進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1608201820515300
論文名稱(中文) 流體在台灣造山帶伸張孕震構造的作用機制
論文名稱(英文) Mechanisms of fluid-involved extensional seismogenic structures in Taiwan orogen
校院名稱 成功大學
系所名稱(中) 地球科學系
系所名稱(英) Department of Earth Sciences
學年度 106
學期 2
出版年 107
研究生(中文) 王聆華
研究生(英文) Ling-Hua Wang
學號 L46054063
學位類別 碩士
語文別 中文
論文頁數 80頁
口試委員 指導教授-饒瑞鈞
口試委員-李元希
口試委員-景國恩
口試委員-李恩瑞
中文關鍵字 中央山脈  伸張構造  地震活動性  流體參與 
英文關鍵字 Central Range  extensional structures  seismicity  fluid-involved 
學科別分類
中文摘要 庫倫破壞準則中斷層錯動的因子和應力及孔隙水壓有關,前者被認為會觸發符合主餘震衰減模式的地震序列,而後者之變化則是常以群震活動表現。前人研究中指出,水庫蓄水以及注水試驗的過程中可觀測到地殼中誘發的地震活動,在部分案例中有地震遷移的現象且能以非線性水力擴散模型所描述。本研究展示了台灣中央山脈淺部地殼中具有流體參與特徵之破裂模式並且提出可能的機制模型。根據前人野外調查及地物觀測結果,台灣造山帶淺部呈現平行山脈走向的伸張狀態,並在北、中、南三段產生明顯地震活動性與孕震構造幾何的差異。我們藉由中央氣象局地震目錄的重新定位加入波形交相關,配合地震震源機制解及地震統計學的分析模型,探討由地震活動定義出的淺層伸張構造以及時空分布變化,進一步討論流體參與構造作用的過程可能產生的特徵及模式。結果顯示在中央山脈北段深度5-12公里,由走向的方向上接續排列但不相連的北北西走向、西傾45-75度之正斷層序列所構成,分別在1983及2013年前後發生具有前震現象的地震序列,最大主震皆約M 6,且伴隨著水力擴散係數約0.4-0.6 (m^2/s)之地震遷移現象;中段於1999年集集地震後觸發三個月分布零散的地震活動及短暫平行擠壓方向的伸張應力;至於南段則是由近乎垂直的網狀正斷層系統伴隨走滑斷層觸發活躍的群震活動。這些地震行為分別對應到Sibson (2013)之流體模型,而孕震的差異歸因於不同的斷層特性:伸張環境容易促成裂隙形成流體的通道,北段較深且較單一的斷層系統在震間吸入流體,累積足夠大的應力造成較大規模的地震,以及同震一次性的流體排出造成地震擴散現象;相反地,較淺且破裂異向性較高之南部裂隙緊鄰且相通,使得應力分布及裂隙通道的開關互相影響形成群震。
英文摘要 Both stress and pore pressure play important roles in development of fractures, which caused different seismicity patterns and related features. We observe both situations in Taiwan Central Range (CR) where is characterized by orogen-paralleled extension in shallow crust within convergent mountain belt. In 2013, Nanshan earthquake sequence with M 5.87 mainshock occurred in northern CR and preceded by foreshock activities. This earthquake sequence offers an appropriate example to clarify the mechanisms of normal faulting evolution and fluid-involved behaviors in seismicity of the orogen. High-resolution relocation and focal mechanisms determination were applied to portrait the geometry of seismogenic structures which cannot be recognized using original catalog from Central Weather Bureau. According to the results, spatial and temporal distribution of relocated earthquakes presents several NNW trending normal fault segments dipping to southwest with a focal depth of 4-12 km. Earthquakes migrate bi-laterally to both north and south, the seismicity pattern can be described by a nonlinear hydraulic diffusion model with a diffusivity of 0.4-0.6, which order implied fluid-associated fracture. Upward migration in the mainshock sequence was also observed to explain the fluid-valve process. Moreover, we compare patterns of seismicity, stress states, and seismogenic structures through CR including temporary sequence triggered by Chi-Chi earthquake in central CR and active swarm activities in the south. We consider, except for central CR which is affected by stress triggering, other two sides are related to fluid process. Integral fault system causes larger magnitude earthquakes accompanied by diffusion process during coseismic period. On the contrary, southern one has more connected cracks so that pore pressure increases while fluids flowing into faults and released through swarms.
論文目次 摘要 I
Extended abstract II
致謝 VI
目錄 VII
表目錄 IX
圖目錄 IX
一、前言 1
二、前人研究 3
2-1 台灣的造山帶 3
2-2 GPS觀測結果 3
2-3 中央山脈的區域地震活動性 7
2-4 中央山脈地質背景 12
2-5 山脈的流體作用 14
2-6 造山帶的伸張作用 15
三、資料與方法 17
3-1 地震重新定位 17
3-2 地震重新定位之誤差分析 23
3-3 震源機制解 23
3-4 區域地震觸發模型(ETAS model) 25
3-5 線性孔隙壓力擴散機制 28
四、結果 30
4-1 南山地震群重新定位結果及震源機制解 30
4-2 地震剖面及速度模型 34
4-3 地震時空分布 37
4-4 地震遷移與擴散速率 38
4-5 中部中央山脈地震活動特性 40
4-6 南部中央山脈孕震構造幾何及地震活動特性 43
4-7 大地震後庫倫應力變化 46
4-8 ETAS model 結果 49
五、討論 52
5-1 中央山脈之孕震活動及構造之總結 52
5-2 中央山脈的伸張作用 57
5-3 前震活動 60
5-4 構造中流體存在之證據 61
5-5 流體參與構造活動之機制 67
六、結論 73
參考文獻 75
參考文獻 李元希 (1997),臺灣中央山脈中段在蓬萊運動中的構造演化,國立台灣大學地質學研究所博士論文。
薩宜光 (2004),南部中央山脈之地震活動性探討,國立成功大學地球科學系碩士論文。
陳肇夏、王京新 (1995),臺灣變質相圖說明第二版,地質調查所。
陳穆申 (2004),狹長造山帶的擠壓-伸張轉換過程:以台灣東部中央山脈的地震活動為例,國立成功大學地球科學系碩士論文。
莊育菱 (2012),台灣非火山長微震半自動化偵測系統,國立師範大學地球科學系碩士論文。
Bertrand, E. A., Unsworth, M. J., Chiang, C.-W., Chen, C.-S., Chen, C.-C., Wu, F. T., et al. (2012). Magnetotelluric imaging beneath the Taiwan orogen: An arc-continent collision. Journal of Geophysical Research: Solid Earth, 117(B1), 1-15.
Burchfiel, B. C., & Royden, L. H. (1985). North-south extension within the convergent Himalayan region. Geology, 13(10), 679.
Chao, K., Peng, Z., Wu, C., Tang, C.-C., & Lin, C.-H. (2012). Remote triggering of non-volcanic tremor around Taiwan: Triggering of non-volcanic tremor in Taiwan. Geophysical Journal International, 188(1), 301–324.
Chen, K.-C., & Wang, J.-H. (1984). On the study of May 10, 1983 Taipingshan, Taiwan earthquake sequence. Bull Inst Earth Sci Acad Sin, 4, 1–27.
Chen, K.-C., Wang, J.-H., & Yeh, Y.-L. (1990). Premonitory phenomena of a moderate Taiwan earthquake, 1(1), 1–18.
Chen, S. K., Wu, Y.-M., Hsu, Y.-J., & Chan, Y.-C. (2017). Current crustal deformation of the Taiwan orogen reassessed by cGPS strain-rate estimation and focal mechanism stress inversion. Geophysical Journal International, 210(1), 228–239.
Chen, X., Shearer, P. M., & Abercrombie, R. E. (2012). Spatial migration of earthquakes within seismic clusters in Southern California: Evidence for fluid diffusion: Spatial migration of seismic clusters. Journal of Geophysical Research: Solid Earth, 117(B4), 1–7.
Chiang, C.-W., Chen, C.-C., Unsworth, M., Bertrand, E., Chen, C.-S., Kieu, T. D., & Hsu, H.-L. (2010). The deep electrical structure of southern Taiwan and its tectonic implications. Terrestrial, Atmospheric and Oceanic Sciences, 21(6), 879.
Chiaraluce, L., Valoroso, L., Piccinini, D., Stefano, R. Di, & Gori, P. De (2011). The anatomy of the 2009 L’Aquila normal fault system (central Italy) imaged by high resolution foreshock and aftershock locations. Journal of Geophysical Research, 116(B12).
Ching, K.-E., Johnson, K. M., Rau, R.-J., Chuang, R. Y., Kuo, L.-C., & Leu, P.-L. (2011), Inferred fault geometry and slip distribution of the 2010 Jiashian, Taiwan, earthquake is consistent with a thick-skinned deformation model, Earth and Planetary Science Letters, 301(1-2), 78-86, doi:10.1016/j.epsl.2010.10.021.
Craw, D., Upton, P., Yu, B.-S., Horton, T., & Chen, Y.-G. (2010). Young orogenic gold mineralisation in active collisional mountains, Taiwan. Mineralium Deposita, 45(7), 631–646.
Crespi, J. M., Chan, Y.-C., & Swaim, M. S. (1996). Synorogenic extension and exhumation of the Taiwan hinterland. Geology, 24(3), 247.
Deffontaines, B., Lee, J.-C., Angelier, J., Carvalho, J., & Rudant, J.-P. (1994). New geomorphic data on the active Taiwan orogen: A multisource approach. Journal of Geophysical Research: Solid Earth, 99(B10), 20243–20266.
Dewey, J. F. (1988). Extensional collapse of orogens. Tectonics, 7(6), 1123–1139.
Fossen, H. (1992). The role of extensional tectonics in the Caledonides of south Norway. Journal of Structural Geology, 14(8–9), 1033–1046.
Fossen, H. (2000). Extensional tectonics in the Caledonides: Synorogenic or postorogenic? Tectonics, 19(2), 213–224.
Frisch, W., Dunkl, I., & Kuhlemann, J. (2000). Post-collisional orogen-parallel large-scale extension in the Eastern Alps. Tectonophysics, 327(3–4), 239–265.
Hainzl, S., & Ogata, Y. (2005). Detecting fluid signals in seismicity data through statistical earthquake modeling. Journal of Geophysical Research, 110(B5).
Hardebeck, J. L., & Shearer, P. M. (2002). A new method for determining first-motion focal mechanisms. Bulletin of the Seismological Society of America, 92(6), 2264–2276.
Hardebeck, J. L., & Shearer, P. M. (2003). Using S/P amplitude ratios to constrain the focal mechanisms of small earthquakes. Bulletin of the Seismological Society of America, 93(6), 2434–2444.
Hill, D. P. (1977). A model for earthquake swarms. Journal of Geophysical Research, 82(8), 1347–1352.
Hsu, Y.-J., Yu, S.-B., Simons, M., Kuo, L.-C., & Chen, H.-Y. (2009). Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms. Tectonophysics, 479(1–2), 4–18.
Huang, H.-H., Wu, Y.-M., Song, X., Chang, C.-H., Lee, S.-J., Chang, T.-M., & Hsieh, H.-H. (2014). Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters, 392, 177–191.
Jones, L. M., & Molnar, P. (1979). Some characteristics of foreshocks and their possible relationship to earthquake prediction and premonitory slip on faults. Journal of Geophysical Research: Solid Earth, 84(B7), 3596–3608.
Kanamori, H. (1981). The nature of seismicity Patterns before large earthquakes. Earthquake Prediction. Maurice Ewing Series. American Geophysical Union, 1–19.
Lallemand, S., Theunissen, T., Schnürle, P., Lee, C.-S., Liu, C.-S., & Font, Y. (2013). Indentation of the Philippine Sea plate by the Eurasia plate in Taiwan: Details from recent marine seismological experiments. Tectonophysics, 594, 60–79.
Lee, S. J., Mozziconacci, L., Liang, W. T., Hsu, Y. J., Huang, W. G., & Huang, B. S. (2013). Source complexity of the 4 March 2010 Jiashian, Taiwan, earthquake determined by joint inversion of teleseismic and near field data. Journal of Asian Earth Sciences, 64, 14-26.
Lee, S. J., Yeh, T. Y., & Lin, Y. Y. (2016). Anomalously large ground motion in the 2016 ML 6.6 Meinong, Taiwan, earthquake: A synergy effect of source rupture and site amplification. Seismological Research Letters, 87(6), 1319-1326.
Lin, C.-H. (1998). Tectonic implications of an aseismic belt beneath the Eastern Central Range of Taiwan: Crustal subduction and exhumation. Journal-Geological Society of China-Taiwan, 41, 441–460.
Lin, K.-C., Hu, J.-C., Ching, K.-E., Angelier, J., Rau, R.-J., Yu, S.-B., et al. (2010). GPS crustal deformation, strain rate, and seismic activity after the 1999 Chi-Chi earthquake in Taiwan. Journal of Geophysical Research, 115(B7).
Liu, Y.-W., Li, Q.-X., & Yang, D.-X. (2011). Pore pressure diffusion characteristics of Longtan reservoir-induced-earthquake. Chinese Journal Geophysics, 54(4), 1028–1037.
Lombardi, A. M. (2017). SEDA: A software package for the Statistical Earthquake Data Analysis. Scientific Reports, 7, 44171.
Luccio, F. D., Ventura, G., Giovambattista, R. D., Piscini, A., & Cinti, F. R. (2010). Normal faults and thrusts reactivated by deep fluids: The 6 April 2009 Mw 6.3 L’Aquila earthquake, central Italy. Journal of Geophysical Research: Solid Earth, 115(B06315).
Lucente, F. Pio, Gori, P. De, Margheriti, L., Piccinini, D., Bona, M. Di, Chiarabba, C., & Agostinetti, N. Piana (2010). Temporal variation of seismic velocity and anisotropy before the 2009 Mw 6.3 L’Aquila earthquake, Italy. Geology, 38(11), 1015–1018.
Ma, K. F., Mori, J., Lee, S. J., & Yu, S. B. (2001). Spatial and temporal distribution of slip for the 1999 Chi-Chi, Taiwan, earthquake. Bulletin of the Seismological Society of America, 91(5), 1069-1087.
Mogi, K. (1963). Some discussions on aftershocks, foreshocks and earthquake swarms : the fracture of a semi-infinite body caused by an inner stress origin and its relation to the earthquake phenomena (third paper). Bull. Earthq. Res. Inst. Tokyo Univ., 41.
Mouthereau, F., Fillon, C., & Ma, K.-F. (2009). Distribution of strain rates in the Taiwan orogenic wedge. Earth and Planetary Science Letters, 284(3–4), 361–385.
Noir, J., Jacques, E., Békri, S., Adler, P. M., Tapponnier, P., & King, G. C. P. (1997). Fluid flow triggered migration of events in the 1989 Dobi Earthquake sequence of central Afar. Geophysical Research Letters, 24(18), 2335–2338.
Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point processes. Journal of the American Statistical Association, 83(401), 9–27.
Parotidis, M., Rothert, E., & Shapiro, S. A. (2003). Pore-pressure diffusion: A possible triggering mechanism for the earthquake swarms 2000 in Vogtland/NW-Bohemia, central Europe: A swarm earthquake triggering mechanism. Geophysical Research Letters, 30(20), 1–4.
Peacock, D. C. P., Nixon, C. W., Rotevatn, A., Sanderson, D. J., & Zuluaga, L. F. (2017). Interacting faults. Journal of Structural Geology, 97, 1–22.
Peacock, D. C. P., Sanderson, D. J., & Rotevatn, A. (2018). Relationships between fractures. Journal of Structural Geology, 106, 41–53.
Platt, J. P. (1986). Dynamics of orogenic wedges and the uplift of high-pressure metamorphic rocks. Geological Society of America Bulletin, 97(9), 1037.
Rey, P., Vanderhaeghe, O., & Teyssier, C. (2001). Gravitational collapse of the continental crust: Definition, regimes and modes. Tectonophysics, 342(3–4), 435–449.
Roland, E., & McGuire, J. J. (2009). Earthquake swarms on transform faults. Geophysical Journal International, 178(3), 1677–1690.
Ruhl, C. J., Abercrombie, R. E., Smith, K. D., & Zaliapin, I. (2016). Complex spatiotemporal evolution of the 2008 Mw 4.9 Mogul earthquake swarm (Reno, Nevada): Interplay of fluid and faulting: Evolution of the 2008 Mogul Swarm. Journal of Geophysical Research: Solid Earth, 121(11), 8196–8216.
Seno, T., Stein, S., & Gripp, A. E. (1993). A model for the motion of the Philippine Sea Plate consistent with NUVEL-1 and geological data. Journal of Geophysical Research: Solid Earth, 98(B10), 17941–17948.
Seyferth, M., & Henk, A. (2004). Syn-convergent exhumation and lateral extrusion in continental collision zones—insights from three-dimensional numerical models. Tectonophysics, 382(1–2), 1–29.
Shapiro, S. A., Patzig, R., Rothert, E., & Rindschwentner, J. (2003). Triggering of seismicity by pore-pressure perturbations: Permeability-related signatures of the phenomenon. In Thermo-Hydro-Mechanical Coupling in Fractured Rock (pp. 1051–1066). Springer.
Shapiro, S. A., Huenges, E., & Borm, G. (1997). Estimating the crust permeability from fluid-injection-induced seismic emission at the KTB site. Geophysical Journal International, 131(2), F15–F18.
Shelly, D. R., Taira, T., Prejean, S. G., Hill, D. P., & Dreger, D. S. (2015). Fluid-faulting interactions: Fracture-mesh and fault-valve behavior in the February 2014 Mammoth Mountain, California, earthquake swarm: 2014 Mammoth Mountain earthquake swarm. Geophysical Research Letters, 42(14), 5803–5812.
Sibson, R. H. (2000). Fluid involvement in normal faulting. Journal of Geodynamics, 29(3), 469–499.
Sibson, R. H. (2013). Fluid flow accompanying faulting: Field evidence and models. In D. W. Simpson & P. G. Richards (Eds.), Maurice Ewing Series (pp. 593–603). Washington, D. C.: American Geophysical Union.
Smeraglia, L., Berra, F., Billi, A., Boschi, C., Carminati, E., & Doglioni, C. (2016). Origin and role of fluids involved in the seismic cycle of extensional faults in carbonate rocks. Earth and Planetary Science Letters, 450, 292–305.
Sue, C., Thouvenot, F., Fréchet, J., & Tricart, P. (1999). Widespread extension in the core of the western Alps revealed by earthquake analysis. Journal of Geophysical Research: Solid Earth, 104(B11), 25611–25622.
Suppe, J. (1981). Mechanics of mountain-building and metamorphism in Taiwan. Memoir of the Geological Society of China, 4(6), 67–89.
Suppe, J. (1987). The active Taiwan mountain belt, in the anatomy of mountain ranges, edited by J. P. Schaer and J. Rodgers, 277-293., Princeton Univ. Press, Princeton.
Teng, L. S., Lee, C. T., Tsai, Y. B., & Hsiao, L. Y. (2000). Slab breakoff as a mechanism for flipping of subduction polarity in Taiwan. Geology, 28(2), 155-158.
Toda, S., Stein, R. S., Sevilgen, V., & Lin, J. (2011). Coulomb 3.3 graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching-user guide (No. 2011-1060). US Geological Survey.
Upton, P., & Craw, D. (2014). Extension and gold mineralisation in the hanging walls of active convergent continental shear zones. Journal of Structural Geology, 64, 135–148.
Utsu, T. (1961). A statistical study on the occurrence of aftershocks. Geophysical Magazine, 30(4).
Waldhauser, F. (2001). HypoDD-A program to compute double-difference hypocenter locations (hypoDD version 1.0-03/2001). US Geol. Surv. Open File Rep., 01, 113.
Waldhauser, F., & Ellsworth, W. L. (2000). A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California. Bulletin of the Seismological Society of America, 90(6), 1353–1368.
Yu, S.-B., Chen, H.-Y., & Kuo, L.-C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1–3), 41–59.
Yukutake, Y., Ito, H., Honda, R., Harada, M., Tanada, T., & Yoshida, A. (2011). Fluid-induced swarm earthquake sequence revealed by precisely determined hypocenters and focal mechanisms in the 2009 activity at Hakone volcano, Japan. Journal of Geophysical Research, 116(B4).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-08-15起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-08-15起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw