進階搜尋


下載電子全文  
系統識別號 U0026-1608201912530200
論文名稱(中文) 近斷層速度脈衝效應對鋼筋混凝土柱塑性鉸參數定義之研究
論文名稱(英文) Study on the Characteristic of Plastic Hinge for Reinforced Concrete Column considering the Velocity Pulse Effect
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 許育銘
研究生(英文) Yu-Ming Hsu
學號 N66064250
學位類別 碩士
語文別 中文
論文頁數 168頁
口試委員 指導教授-劉光晏
口試委員-李宏仁
口試委員-蕭輔沛
口試委員-侯琮欽
中文關鍵字 鋼筋混凝土柱  應變率  側推實驗  近斷層效應 
英文關鍵字 RC column  strain rate  pushover experiment  near-fault effect 
學科別分類
中文摘要 本研究進行鋼筋混凝土方形柱受到不同加載速度之反覆載重實驗,以了解其在近斷層地震下之側力與位移行為。實驗試體設計係參考1組雙曲率柱之靜態反覆載重結果,實驗組為4組動態反覆載重實驗,變數為加載速度,包括0、250、500及1000 mm/sec。實驗結果顯示,試體側向強度隨加載速度提高而增加,但尖峰強度之位移有降低的趨勢。本研究根據試體所量測之應變率,採用CEB之動態成長因子修正混凝土與鋼筋應力應變模式,並搭配TEASPA與XTRACT程式可獲得考慮速度脈衝之塑性鉸參數。分析結果顯示,應考慮速度脈衝效應對材料模式之影響,以合理掌握實驗之側力位移曲線的包絡線。
英文摘要 In this study, the reinforced concrete square columns were subjected to repeated loading tests at different loading speeds to understand their lateral force and displacement behavior under near-fault earthquakes. The experimental sample design is based on the static back load results of a set of double curvature columns. The experimental group is 4 sets of dynamic reverse load tests. The variables are loading speeds, including 0, 250, 500 and 1000 mm/sec. The experimental results show that the lateral strength of the test body increases with the increase of the loading speed, but the displacement of the peak intensity has a tendency to decrease. According to the strain rate measured by the specimen, the dynamic growth factor of CEB is used to correct the stress and strain modes of concrete and steel. The TEASPA and XTRACT programs can be used to obtain the plastic hinge parameters considering the velocity pulse. The analysis results show that the influence of the velocity pulse effect on the material mode should be considered to reasonably predict the envelope of the lateral force displacement curve of the experiment.
論文目次 摘要 ii
Abstract iii
誌謝 vii
目錄 viii
表目錄 x
圖目錄 xi
第1章 緒論 1
1.1 研究動機與目的 1
1.2 研究內容與方法 2
第2章 文獻回顧 6
2.1 斷層近域效應 6
2.2 混凝土材料應力變模式 7
2.2.1 圍束混凝土 7
2.2.2 無圍束混凝土 12
2.3 應變率對材料之影響 13
2.3.1 混凝土材料 13
2.3.2 鋼筋材料 17
2.4 應變率對構件之影響 19
2.4.1 鋼筋混凝土柱 19
2.4.2 鋼筋混凝土梁 22
2.4.3 鋼筋混凝土牆 23
2.5 校舍耐震評估與補強手冊第三版之柱側力位移預測曲線 23
第3章 試驗規劃 40
3.1 測試規劃 40
3.2 試體設計 41
3.3 試體施作 42
3.3.1 基礎施作 43
3.3.2 柱與帽梁施作 44
3.4 試驗佈置 46
3.4.1 固定系統 47
3.4.2 施力系統 47
3.4.3 測試佈置之組裝步驟 48
3.5 量測系統佈置 48
3.5.1 內部量測系統 49
3.5.2 外部量測系統 49
3.6 測試步驟 50
第4章 實驗結果與討論 74
4.1 前言 74
4.2 材料試驗 74
4.3 試體受力與位移關係行為 75
4.3.1 柱桿件個別行為 76
4.3.2 比較與討論 83
4.4 試體裂縫發展 84
4.4.1 柱桿件各別行為 84
4.5 加載速度量測 89
4.5.1 柱桿件各別行為 89
4.6 應變率量測 93
4.6.1 柱桿件各別行為 93
4.6.2 比較與討論 97
第5章 分析與討論 146
5.1 前言 146
5.2 斷面分析 146
5.3 柱桿件力與變位預測方法 147
5.3.1 彎矩曲率分析與彎矩面積法 147
5.3.2 非線性靜力分析 150
5.4 柱桿件側力位移曲線之比較 155
第6章 結論與建議 163
6.1 結論 163
6.2 建議 164
參考文獻 165
參考文獻 [1] “台灣活動斷層觀測系統及便民查詢服務圖臺-活動斷層分布及特性,” 經濟部中央地質調查所, 台灣, 2015.
[2] Mander, J. B., Priestley, M. J. N., Park, R.,, "Theoretical stress-strain model for confined concrete," J. Struct. Engrg, ASCE, vol. 114, no. 8, pp. 1804-1826, 1988.
[3] Mander, J. B., Priestley, M. J. N., and Park, R.,, "Seismic design of bridge piers," Univ. of Canterbury, New Zealand, 1984.
[4] P. S., “A numerical approach to the complete stress-strain curve of concrete,” cement and concrete Res., 第 冊3, 編號 5, pp. 583-599, 1973.
[5] Sheikh, S. A., and Uzumeri, S. M.,, “Strength and ductility of tied concrete columns,” J. Struct. Div., ASCE, pp. 1079-1102, 1980.
[6] “Technical note material stress-strain curves,” computers and structures, 7 2008.
[7] Cowell, W.L., "Dynamic Tests of Concrete Reinforcing Steels," Technical Report, no. 394, 1965.
[8] Cowell, W.L., "Dynamic Properties of Plain Portland Cement Concrete," Technical Report, no. 447, 1966.
[9] Mahin, M. A., V. V. Bertero, "Rate of Loading Effect on Uncracked and Repaired Reinforced Concrete Members," EERC, no. 72-9, 1972.
[10] Atchley, B. L., H. L. Furr, "Strength ahd Energy Absorbtion Capabilities of Plain Concrete under Dynamic and Static Loadings," American Concrete Institute, vol. 64, no. 11, pp. 745-756, 1967.
[11] W. D., "Effect of Strain Rate on the Compressive Strength and Elastic Properties of Concrete," American Concrete Institute, vol. 49, no. 8, pp. 729-744, 1953.
[12] A. Filiatrault, M. Holleran, "Stress-Strain Behavior of Reinforcing Steel and Concrete under Seismic Strain rates and low temperatures," Materials and Structures, vol. 34, pp. 235-239, 5 2001.
[13] J.Eibl, "Concrete Structures under Impact and Implusive Loading," Bulletin D'information Report, no. 187, 1988.
[14] S.M. Kulkarni, S.P. Shah, "Response of reinforced concrete beams at high strain rates," ACI Structural Journal, vol. 95, no. 6, pp. 705-715, 11 1998.
[15] Wakabayashi, M., Nakamura, T., Yoshida, N., and IWai, S., "Dynamic loading effects on the structural performance of concrete and steel materials and beams," WCEE, vol. 6, pp. 271-278, 1980.
[16] L.J. Malvar, C.A. Ross, "Review of Strain Rate Effects for Concrete in Tension," Materials Journal, vol. 95, no. 6, pp. 735-739, 1998.
[17] M.J.Manjoine, "Influence of Rate of Strain and Temperature on Yield Stresses of Mild Steel," Journal of Applied Mechanics, vol. 11, pp. A211-A218, 12 1944.
[18] E. Vos, H.W. Reinhardt, "Influence of Loading Rate on bond Behavior of Reinforcing Steel and Prestressing Strands," Materials and Structures, vol. 15, no. 85, pp. 3-10, 3 1982.
[19] G. Riganti, E. Cadoni, "Numerical Simulation of the High Strain-Rate Behavior of Quenched and Self-Tempered Reinforced Concrete Columns," Advances in Engineering Research, vol. 57, pp. 156-167, 5 2014.
[20] D. Wang, G. Fan, "Effect of Strain Rate on Reinforced Concrete Columns," Advances in Engineering Research, vol. 112, pp. 473-477, 2016.
[21] M.Shibata, "Analysis of Elastic-Plastic Behavior of a Steel Brace Subjected to Repeated Axial Force," Int. Jour. Solids Structures, vol. 18, no. 3, pp. 217-228, 1982.
[22] W. Ghannoum, V. Saouma, K. Polkinghorne, M. Eck, D.H. Kang, "Experimental Investigation of Loading Rate Effects in Reinforced Concrete Columns," Journal of Structural Engineering, vol. 138, no. 8, pp. 1032-1041, 8 2012.
[23] Ghannoum, W. m., Moehle, J. P., "Shake-table tests of a convrete frame sustaining column axial failures," ACI Struct. J., vol. 109, no. 3, pp. 393-402, 2012.
[24] Otani, S., T Kaneko, H shiohara, "Strain rate effect on performance of reinforced concrete members," Kajima technical research institute, 2003.
[25] S. Xiao, J. Li, Y. L. Mo, "Effect of Loading Rate on Cyclic Behavior of Reinforced Concrete Beams," Advances in Structural Engineering, pp. 1-12, 11 2017.
[26] Zhang, H., and Li, H. N., "Dynamic analysis of reinforced concrete structure with strain rate effect," Materials Research Innovations, vol. 15, no. sup1, pp. s213-s216, 2011.
[27] 蕭輔沛、鍾歷來、葉勇凱、簡文郁、沈文成、邱聰智、周德光、趙宜峰、翁樸文、楊耀昇、褚有倫、涂耀賢、柴駿甫、黃世建, “校舍結構耐震評估與補強技術手冊第三版,” 國家地震工程研究中心, 2013.
[28] A. C. 318, "Building code requirements for structural concrete(ACI 318-11) and commentary (ACI 318R-11)," American concrete institute, 2011.
[29] Hakuto S., Park r., Tanaka H.,, “Sesmic Load Tests on Interior and Exterior Beam-Column Joints with Substandard Reinforcing Details,” ACI Structural Journal, pp. 11-25, 2000.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw