進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1608201813452200
論文名稱(中文) 以熟料製作堇青石之熱反應特徵研究
論文名稱(英文) Examination on thermal reaction characteristics of cordierite synthesized with calcined powders
校院名稱 成功大學
系所名稱(中) 資源工程學系
系所名稱(英) Department of Resources Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 范馨文
研究生(英文) Hsin-Wen Fan
學號 N46054104
學位類別 碩士
語文別 中文
論文頁數 67頁
口試委員 指導教授-郭明錦
共同指導教授-顏富士
口試委員-黃啟原
中文關鍵字 堇青石  高嶺土  滑石  熟料 
英文關鍵字 Cordierite  kaolinite  talc  calcined powder 
學科別分類
中文摘要 本研究利用預熱處理後的高嶺石(kaolinite)及滑石(talc)熟料與α-氧化鋁混合合成堇青石。目的在探討合成堇青石過程中,熟料對堇青石的熱反應及生成機制影響之特性。研究中先將高嶺土及滑石各於700℃及900℃預熱處理,使兩者脫去結晶水或造成結構破壞。設計不同預熱溫度的熟料組合,與α-氧化鋁依照堇青石計量混合成配方,壓錠成形後再進行煅燒處理合成堇青石。主要透過DTA、XRD、XRF及PSD技術分析結果。
研究結果顯示:以相同預熱處理溫度的高嶺土及滑石混合之配方,其熱反應途徑和生料配方相同,但可使過渡相出現的溫度下降。Spinel的生成溫度由1250℃降至1235℃,且β-堇青石相變為α-相的溫度也由1335℃降至1310℃,其中又以高嶺土及滑石皆在700℃預熱處理者效果較顯著。
而熟料在合成堇青石過程中的功能在於可提供較高活性的非晶質氧化矽(主要由預熱處理後的高嶺土提供),此非晶質氧化矽較容易與mullite + enstatite反應合成β-堇青石,接著mullite + enstatite亦反應生成spinel+SiO2以補用去的SiO2。由於此熱反應結果產生大量的spinel + SiO2,使α-氧化鋁在1250℃與SiO2反應二次生成mullite以及後續spinel的二次生成的發生。因過渡相spinel提早且大量生成,可在更高溫與SiO2反應大量生成α-堇青石。
英文摘要 In this study, cordierite was synthesized with pre-calcined kaolinite and talc and α-alumina powders. Kaolinite and talc were respectively per-calcined at 700℃ and 900℃ for 30 minutes in advance to remove their structural water. Then the two powders were mixed with α-alumina individually, in a stoichiometric composition of cordierite. The mixtures then pressed into compacts and calcined at several specific temperatures to form cordierite. Experiments were analyzed using DTA, XRD, XRF and PSD techniques.
It is found that the thermal reaction paths of the mixtures which consist of kaolinite and talc pre-calcined at same temperatures were the same as that of the mixture without pre-calcined treatment, but the formation temperatures of transition phases were lowered. The formation temperature of spinel decreased from 1250℃ (mixture without pre-calcined treatment) to 1235℃, and the transition temperature of β- to α-cordierite also reduced from 1335℃ to 1310℃. Kaolinite pre-calcined at 700℃ is better for the fabrication of α-cordierite.
The function of the pre-calcined powders to synthesize cordierite was possibly providing silica of higher active state, especially from pre-calcined kaolinite. The silica was easier to react with mullite and enstatite to form β-cordierite firstly, then mullite and enstatite also reacted to form spinel afterward. This thermal reactions brought about amounts of spinel and silica, and subsequent formations of mullite and spinel. And because an earlier and sufficient spinel formation, α-cordierite can be more effective to form at higher temperature.
論文目次 摘要 I
誌謝 VII
目錄 IX
表目錄 XII
圖目錄 XIII
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 研究目的 2
第二章 理論基礎與前人研究 3
2.1 堇青石介紹 3
2.1.1 堇青石礦物學 3
2.1.2 堇青石之結構 4
2.1.3 工業用堇青石 8
2.2 堇青石的合成 9
2.2.1 固態反應法(Solid-state method) 9
2.2.2 溶膠-凝膠法(Sol-gel method) 11
2.2.3 玻璃結晶法(Glass crystallization method) 11
2.2.4 機械化學法(Mechanochemical processing) 12
2.4 高嶺土與滑石的熱處理 13
2.4.1高嶺土的熱反應行為[30]–[33] 13
2.4.2 滑石的熱反應行為[36]–[39] 16
2.5 影響反應速率的因素 18
2.5.1 合成過程中出現之礦物相 18
2.5.2 α-堇青石之生成機制與生成路徑 21
第三章 研究方法與步驟 22
3.1 實驗設計與步驟 22
3.1.1 原料粉末 22
3.1.2 預熱處理原料 24
3.1.3 樣品製備 27
3.1.4 樣品熱處理 27
3.2 特性分析 29
3.2.1 原料粉末成分/組成成分 29
3.2.2 粒徑分析 29
3.2.3 熱差分析 29
3.2.4 粉末結晶相分析 30
3.2.5 顯微結構分析 30
第四章 結果與討論 32
4.1 DTA剖面特徵及分析 32
4.1.1 原始高嶺土與滑石 32
4.1.2 預熱處理後的高嶺土及滑石(熟料) 34
4.1.3 原配方粉末(生料配方) 36
4.1.4 相同預熱處理溫度的高嶺土及滑石混合之配方 38
4.1.5 不同預熱處理溫度的高嶺土及滑石混合之配方 38
4.2 由XRD晶相分析觀察熟料對過渡相的影響 41
4.2.1 K7T7A、K9T9A的晶相分析結果 41
4.2.2 K7TA、K7T9A、K9TA、K9T7A晶相分析的結果 41
4.3 以熟料合成堇青石的熱反應推導 51
4.3.1 K7T7A、K9T9A的熱反應推導 51
4.3.2 K7TA、K7T9A、K9TA、K9T7A的熱反應推導 52
4.4 高嶺土及滑石熟料對合成堇青石的影響 53
4.4.1 不同預熱處理溫度之高嶺土對合成堇青石過程的比較 53
4.4.2 不同預熱處理溫度之滑石對合成堇青石過程的比較 53
第五章 結論 54
參考資料 55
附錄 60
參考文獻 [1] A. Goleanu, “Synthesizing cordierite in ceramic bodies,” Ceram. Ind., 151 [7], 14–20, (2001).
[2] E. M. Levin, C. R. Robbins, and H. F. McMurdie, Phase diagrams for ceramists. American Ceramic Society: Columbus Ohio, (1964).
[3] G. V. Gibbs, “Polymorphism of cordierite. I. Crystal structure of low cordierite,” Am. Mineral., 51 [7], 1068-1087, (1966).
[4] E. P. Meagher and G. VGibbs, “Polymorphism of cordierite: II. The crytal structure of indialite,” Can. Miner., 15, 43–49, (1977).
[5] M. D. Karkhanavala and F. A. Hummel, “The polymorphism of cordierite,” J. Am. Ceram. Soc., 36 [12], 389–392, (1953).
[6] J. R. González‐Velasco, M. A. Gutiérrez‐Ortiz, R. Ferret, A. Aranzabal, and J. A. Botas, “Synthesis of cordierite monolithic honeycomb by solid state reaction of precursor oxides,” J. Mater. Sci., 34 [9], 1999–2002, (1999).
[7] A. Putnis, An introduction to mineral sciences. Cambridge University Press: Cambridge, (1992).
[8] A. Putnis and R. J. Angel, “Al, Si ordering in cordierite using ‘magic angle spinning’ NMR,” Phys. Chem. Miner., 12 [4], 217–222, (1985).
[9] M. Valášková, “Clays, clay minerals and cordierite ceramics- A review,” Ceram. Silikaty, 59 [4], 331–340, (2015).
[10] M. F. Hochella and G. E. Brown, “Structural Mechanisms of Anomalous Thermal Expansion of Cordierite‐Beryl and Other Framework Silicates,” J. Am. Ceram. Soc., 69 [1], 13–18, (1986).
[11] H. Ikawa, T. Otagiri, O. Imai, M. Suzuki, K. Urabe, and S. Udagawa, “Crystal Structures and Mechanism of Thermal Expansion of High Cordierite and Its Solid Solutions,” J. Am. Ceram. Soc., 69 [6], 492–498, (1986).
[12] 顏富士, 游佩青, 陳政毓, and李曼妮, “合成堇青石之創新作業技術開發,”鑛冶:中國鑛冶工程學會會刊, [221], 69–76, (2013).
[13] J. Banjuraizah, H. Mohamad, and Z. A. Ahmad, “Crystal structure of single phase and low sintering temperature of α-cordierite synthesized from talc and kaolin,” J. Alloys Compd., 482 [1–2], 429–436, (2009).
[14] Y. Kobayashi, K. Sumi, and E. Kato, “Preparation of dense cordierite ceramics from magnesium compounds and kaolinite without additives,” Ceram. Int., 26 [7], 739–743, (2000).
[15] T. Ogiwara, Y. Noda, K. Shoji, and O. Kimura, “Solid state synthesis and its characterization of high density cordierite ceramics using fine oxide powders,” J. Ceram. Soc. Japan, 118 [1375], 246–249, (2010).
[16] Y. Hirose, H. Doi, and O. Kamigaito, “Thermal expansion of hot-pressed cordierite glass ceramics,” J. Mater. Sci. Lett., 3 [2], 153–155, (1984).
[17] P. Predecki, J. Haas, J. Faber, and R. L. Hitterman, “Structural Aspects of the Lattice Thermal Expansion of Hexagonal Cordierite,” J. Am. Ceram. Soc., 70 [3], 175–182, (1987).
[18] D. L. Evans, G. R. Fischer, J. E. Geiger, and F. W. Martin, “Thermal Expansions and Chemical Modifications of Cordierite,” J. Am. Ceram. Soc., 63 [11–12], 629–634, (1980).
[19] J. R. González-Velasco, R. Ferret, R. López-Fonseca, and M. A. Gutiérrez-Ortiz, “Influence of particle size distribution of precursor oxides on the synthesis of cordierite by solid-state reaction,” Powder Technol., 153 [1], 34–42, (2005).
[20] 賴方羚 and 雷大同, “台灣東部蛇紋岩製備堇青石之研究,” 鑛冶:中國鑛冶工程學會會刊, [222], 94–105, (2013).
[21] M. Nakahara, Y. Kondo, and K. Hamano, “Effect of Kaolin Grain Size on Firing Process and Physical Properties of Cordierite Ceramics,” J. Ceram. Soc. Japan, 106 [8], 787–791, (1998).
[22] M. Nakahara, Y. Kondo, and K. Hamano, “Effect of Particle Size of Powders Ground by Ball Milling on Densification of Cordierite Ceramics.,” J. Ceram. Soc. Japan, 107 [1244], 308–312, (1999).
[23] X. Guo, K. Nakanishi, K. Kanamori, Y. Zhu, and H. Yang, “Preparation of macroporous cordierite monoliths via the sol–gel process accompanied by phase separation,” J. Eur. Ceram. Soc., 34 [3], 817–823, (2014).
[24] A. M. Menchi and A. N. Scian, “Mechanism of cordierite formation obtained by the sol–gel technique,” Mater. Lett., 59 [21], 2664–2667, (2005).
[25] L. Radev, B. Samuneva, I. Mihailova, L. Pavlova, and E. Kashchieva, “Sol-gel synthesis and structure of cordierite/tialite glass-ceramics,” Process. Appl. Ceram., 3 [3], 125–130, (2009).
[26] I. Janković-Častvan, S. Lazarević, D. Tanasković, A. Orlović, R. Petrović, and D. Janaćković, “Phase transformation in cordierite gel synthesized by non-hydrolytic sol–gel route,” Ceram. Int., 33 [7], 1263–1268, (2007).
[27] Z. Li, J. Wu, L. Song, and Y. Huang, “Effect of composition on sinter-crystallization and properties of low temperature co-fired α-cordierite glass-ceramics,” J. Eur. Ceram. Soc., 34 [15], 3981–3991, (2014).
[28] S. K. Nath, S. Kumar, and R. Kumar, “Effect of mechanical activation on cordierite synthesis through solid-state sintering method,” Build. Mater. Sci., 37 [6], 1221–1226, (2014).
[29] S. Yürüyen, N. Toplan, K. Yildiz, and H. Ö. Toplan, “The non-isothermal kinetics of cordierite formation in mechanically activated talc–kaolinite–alumina ceramics system,” J. Therm. Anal. Calorim., 125 [2], 803–808, (2016).
[30] A. K. Chakraborty, “DTA study of preheated kaolinite in the mullite formation region,” Thermochim. Acta, 398 [1–2], 203–209, (2003).
[31] A. K. Chakravorty and D. K. Ghosh, “Kaolinite–mullite reaction series: The development and significance of a binary aluminosilicate phase,” J. Am. Ceram. Soc., 74 [6], 1401–1406, (1991).
[32] Y. F. Chen, M. C. Wang, and M. H. Hon, “Phase transformation and growth of mullite in kaolin ceramics,” J. Eur. Ceram. Soc., 24 [8], 2389–2397, (2004).
[33] P. Ptáček, F. Šoukal, T. Opravil, M. Nosková, J. Havlica, and J. Brandštetr, “The kinetics of Al–Si spinel phase crystallization from calcined kaolin,” J. Solid State Chem., 183 [11], 2565–2569, (2010).
[34] W. Smykatz-Kloss, Differential Thermal Analysis : Application and Results in Mineralogy. Springer-Verlag: New York Berlin, (1974).
[35] F. Moodi, A. A. Ramezanianpour, and A. S. Safavizadeh, “Evaluation of the optimal process of thermal activation of kaolins,” Sci. Iran., 18 [4], 906–912, (2011).
[36] M. Wesołowski, “Thermal decomposition of talc: A review,” Thermochim. Acta, 78 [1–3], 395–421, (1984).
[37] R. H. Ewell, E. N. Bunting, and R. F. Geller, “Thermal decomposition of talc,” Part J. Res. N.ational Bur. Stand., 15, 551–556, (1935).
[38] X. Liu, X. Liu, and Y. Hu, “Investigation of the thermal decomposition of talc,” Clays Clay Miner., 62 [2], 137–144, (2014).
[39] J. Liao and M. Senna, “Thermal behavior of mechanically amorphized talc,” Thermochim. Acta, 197 [2], 295–306, (1992).
[40] 林逸歆, 顏富士, and 向性一, “配方原料中 SiO2 含量的改變對低溫合成堇青石之影響,” 臺灣鑛業, 69 [2], 21–32, (2017).
[41] Z. Kai, Y. Daoyuan, W. Juan, and Z. Rui, “Synthesis of Cordierite with Low Thermal Expansion Coefficient,” Adv. materails Res., 105–106, 802–804, (2010).
[42] E. S. Rao and P. Manohar, “Processing Research Effect of particle size on high purity cordierite for kiln furniture applications,” Ceram. Process. Res., 17 [5], 1–6, (2016).
[43] R. Goren, H. Gocmez, and C. Ozgur, “ Synthesis of cordierite powder from talc, diatomite and alumina,” Ceram. Int., 32 [4], 407–409, (2006).
[44] 蕭因秀, 黃冠誌, and 雷大同, “台灣東部蛇紋岩及雲母合成堇青石之研究,” 鑛冶:中國鑛冶工程學會會刊, [231], 30–37, (2015).
[45] A. Benhammou, Y. El Hafian, A. Abourriche, Y. Abouliatim, L. Nibou, A. Yaacoubi, N. Tessier-Doyen, A. Smith and B. Tanouti, “Influence of sintering temperature on the microstructural and mechanical properties of cordierite synthesized from andalusite and talc,” Mater. Lett., 172, 198–201, (2016).
[46] J. Banjuraizah, H. Mohamad, and Z. A. Ahmad, “Effect of excess MgO mole ratio in a stoichiometric cordierite (2MgO·2Al2O3·5SiO2) composition on the phase transformation and crystallization behavior of magnesium aluminum silicate phases,” Int. J. Appl. Ceram. Technol., 8 [3], 637–645, (2011).
[47] N. H. H. Phuc, T. Okuno, A. Matsuda, and H. Muto, “Ex situ Raman mapping study of mechanism of cordierite formation from stoichiometric oxide precursors,” J. Eur. Ceram. Soc., 34 [4], 1009–1015, (2014).
[48] 鄒永慶,高 Alpha 相含量堇青石粉末的生成機制與特性,國立成功大學資源工程學系,碩士論文,中華民國一零五年。
[49] J. Setina, “Preparation of Synthetic Cordierite by Solide-State-Reaction with Addition of Dolomite,” Adv. Sci. Technol., 45, 77–82, (2006).
[50] 李曼妮,在合成堇青石過程晶種之粒徑及添加量對出現過渡相的關係研究,國立成功大學資源工程學系,碩士論文,中華民國一零四年。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw