Dissertation, Institute of Geotechnical Engineering, University of Stuttgart, Germany.
5. Bhattacharjee, A. and Krishna, A. M. (2015). Strain behavior of backfill soil in rigid faced reinforced soil walls subjected to seismic excitation, Int. J. of Geosynth. and Ground Eng., 1-14.
6. Brinkgreve, R. B. J., Engin, E., Swolfs, W. M., (2016). User manual, PLAXIS bv, the Netherlands.
7. Fang, H. Y. (1990). Foundation engineering handbook, 779.
8. FHWA (2009). Design and construction of mechanically stabilized earth walls and reinforced soil slopes, FHWA-NHI-10-024 Federal Highway Administration, Department of Transportation, Washington, D.C.
9. Geotechnical Engineering Office (2002). Guide to reinforced fill structure and slope design, geoguide 6, The Government of Hong Kong Special Administrative Region, Hong Kong.
10. Huang, C. C., Chou, L. H. and Tatsuoka, F. (2003). Seismic displacements of geosynthetic-reinforced soil modular block walls, Geosynthethics International 10, No. 1, 2-23.
11. Huang, C. C., Horng, J. C. and Charng, J. J. (2008). Seismic stability of reinforced slope: effects of reinforcement properties and facing rigidity, Geosynthetics International 15, No. 2, 107-118.
12. Itasca Consulting Group (2017). Fast lagrangian analysis of continua, Itasca Consulting Group, Inc. Volume I, II, III, IV.
13. Koseki, J. (2012). Use of geosynthetics to improve seismic performance of earth structures, Geotextiles and Geomembrances 34, 51-68.
14. Krishna, A. M. and Latha, G. M. (2007). Seismic response of wrap-faced reinforced soil retaining wall models using shaking table tests, Geosynthetics International 14, No. 6, 355-364.
15. Krishna, A. M. and Latha, G. M. (2008). Seismic response of reinforced soil retaining wall models: influence of backfill relative density, Geotextile and Geomembrance 26, 355-349.
16. Krishna, A. M. and Latha, G. M. (2009). Seismic behavior of rigid-faced reinforced soil retaining wall models: reinforcement effect, Geosynthetics International 16, No. 5, 364-373.
17. Krishna, A. M., ACSE, Aff. M. and Latha, G. M. (2012). Modeling the dynamic response of wrap-faced reinforced soil retaining walls, ASCE, international Journal of Geomechanics, July/August, 439-450.
18. Latha, G. M. and Santhanakumar, P. (2015). Seismic response of reduced-scale modular block and rigid faced reinforced walls through shaking table tests, Geotextile and Geomembrance 43, 307-316.
19. Ling, H. I., Leshchinsky, D., and Chou, N. N. (2001). Post-earthquake investigation on several geosynthetic-reinforced soil retaining walls and slopes druing the ji-ji earthquake of Taiwan, Soil Dynamics and Earthquake Enginnering, 21(4), 279-313.
20. Schanz, T., Vermeer, P.A., and Bonnier, P.G. (1999). The hardening-soil model: formulation and verification, Beyond 2000 in Computational Geotechnics, Balkema, Rotterdam, 281-290.
21. Tatsuoka, F., Hirakawa, D., Nojiri, M., Aizawa, H., Nishiori, H., Soma, R., Tateyama, M. and Watanabe, K. (2009). A new type of integral bridge comprising geosynthetic-reinforced soil walls, Geosynthetics International 16, No. 4, 301-326.
22. Tatsuoka, F., Koeski, j., Tateyama, M., Munaf, Y. and Horii, N. (1998). Seismic stability against high seismic loads of geosynthetic-reinforced soil retaining structures, keynote Lecture, Proc. 6th Int. Conf. on Geosynthetics, Altanta, 1, 103-142.
23. Tatsuoka, F., Tateyama, M., Uchimura, T., and Koseki, J. (1997). Geosynthetic-reinforced soil retaining walls as important permanent structures, Mercer Lecture, Geosynthetics International 4, No. 2, 81-136.
24. Wu, J. T. H. (1994). Design and construction of low cost retaining walls – the next generation in technology, Colorado Transportation Institute, Report CTI-UCD-1-94, 152.
25. Yonezawa, T., Yamazaki, T., Tateyama, M., Tatsuoka, F., (2014). Design and construction of geosynthetic-reinforced soil structures for Hokkaido high-speed train line, Transport Geotechnics 1, 3-20.
26. Yu, Y., Damians, I. P., and Bathurst, R. J. (2015). Influence of choice of FLAC and PLAXIS interface models on reinforced soil-structure interactions, Computers and Geotechnics 65, 164-174.
27. 行政院農業委員會水土保持局。2018,「水土保持手冊」,中華民國政府,臺灣。
28. 吳淵洵、唐玄蕙。2005,「加勁擋土結構破壞原因之案例探討」,第十一屆大地工程學術研究討論會論文集,萬里,臺灣。
29. 李咸亨。2000,「國內近年來加勁擋土結構之破壞案例探討」,加勁擋土結構之最新發展研討會論文集,臺北,46-52。
30. 周南山、黃景川、范嘉程、吳淵洵、童心茹、李美霞。1998,「加勁擋土結構物設計及施工手冊」,台北市土木技師公會,臺北。
31. 周南山。1993,「地工合成物加勁牆分析設計之探討與評估」,地工技術,第43期,臺灣,32-42。
32. 周南山。2000,「加勁擋土結構在台灣的最新發展」,加勁擋土結構之最新發展研討僧論文集,臺北,26-45。
33. 周南山。2016,「地工合成材料在永續工程之應用」,環境工程會刊,105年第二期,臺北,1-17。
34. 唐玄蕙。2005,「加勁擋土結構破壞之案例探討」,碩士論文,中華大學土木與資訊工程系,臺灣。
35. 劉玳玲。2012,「柔性與剛性牆面加勁擋土牆加勁材張力發展預測方法之評估」,碩士論文,國立台灣科技大學營建工程系,臺灣。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw