進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1608201908354900
論文名稱(中文) 太陽能集熱板暨熱泵複合式系統應用於寒流期間以降低魚塭之寒害損失
論文名稱(英文) A study of solar combisystem deployed in an aquatic farm for mitigating hypothermia damages during a cold stream event
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 107
學期 2
出版年 108
研究生(中文) 楊宇婷
研究生(英文) Yu-Ting Yang
學號 p46051042
學位類別 碩士
語文別 英文
論文頁數 118頁
口試委員 指導教授-李約亨
共同指導教授-張克勤
口試委員-陳文立
口試委員-黃朝偉
口試委員-吳毓庭
中文關鍵字 太陽能集熱板  氣源式熱泵  複合式系統  水產養殖場  TRNSYS  粒子影像測速  STAR-CCM+  田口方法 
英文關鍵字 Solar collector  air-source heat pump  combisystem  aquatic farm  TRNSYS  Particle Image Velocimetry  STAR-CCM+  Taguchi method. 
學科別分類
中文摘要 再生能源加熱系統用於養殖魚塭以維持適當的水溫來防止養殖生物因為低溫而死亡,但在寒流期間將整個養殖魚塭維持或加熱在特定水溫是不切實際的。 因此,從技術和經濟考量,在水池中提供局部和適當的水溫區是最實際的方法。 STAR-CCM+ 用於模擬極端天氣下魚池的三維溫度分佈圖,並計算其生存區的空間體積; TRNSYS 17用於模擬太陽能複合式加熱系統;田口法(Taguchi method)用於優化養殖魚塭的幾何形狀。
在STAR-CCM +中,比較了八個參數(入口1和入口2之間的距離、兩個入口的高度、出口位置、入口速度、檔板長度、檔板位置、檔板深度和檔板數),根據在魚池中的生存區的差異性選了其中四個參數(兩個入口的高度、出口位置、檔板長度和和檔板位置)以建立田口法的正交陣列,並用以優化。優化後的養殖魚塭的生存區增加了40%。
在TRNSYS 中,比較了三個加熱系統(鍋爐加熱系統、熱泵和鍋爐加熱系統、以及太陽能和熱泵和鍋爐加熱系統的組合),並列出其製熱量、能源貢獻比、成本回收期及二氧化碳排放量。雖然太陽能集熱板暨熱泵複合式加熱系統有效降低CO2排放量,但不符合經濟成本,因此並不最合適的加熱系統。
結果表明,鍋爐加熱系統最適合正值寒流時的優化後的養殖魚塭,特別是即時加熱的情況。
英文摘要 The renewable heating system is employed in the aquatic farm to prevent the hypothermia of aquatic creature by maintaining the appropriate water temperature. However, it is unpractical to heat and maintain the aquatic farm at a certain water temperature during a cold stream event. Accordingly, providing a localized and appropriate water temperature zone in the water pool is a plausible solution in terms of technical and economic aspects, and an aquatic creature would instinctively aggregate in the “survival zone”. STAR-CCM+ was employed to simulate the 3D temperature condition of an aquatic farm in the extreme weather, and examine the volume of survival zone. TRNSYS was used to simulate the solar collector and heat pump combisystem under the required heating capacity. The Taguchi method was used to optimize the geometry of the aquatic farm.
In STAR-CCM+, eight parameters (distance between inlet 1 and inlet 2, two inlets of the height, outlets positions, inlets velocity as fixed mass flow rate, barrier length, barrier position, barrier thickness, and barrier numbers) were compared, Four of them (two inlets of the height, outlets positions, barrier length, and barrier position) were selected according to their difference percentage of the survival zone and set up the orthogonal array to deploy in Taguchi method. The survival zone of the aquatic farm’s optimized geometry of increases by 40%.
In TRNSYS, three heating system (boiler heating system, heat pump, and boiler heating system, and combination of solar and heat pump and boiler heating system) were compared with their heating gain, contributions, payback period and CO2 emissions. Although the solar combisystems were effective in reducing CO2 emissions, they were not economical. Therefore, the solar combisystems were not the most suitable heating system for cold stream.
The results showed that the boiler heating system was most suitable for the optimized geometry of the aquatic farm during the cold current, especially in the case of instant heating.
論文目次 摘要 I
Abstract II
致謝 IV
Contents V
Lists of Tables IX
Lists of Figures XI
Nomenclature XVI
Chapter 1 Introduction 1
1-1 Background 1
1-2 Nonrenewable energy and renewable energy 3
1-2.2 Renewable energy 4
1-3 Introduction of the solar water heating system 7
1-3.1 Development of a solar water heating system 10
1-3.2 Application of large scale solar water heating system 15
1-4 CFD simulation for open water pool swimming pool 16
1-4.1 Scenario and comparison of the items of the swimming pool 18
1-5 Motivation 20
1-6 Objectives 21
Chapter 2 Methodology and experimental apparatus 24
2-1 Lab-scale solar combisystem 26
2-1.1 Solar collectors (SCs) 27
2-1.2 Air source heat pump (ASHP) 28
2-1.3 storage tank and other components 30
2-2 TRNSYS 32
2-3 Particle image velocity (PIV) 33
2-3.1 Lab-pool, motor, power supply, and flowmeter 35
2-3.2 Laser and optical devices 36
2-3.3 Image recording devices 36
2-3.3 Seeding particles 38
2-4 STAR-CCM+ 39
2-5 Taguchi method 41
Chapter 3 Scenario analysis of the aquatic farm 43
3-1 Energy balance of the aquatic farm 43
3-2 Validation of STAR-CCM+ by PIV measurement 46
3-3 Simulation in STAR-CCM+ 51
3-3.1 Geometry 51
3-3.2 Parameters of the material and physical model 52
3-3.3 Boundary condition and initial condition 54
3-3.4 Gird test 56
3-4 Parameters analysis 59
3-4.1 Different distance between inlet 1 and inlet 2 60
3-4.2 Different inlets height 61
3-4.3 Different outlets positions 64
3-4.4 Different inlet velocity 66
3-4.5 Different barrier length 68
3-4.6 Different barrier position 70
3-4.7 Different barrier thickness 72
3-4.8 Different barrier numbers in fixed barrier volume 74
3-5 Optimizing the geometry of the aquatic farm by Taguchi method 77
3-5.1 Selected the parameter and set up the orthogonal array 77
3-5.2 Compare the theoretical and realize value 81
Chapter 4 Scenario analysis of the heating system 82
4-1 Simulation in TRNSYS 82
4-1.1 Solar hot water system 83
4-1.2 Heat pump hot water system 84
4-1.3 Solar combisystem 85
4-2 Validation of TRNSYS results 87
4-2.1 Solar hot water system 87
4-2.2 Heat pump hot water system 90
4-3 Scenario heating system 94
4-3.1 Connection between STAR-CCM+ and TRNSYS 95
4-3.2 Heating schedule from Jan. 20 to Jan. 27 in 2016 98
4-3.3 Heating system 99
4-3.3.1 Heating system 1: Boiler heating system (B-System) 99
4-3.3.2 Heating system 2: Heat pump and boiler heating system (HP-B-System) 102
4-3.3.3 Heating system 3: Combination of solar collector, heat pump and boiler heating system (SC-HP-B-System) 103
4-4 System comparisons 106
4-4.1 Aquatic farm temperature 106
4-4.2 Proportion of heat source 109
4-4.2 Economy 109
4-4.3 Potential reduction of environmental impact 111
Chapter 5 Conclusion 113
Reference 115

參考文獻 [1] 行政院農業委員會. 105年1月寒流農業災情報告. 2016.
[2] 行政院農業委員會. 107年1月低溫農業災情報告. 農委會(統計室); 2018.
[3] 行政院農業委員會. 107年2月低溫農業災情報告. 農委會(統計室); 2018.
[4] 鄉情. 南台灣的家魚-虱目魚. 台灣月刊.
[5] 蘇甘棠. 虱目魚160. 水產試驗所特刊第9號: 農委會水試所; 2007.
[6] 陳弘成. 白蝦養殖與管理方式. 養魚世界.
[7] https://en.wikipedia.org/wiki/Fossil_fuel.
[8] Chaturvedi S, Gagrani V, Abdel-Salam T. Solar-assisted heat pump–A sustainable system for low-temperature water heating applications. Energy Conversion and Management. 2014;77:550-7.
[9] Boden TA, Marland G, Andres RJ. Global, regional, and national fossil-fuel CO2 emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tenn, USA doi. 2009;10.
[10] Buker MS, Riffat SB. Solar assisted heat pump systems for low temperature water heating applications: A systematic review. Renewable and Sustainable Energy Reviews. 2016;55:399-413.
[11] Beurea of Energy MoEA. Energy Supply and Demand Situation of Taiwan in 2016. 2017.
[12] Chaturvedi SK, Gagrani VD, Abdel-Salam TM. Solar-assisted heat pump – A sustainable system for low-temperature water heating applications. Energy Conversion and Management. 2014;77:550-7.
[13] Ellabban O, Abu-Rub H, Blaabjerg F. Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and Sustainable Energy Reviews. 2014;39:748-64.
[14] Energy I, Change C. World Energy Outlook Special Report. IEA: Paris, France. 2015.
[15] Chu J, Cruickshank CA. Solar Assisted Heat Pump Systems : A Review of Existing Studies and Their Applicability to the Canadian Residential Sector. Journal of Solar Energy Engineering. 2014;136.
[16] Emmi G, Zarrella A, De Carli M, Galgaro A. An analysis of solar assisted ground source heat pumps in cold climates. Energy conversion and management. 2015;106:660-75.
[17] Liu Y-M, Chang K-C, Lin W-M, Chung K-M. Solar thermal application for the livestock industry in Taiwan. Case Studies in Thermal Engineering. 2015;6:251-7.
[18] Chang K-C, Lee T-S, Lin W-M, Chung K-M. Outlook for solar water heaters in Taiwan. Energy Policy. 2008;36:66-72.
[19] Ko L, Wang J-C, Chen C-Y, Tsai H-Y. Evaluation of the development potential of rooftop solar photovoltaic in Taiwan. Renewable Energy. 2015;76:582-95.
[20] Mekhilef S, Saidur R, Safari A. A review on solar energy use in industries. Renewable and Sustainable Energy Reviews. 2011;15:1777-90.
[21] Day AR, Karayiannis T. Review Paper: Solar-assisted heat pump research and development1994.
[22] Starke AR, Cardemil JM, Escobar R, Colle S. Thermal analysis of solar-assisted heat pumps for swimming pool heating. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2017;39:2289-306.
[23] Panaras G, Mathioulakis E, Belessiotis V. Investigation of the performance of a combined solar thermal heat pump hot water system. Solar Energy. 2013;93:169-82.
[24] Chu J, Cruickshank CA. Solar-assisted heat pump systems: A review of existing studies and their applicability to the Canadian residential sector. Journal of Solar Energy Engineering. 2014;136:041013.
[25] Banister CJ, Wagar WR, Collins MR. Solar-assisted Heat Pump Test Apparatus. Energy Procedia. 2014;48:489-98.
[26] Lerch W, Heinz A, Heimrath R. Direct use of solar energy as heat source for a heat pump in comparison to a conventional parallel solar air heat pump system. Energy and buildings. 2015;100:34-42.
[27] Carbonell D, Haller MY, Philippen D, Frank E. Simulations of combined solar thermal and heat pump systems for domestic hot water and space heating. Energy Procedia. 2014;48:524-34.
[28] Carbonell D, Haller M, Frank E. Potential benefit of combining heat pumps with solar thermal for heating and domestic hot water preparation. Energy Procedia. 2014;57:2656-65.
[29] Kaci K, Merzouk M, Merzouk NK, El Ganaoui M, Sami S, Djedjig R. Dynamic simulation of hybrid-solar water heated olympic swimming pool. Energy Procedia. 2017;139:750-7.
[30] Chow TT, Bai Y, Fong KF, Lin Z. Analysis of a solar assisted heat pump system for indoor swimming pool water and space heating. Applied Energy. 2012;100:309-17.
[31] Dongellini M, Falcioni S, Martelli A, Morini GL. Dynamic simulation of outdoor swimming pool solar heating. Energy Procedia. 2015;81:1-10.
[32] Nouanegue HF, Sansregret S, Lostec BL, Daoud A. ENERGY MODEL VALIDATION OF HEATED OUTDOOR SWIMMING POOLS IN COLD WEATHER. 12th Conference of International Building Performance Simulation Association. 2011.
[33] Hahne E, Kubler R. Monitoring and simulation of the thermal performance of solar heated outdoor swimming pools. Solar Energy. 1994;53:9-19.
[34] Ruiz E, Martínez PJ. Analysis of an open-air swimming pool solar heating system by using an experimentally validated TRNSYS model. Solar Energy. 2010;84:116-23.
[35] Roldan CI, Rico SDR. Study of the Homogenization of the Water Temperature in a Heated Pool under Steady-state Conditions to Minimize the Energy Consumption of the Heating System. Energy Procedia. 2014;57:2879-87.
[36] Anaëlle C, Fabien G, Noël M. NUMERICAL SIMULATION AND MODELLING OF A TYPICAL SWIMMING POOL FOR DISINFECTION BYPRODUCTS ASSESSMENT. SPSR.117-27.
[37] Lewis L, Chew J, Woodley I, Colbourne J, Pond K. The application of computational fluid dynamics and small-scale physical models to assess the effects of operational practices on the risk to public health within large indoor swimming pools. J Water Health. 2015;13:939-52.
[38] Cloteaux A, Gérardin F, Midoux N. Influence of Swimming Pool Design on Hydraulic Behavior: A Numerical and Experimental Study. Scientific Research. 2013;5:14.
[39] Gao W, Liu T, Lin W, Luo C. Numerical Study on Mixing Characteristics of hot Water inside the Storage Tank of a Solar System with Different Inlet Velocities of the Supply Cold Water. Procedia Environmental Sciences. 2011;11:1153-63.
[40] Assari MR, Basirat Tabrizi H, Savadkohy M. Numerical and experimental study of inlet-outlet locations effect in horizontal storage tank of solar water heater. Sustainable Energy Technologies and Assessments. 2018;25:181-90.
[41] Ievers S, Lin W. Numerical simulation of three-dimensional flow dynamics in a hot water storage tank. Applied Energy. 2009;86:2604-14.
[42] Lavan Z, Thompson J. Experimental study of thermally stratified hot water storage tanks. Solar energy. 1977;19:519-24.
[43] Kenjo L, Inard C, Caccavelli D. Experimental and numerical study of thermal stratification in a mantle tank of a solar domestic hot water system. Applied Thermal Engineering. 2007;27:1986-95.
[44] Stamou AI. Improving the hydraulic efficiency of water process tanks using CFD models. Chemical Engineering and Processing: Process Intensification. 2008;47:1179-89.
[45] Rosa JL, Robin A, Silva MB, Baldan CA, Peres MP. Electrodeposition of copper on titanium wires: Taguchi experimental design approach. Journal of Materials Processing Technology. 2009;209:1181-8.
[46] Gautam A, Chamoli S, Kumar A, Singh S. A review on technical improvements, economic feasibility and world scenario of solar water heating system. Renewable and Sustainable Energy Reviews. 2017;68:541-62.
[47] Struckmann F. Analysis of a flat-plate solar collector. Heat and Mass Transport, Project Report, 2008MVK160. 2008.
[48] Zhao J, Bilbao JI, Spooner ED, Sproul AB. Experimental study of a solar pool heating system under lower flow
and low pump speed conditions. Renewable Energy. 2018;119:16.
[49] Kern J, Harris I. On the optimum tilt of a solar collector. Solar Energy. 1975;17:97-102.
[50] Arab M, Abbas A. Model-based design and analysis of heat pipe working fluid for optimal performance in a concentric evacuated tube solar water heater. Solar Energy. 2013;94:162-76.
[51] TRNSYS. A Transient System Simulation Program: V17.01.0025. Solar Energy Lab, University of Wisconsin-Madison, USA. 2012.
[52] Katsaprakakis DA. Comparison of swimming pools alternative passive and active heating systems based on renewable energy sources in Southern Europe. Energy. 2015;81:738-53.
[53] Kuok K, Chan Chiu P. Application of Particle Image Velocimetry (PIV) for Measuring Water Velocity in Laboratory Sedimentation Tank2017.
[54] Rosa JL, Robin A, Silva M, Baldan CA, Peres MP. Electrodeposition of copper on titanium wires: Taguchi experimental design approach. Journal of materials processing technology. 2009;209:1181-8.
[55] Contributors T. TRNSYS.
[56] Holman JP. Heat transfer1997.
[57] 李聰盛,郭明樺. 多片集熱器連接方式對系統性能影響評估. 太陽能熱水系統推廣獎勵受託機構2017.
[58] 蔡子衿, 吳清吉, 許武榮. 台灣土壤溫度變化和土壤熱擴散係數推估. 大學科學. 2008;第三十六期第二號:18.
[59] 鄭嘉裕. 虱目魚 (Chanos chanos) 與白蝦 (Litopenaeus vannamei) 混養經營成本之效益分析-高雄縣彌陀地區為例. 2009.
[60] 蘇甘棠. 虱目魚160: 農委會水試所; 2007.
[61] 维基百科编者. 虱目魚. 维基百科,自由的百科全書.
[62] http://fishdb.sinica.edu.tw/chi/importpic_2013.php?id=32.
[63] http://ecoscore.be/en/info/ecoscore/co2.
[64] https://www.moeaboe.gov.tw/ECW/populace/content/SubMenu.aspx?menu_id=114.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw