進階搜尋


下載電子全文  
系統識別號 U0026-1608201618310800
論文名稱(中文) 小RNA VrsA在調控創傷弧菌毒力上的角色
論文名稱(英文) Role of a small RNA, VrsA, in regulation of Vibrio vulnificus virulence
校院名稱 成功大學
系所名稱(中) 微生物及免疫學研究所
系所名稱(英) Department of Microbiology & Immunology
學年度 104
學期 2
出版年 105
研究生(中文) 費暘
研究生(英文) Yang Fei
學號 S46033013
學位類別 碩士
語文別 英文
論文頁數 64頁
口試委員 指導教授-何漣漪
口試委員-黃一修
口試委員-陳振暐
口試委員-林靖婷
口試委員-橋本昌征
中文關鍵字 創傷弧菌  Lrp  sRNA  VrsA  趨化性  攝鐵因子  細胞毒性 
英文關鍵字 V. vulnificus  Lrp  sRNA  VrsA  chemotaxis  iron-acquisition  cytotoxicity 
學科別分類
中文摘要 創傷弧菌是一種革蘭式陰性致病菌,會透過傷口感染或吃進帶菌的食物造成壞死性筋膜炎和猛爆性敗血症。我們實驗室已經發現了一個廣泛調控子─ 白胺酸反應調控蛋白質(Lrp)參與調控一株臨床菌株YJ016的趨化性、細胞毒性和對小鼠的毒力。為了瞭解Lrp如何調控創傷弧菌對小鼠之毒力,我們比較了野生株YJ016和Δlrp突變株培養在80%小鼠血清中2小時之全轉錄體,找到了在Δlrp突變株中呈現與野生株不同轉錄水平的Lrp目標基因。為了進一步探討是否有小RNA(sRNA)參與在Lrp的毒力調控機制,在本研究中,我們從RNA-seq的原始數據中尋找在Δlrp突變株表現出不同轉錄水平的sRNA,因此找到了一個在Δlrp突變株中轉錄水平上升的sRNA,將之命名為VrsA。VrsA是從VV2389和VV2390兩基因之間的區域轉錄出來,長度大約400 nt,並且和這兩個基因具同一轉錄方向。我們把一株在Lrp的DNA結合區域有一個點突變並且和Δlrp突變株有相似表現型的菌株YH06中的vrsA刪除後,發現此YH06ΔvrsA突變株在軟瓊脂上的移動性、細胞毒性和小鼠血清中的生長均改變了。在回補了VrsA之後,這株細菌在軟瓊脂上的移動性和細胞毒性上又都恢復到和YH06相當,但其在小鼠血清中的生長則較YH06為佳。另一方面,在野生株YJ016中大量表達VrsA並不會造成表現型的改變,只除了其在小鼠血清中的生長較野生株為佳,而和YH06ΔvrsA回補株相當。這些結果表示VrsA可能參與在Lrp的毒力調控中。不過,VrsA並不是藉由影響Lrp的表現量來調控這些性狀,因為在VrsA缺乏和過度表達的菌株裡,Lrp的量和表現型的變化並沒有相關性。我接著發現,一些和趨化性、細胞毒性、攝鐵能力相關的基因在YH06ΔvrsA突變株中的表現量都會上升,而在回補株中表現量又會下降到和YH06一樣,與上述此兩菌株表現型變化的情形一致。最後,通過生物資訊軟件TargetRNA2的分析,找到了一些VrsA的可能目標基因,其中有三個與毒力相關的基因已經確認會受到VrsA的調控。
英文摘要 Vibrio vulnificus, a gram-negative bacterial pathogen, can cause necrotizing fasciitis and fulminant septicemia in humans via wound or food-borne infection. Our laboratory has shown that the leucine-responsive transcriptional regulator (Lrp), a global regulator, is involved in the regulation of chemotaxis, cytotoxicity and virulence in the mouse in a clinical strain YJ016. To understand how Lrp regulates the virulence of V. vulnificus, the target genes of Lrp, which showed altered transcriptional levels in the Δlrp mutant, were identified by comparing the transcriptome of this mutant incubated in 80% mouse serum for 2 hours with that of its parent strain YJ016. To further explore whether small RNAs (sRNAs) may be involved in the regulation of virulence by Lrp, sRNAs with altered expression levels in the Δlrp mutant were searched by analyzing the RNA-seq raw data in this study. A sRNA, designated VrsA, upregulated in the Δlrp mutant was thus identified. VrsA was transcribed from the intergenic region between VV2389 and VV2390 in the same direction as these two flanking genes, and was estimated to be about 400 nt in length. Deletion of vrsA from mutant YH06, which contains a missense mutation in the DNA-binding domain of Lrp and showed similar phenotype as the Δlrp mutant, resulted in phenotypic change in migration on soft agar, cytotoxicity and growth in mouse serum. The complemented strain of this mutant resembled mutant YH06 in migration on soft agar and cytotoxicity, but grew much better than YH06 in mouse serum. On the other hand, overexpression of VrsA in the wild-type strain did not cause phenotypic change except for growth in mouse serum, which was similar to the complemented strain of the YH06vrsA mutant. These results suggest that VrsA may be involved in the regulation of virulence by Lrp. Nevertheless, VrsA does not regulate via affecting the Lrp level, because the Lrp levels in the VrsA-deficient and -overexpressing strains did not correlate with the phenotype. Consistently, some of the genes involved in chemotaxis, cytotoxicity and iron-acquisition were up-regulated in the YH06vrsA mutant but restored to mutant YH06 levels in the complemented strain. Finally, a number of candidate target genes of VrsA were identified by a bioinformatic tool, TargetRNA2. Among them, three virulence-related genes were confirmed to be regulated by VrsA.
論文目次 Contents
中文摘要 I
Abstract II
Acknowledgments III
Contents IV
List of tables VII
List of figures VIII
Abbreviations IX
Introduction 1
Materials and Methods 6
1. Bacterial strains, plasmids, primers and cell lines 6
1.1 Bacterial strains and plasmids 6
1.2 Primers 6
1.3 Cell lines 6
2. Nucleic Acid extraction and manipulation 6
2.1 Genomic DNA extraction 6
2.2 Plasmid DNA extraction 7
2.3 Polymerase chain reaction (PCR) 7
2.4 Splicing by overlap extension 7
2.5 DNA clean up and gel extraction 8
2.6 Restriction enzyme digestion 8
2.7 Dephosphorylation of 5’-ends of DNA 8
2.8 DNA ligation 9
2.9 Competent cell preparation 9
2.10 Transformation 9
2.11 Conjugation 9
2.12 RNA isolation and reverse-transcription PCR 10
2.13 Real-time RT-PCR 10
3. Isolation of mutants 11
3.1 Isolation of YJ016Δlrp mutant 11
3.2 Isolation of the vrsA deletion mutants 11
3.3 Isolation of the VrsA-complemented strains 12
3.4 Isolation of the VrsA overexpressing strain 12
3.5 Isolation of strains expressing transcripts with a His6-tag 12
4. Phenotype Analysis 13
4.1 Migration on soft agar 13
4.2 Cytotoxicity assay 13
4.3 Bacterial growth curves 13
5. Protein analysis 13
5.1 Preparation of bacterial total proteins 13
5.2 Estimation of protein concentration 14
5.3 Western blot analysis 14
6. Animal experiments 14
6.1 Mice 14
6.2 Growth curve of bacteria incubated in mouse serum 15
6.3 Survival rate of infected mice 15
7. Statistical analyses 15
Results 16
1. Identification of the small RNA, VrsA, that showed altered transcriptional level in the lrp mutant 16
2. Direction of vrsA transcription 16
3. Length of VrsA 17
4. The hypothetical ORFs in vrsA are not translated 17
5. Phenotype of the lrp mutant with a deletion in vrsA 17
5.1 Isolation of the YJ016lrp*ΔvrsA mutant and complemented strain 18
5.2 Involvement of VrsA in reduced migration of YH06 (YJ016lrp*) on soft agar 18
5.3 Involvement of VrsA in cytotoxicity defect of YH06 (YJ016lrp*) 19
5.4 Growth of YJ016lrp*ΔvrsA mutant and its complemented strain in vitro and ex vivo 19
6. Phenotype of the wild-type strain overexpressing VrsA. 19
6.1 Isolation of YJ016(pvrsA) that overexpressed VrsA 19
6.2 Phenotype of YJ016(pvrsA) 20
7. Effect of VrsA on the expression of Lrp 20
7.1 The lrp mRNA levels in the VrsA-deficient and -overexpressing strains 20
7.2 The Lrp protein levels in the VrsA-deficient and -overexpressing strains 20
8. The mRNA levels of the up- and down-stream genes of vrsA in the YH06ΔvrsA mutant 20
9. Chemotaxis, cytotoxin and iron acquisition-associated genes regulated by VrsA 21
9.1 The mRNA levels of chemotaxis-associated genes in YJ016lrp*ΔvrsA 21
9.2 The mRNA levels of cytotoxin genes in YJ016lrp*ΔvrsA 21
9.3 The mRNA levels of iron acquisition-associated genes in YJ016lrp*ΔvrsA 21
10. Identification of putative target genes of VrsA 22
Discussion 23
References 29
Tables and Figures 36
自述 64
參考文獻 Aiba, H. (2007). Mechanism of RNA silencing by Hfq-binding small RNAs. Current Opinion in Microbiology 10, 134-139.
Alice, A.F., Naka, H., and Crosa, J.H. (2008). Global gene expression as a function of the iron status of the bacterial cell: influence of differentially expressed genes in the virulence of the human pathogen Vibrio vulnificus. Infection and Immunity 76, 4019-4037.
Amaro, C., and Biosca, E.G. (1996). Vibrio vulnificus biotype 2, pathogenic for eels, is also an opportunistic pathogen for humans. Applied and Environmental Microbiology 62, 1454-1457.
Babitzke, P., and Romeo, T. (2007). CsrB sRNA family: sequestration of RNA-binding regulatory proteins. Current Opinion in Microbiology 10, 156-163.
Belkin, S., and Colwell, R.R. (2006). Oceans and health: pathogens in the marine environment (Springer).
Bisharat, N., Agmon, V., Finkelstein, R., Raz, R., Ben-Dror, G., Lerner, L., Soboh, S., Colodner, R., Cameron, D.N., and Wykstra, D.L. (1999). Clinical, epidemiological, and microbiological features of Vibrio vulnificus biogroup 3 causing outbreaks of wound infection and bacteraemia in Israel. The Lancet 354, 1421-1424.
Bouvier, M., Sharma, C.M., Mika, F., Nierhaus, K.H., and Vogel, J. (2008). Small RNA binding to 5′ mRNA coding region inhibits translational initiation. Molecular cell 32, 827-837.
Breaker, R.R. (2011). Prospects for riboswitch discovery and analysis. Molecular Cell 43, 867-879.
Calvo, J.M., and Matthews, R.G. (1994). The leucine-responsive regulatory protein, a global regulator of metabolism in Escherichia coli. Microbiological Reviews 58, 466-490.
Carroll, R.K., Weiss, A., Broach, W.H., Wiemels, R.E., Mogen, A.B., Rice, K.C., and Shaw, L.N. (2016). Genome-wide Annotation, Identification, and Global Transcriptomic Analysis of Regulatory or Small RNA Gene Expression in Staphylococcus aureus. mBio 7, e01990-01915.
Chen, C.Y., Wu, K.M., Chang, Y.C., Chang, C.H., Tsai, H.C., Liao, T.L., Liu, Y.M., Chen, H.J., Shen, A.B.T., and Li, J.C. (2003). Comparative genome analysis of Vibrio vulnificus, a marine pathogen. Genome Research 13, 2577-2587.
Chiang, S.R., and Chuang, Y.C. (2003). Vibrio vulnificus infection: clinical manifestations, pathogenesis, and antimicrobial therapy. Journal of Microbiology, Immunology and Infection 36, 81-88.
Choi, M.H., Sun, H.Y., Park, R.Y., Kim, C.M., Bai, Y.H., Kim, Y.R., Rhee, J.H., and Shin, S.H. (2006). Effect of the crp mutation on the utilization of transferrin-bound iron by Vibrio vulnificus. FEMS Microbiology Letters 257, 285-292.
Danin-Poleg, Y., Elgavish, S., Raz, N., Efimov, V., and Kashi, Y. (2013). Genome sequence of the pathogenic bacterium Vibrio vulnificus biotype 3. Genome Announcements 1, e00136-00113.
DePaola, A., Capers, G.M., and Alexander, D. (1994). Densities of Vibrio vulnificus in the intestines of fish from the US Gulf Coast. Applied and Environmental Microbiology 60, 984-988.
Enoru-Eta, J., Gigot, D., Thia-Toong, T.-L., Glansdorff, N., and Charlier, D. (2000). Purification and Characterization of Sa-Lrp, a DNA-Binding Protein from the Extreme Thermoacidophilic Archaeon Sulfolobus acidocaldarius Homologous to the Bacterial Global Transcriptional Regulator Lrp. Journal of Bacteriology 182, 3661-3672.
Esquerre, T., Bouvier, M., Turlan, C., Carpousis, A.J., Girbal, L., and Cocaign-Bousquet, M. (2016). The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli. Scientific Reports 6, 25057.
Fan, J.J., Shao, C.P., Ho, Y.C., Yu, C.K., and Hor, L.I. (2001). Isolation and characterization of a Vibrio vulnificus mutant deficient in both extracellular metalloprotease and cytolysin. Infection and Immunity 69, 5943-5948.
Gray, L.D., and Kreger, A.S. (1987). Mouse Skin Damage Caused by Cytolysin from Vibrio vulniflcus and by V. vulnificus Infection. Journal of Infectious Diseases 155, 236-241.
Gulig, P.A., Tucker, M.S., Thiaville, P.C., Joseph, J.L., and Brown, R.N. (2009). USER friendly cloning coupled with chitin-based natural transformation enables rapid mutagenesis of Vibrio vulnificus. Applied and Environmental Microbiology 75, 4936-4949.
Hanahan, D. (1983). Studies on transformation of Escherichia coli with plasmids. Journal of Molecular Biology 166, 557-580.
Helms, S.D., Oliver, J.D., and Travis, J.C. (1984). Role of heme compounds and haptoglobin in Vibrio vulnificus pathogenicity. Infection and Immunity 45, 345-349.
Hlady, W.G., and Klontz, K.C. (1996). The epidemiology of Vibrio infections in Florida, 1981–1993. Journal of Infectious Diseases 173, 1176-1183.
Ho, Y.C. (2014). Identification of leucine-responsive regulatory protein, Lrp, as an important virulence regulator in Vibrio vulnificus. Master thesis, National Cheng Kung University: Tainan, Taiwan.
Holm, K.O., Nilsson, K., Hjerde, E., Willassen, N.P., and Milton, D.L. (2015). Complete genome sequence of Vibrio anguillarum strain NB10, a virulent isolate from the Gulf of Bothnia. Standards in Genomic Sciences 10, 1.
Holmqvist, E., Unoson, C., Reimegard, J., and Wagner, E.G.H. (2012). A mixed double negative feedback loop between the sRNA MicF and the global regulator Lrp. Molecular Microbiology 84, 414-427.
Hor, L.I., Chang, T.T., and Wang, S.T. (1999). Survival of Vibrio vulnificus in whole blood from patients with chronic liver diseases: association with phagocytosis by neutrophils and serum ferritin levels. Journal of Infectious Diseases 179, 275-278.
Hor, L.I., Goo, C.T., and Wan, L. (1995). Isolation and characterization of Vibrio vulnificus inhabiting the marine environment of the southwestern area of Taiwan. Journal of Biomedical Science 2, 384-389.
Howard, R., Brennaman, B., and Lieb, S. (1986). Soft tissue infections in Florida due to marine vibrio bacteria. The Journal of the Florida Medical Association 73, 29-34.
Hung, F.R. (2014). Role of leucine-responsive regulatory protein, Lrp, in pathogenesis of Vibrio vulnificus. Master thesis, National Cheng Kung University: Tainan, Taiwan.
Hyakutake, A., Homma, M., Austin, M.J., Boin, M.A., Häse, C.C., and Kawagishi, I. (2005). Only one of the five CheY homologs in Vibrio cholerae directly switches flagellar rotation. Journal of Bacteriology 187, 8403-8410.
Jeong, H.G., and Satchell, K.J. (2012). Additive function of Vibrio vulnificus MARTX Vv and VvhA cytolysins promotes rapid growth and epithelial tissue necrosis during intestinal infection. PLoS Pathog 8, e1002581.
Jones, M.K., and Oliver, J.D. (2009). Vibrio vulnificus: disease and pathogenesis. Infection and Immunity 77, 1723-1733.
Kery, M.B., Feldman, M., Livny, J., and Tjaden, B. (2014). TargetRNA2: identifying targets of small regulatory RNAs in bacteria. Nucleic Acids Research 42, W124-W129.
Kim, C.M., Park, R.Y., Park, J.H., Sun, H.Y., Bai, Y.H., Ryu, P.Y., Kim, S.Y., Rhee, J.H., and Shin, S.H. (2006). Vibrio vulnificus vulnibactin, but not metalloprotease VvpE, is essentially required for iron-uptake from human holotransferrin. Biological and Pharmaceutical Bulletin 29, 911-918.
Kim, I.H., Shim, J., Lee, K.E., Hwang, W., Kim, I.J., Choi, S.H., and Kim, K.S. (2008a). Nonribosomal peptide synthase is responsible for the biosynthesis of siderophore in Vibrio vulnificus MO6-24/O. J Microbiol Biotechnol 18, 35-42.
Kim, I.H., Wen, Y., Son, J.S., Lee, K.H., and Kim, K.S. (2013). The fur-iron complex modulates expression of the quorum-sensing master regulator, SmcR, to control expression of virulence factors in Vibrio vulnificus. Infection and Immunity 81, 2888-2898.
Kim, Y.R., Lee, S.E., Kim, C.M., Kim, S.Y., Shin, E.K., Shin, D.H., Chung, S.S., Choy, H.E., Progulske-Fox, A., and Hillman, J.D. (2003). Characterization and pathogenic significance of Vibrio vulnificus antigens preferentially expressed in septicemic patients. Infection and Immunity 71, 5461-5471.
Kim, Y.R., Lee, S.E., Kook, H., Yeom, J.A., Na, H.S., Kim, S.Y., Chung, S.S., Choy, H.E., and Rhee, J.H. (2008b). Vibrio vulnificus RTX toxin kills host cells only after contact of the bacteria with host cells. Cellular Microbiology 10, 848-862.
Klein, G., and Raina, S. (2015). Regulated Control of the Assembly and Diversity of LPS by Noncoding sRNAs. BioMed Research International 2015.
Klontz, K.C., Lieb, S., Schreiber, M., Janowski, H.T., Baldy, L.M., and Gunn, R.A. (1988). Syndromes of Vibrio vulnificus infections: clinical and epidemiologic features in Florida cases, 1981-1987. Annals of Internal Medicine 109, 318-323.
Kovach, M.E., Elzer, P.H., Hill, D.S., Robertson, G.T., Farris, M.A., Roop, R.M., and Peterson, K.M. (1995). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166, 175-176.
Lee, B., Kim, S., Choi, S., and Kim, T.S. (2005). Induction of interleukin‐8 production via nuclear factor‐κB activation in human intestinal epithelial cells infected with Vibrio vulnificus. Immunology 115, 506-515.
Lee, C.T., Amaro, C., Wu, K.M., Valiente, E., Chang, Y.F., Tsai, S.F., Chang, C.H., and Hor, L.I. (2008). A common virulence plasmid in biotype 2 Vibrio vulnificus and its dissemination aided by a conjugal plasmid. Journal of Bacteriology 190, 1638-1648.
Lee, C.T., Pajuelo, D., Llorens, A., Chen, Y.H., Leiro, J.M., Padrós, F., Hor, L.I., and Amaro, C. (2013). MARTX of Vibrio vulnificus biotype 2 is a virulence and survival factor. Environmental Microbiology 15, 419-432.
Lee, J.H., Rho, J.B., Park, K.J., Kim, C.B., Han, Y.S., Choi, S.H., Lee, K.H., and Park, S.J. (2004). Role of flagellum and motility in pathogenesis of Vibrio vulnificus. Infection and Immunity 72, 4905-4910.
Lenz, D.H., Mok, K.C., Lilley, B.N., Kulkarni, R.V., Wingreen, N.S., and Bassler, B.L. (2004). The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118, 69-82.
Li, W.T. (2016). Identification of genes directly regulated by Lrp, a virulence regulator, in Vibrio vulnificus. Master thesis, National Cheng Kung University: Tainan, Taiwan.
Litwin, C.M., Rayback, T.W., and Skinner, J. (1996). Role of catechol siderophore synthesis in Vibrio vulnificus virulence. Infection and Immunity 64, 2834-2838.
Liu, M., Alice, A.F., Naka, H., and Crosa, J.H. (2007). The HlyU protein is a positive regulator of rtxA1, a gene responsible for cytotoxicity and virulence in the human pathogen Vibrio vulnificus. Infection and Immunity 75, 3282-3289.
Lo, H.R., Lin, J.H., Chen, Y.H., Chen, C.L., Shao, C.P., Lai, Y.C., and Hor, L.I. (2011). RTX toxin enhances the survival of Vibrio vulnificus during infection by protecting the organism from phagocytosis. Journal of Infectious Diseases 203, 1866-1874.
Lo, W.S., Chen, H., Chen, C.Y., and Kuo, C.H. (2014). Complete genome sequence of Vibrio vulnificus 93U204, a bacterium isolated from diseased tilapia in Taiwan. Genome announcements 2, e01005-01014.
Naka, H., Dias, G.M., Thompson, C.C., Dubay, C., Thompson, F.L., and Crosa, J.H. (2011). Complete genome sequence of the marine fish pathogen Vibrio anguillarum harboring the pJM1 virulence plasmid and genomic comparison with other virulent strains of V. anguillarum and V. ordalii. Infection and Immunity 79, 2889-2900.
Nascimento, S.M.M.d., Vieira, R.H.S.d.F., Theophilo, G.N.D., Rodrigues, D.D.P., and Vieira, G.H.F. (2001). Vibrio vulnificus as a health hazard for shrimp consumers. Revista do Instituto de Medicina Tropical de Sao Paulo 43, 263-266.
Newman, E., and Lin, R. (1995). Leucine-responsive regulatory protein: a global regulator of gene expression in E. coli. Annual Reviews in Microbiology 49, 747-775.
Newman, E.B., D'Ari, R., and Lin, R.T. (1992). The leucine-Lrp regulon in E. coli. Cell 68, 617-619.
Ouhammouch, M., and Geiduschek, E.P. (2001). A thermostable platform for transcriptional regulation: the DNA-binding properties of two Lrp homologs from the hyperthermophilic archaeon Methanococcus jannaschii. The EMBO Journal 20, 146-156.
Park, J.H., Cho, Y.J., Chun, J., Seok, Y.J., Lee, J.K., Kim, K.S., Lee, K.H., Park, S.J., and Choi, S.H. (2011). Complete genome sequence of Vibrio vulnificus MO6-24/O. Journal of Bacteriology 193, 2062-2063.
Philippe, N., Alcaraz, J.-P., Coursange, E., Geiselmann, J., and Schneider, D. (2004). Improvement of pCVD442, a suicide plasmid for gene allele exchange in bacteria. Plasmid 51, 246-255.
Phillips, K.E., Schipma, M.J., and Satchell, K.J. (2015). Draft genome sequences of four closely linked Vibrio vulnificus isolates from the biotype 1 environmental genotype. Genome Announcements 3, e01317-01314.
Romby, P., Vandenesch, F., and Wagner, E.G.H. (2006). The role of RNAs in the regulation of virulence-gene expression. Current Opinion in Microbiology 9, 229-236.
Schaible, U.E., and Kaufmann, S.H. (2004). Iron and microbial infection. Nature Reviews Microbiology 2, 946-953.
Shao, C.P., and Hor, L.I. (2000). Metalloprotease is not essential for Vibrio vulnificus virulence in mice. Infection and Immunity 68, 3569-3573.
Shao, C.P., Lo, H.R., Lin, J.H., and Hor, L.I. (2011). Regulation of cytotoxicity by quorum-sensing signaling in Vibrio vulnificus is mediated by SmcR, a repressor of hlyU. Journal of Bacteriology 193, 2557-2565.
Simpson, L.M., and Oliver, J.D. (1983). Siderophore production by Vibrio vulnificus. Infection and Immunity 41, 644-649.
Simpson, L.M., and Oliver, J.D. (1987). Ability of Vibrio vulnificus to obtain iron from transferrin and other iron-binding proteins. Current Microbiology 15, 155-157.
Storz, G., Vogel, J., and Wassarman, K.M. (2011). Regulation by small RNAs in bacteria: expanding frontiers. Molecular Cell 43, 880-891.
Tani, T.H., Khodursky, A., Blumenthal, R.M., Brown, P.O., and Matthews, R.G. (2002). Adaptation to famine: a family of stationary-phase genes revealed by microarray analysis. Proceedings of the National Academy of Sciences 99, 13471-13476.
Tison, D., Nishibuchi, M., Greenwood, J., and Seidler, R. (1982). Vibrio vulnificus biogroup 2: new biogroup pathogenic for eels. Applied and Environmental Microbiology 44, 640-646.
Valentin‐Hansen, P., Eriksen, M., and Udesen, C. (2004). MicroReview: The bacterial Sm‐like protein Hfq: a key player in RNA transactions. Molecular Microbiology 51, 1525-1533.
Vogel, J. (2009). A rough guide to the non-coding RNA world of Salmonella. Molecular Microbiology 71, 1-11.
Waters, L.S., and Storz, G. (2009). Regulatory RNAs in bacteria. Cell 136, 615-628.
Webster, A.C., and Litwin, C.M. (2000). Cloning and characterization of vuuA, a gene encoding the Vibrio vulnificus ferric vulnibactin receptor. Infection and Immunity 68, 526-534.
Weng, C.H. (2016). Identification of the target genes of Lrp, a global regulator involved in the virulence of Vibrio vulnificus in mice. Master thesis, National Cheng Kung University: Tainan, Taiwan.
Wright, A.C., and Morris, J. (1991). The extracellular cytolysin of Vibrio vulnificus: inactivation and relationship to virulence in mice. Infection and Immunity 59, 192-197.
Wu, K.C. (2013). Determination of genes in biotype 2 Vibrio vulnificus virulence plasmid required for bacterial survival in eel serum. Master thesis, National Cheng Kung University: Tainan, Taiwan.
Yanisch-Perron, C., Vieira, J., and Messing, J. (1985). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33, 103-119.
Zaidenstein, R., Sadik, C., Lerner, L., Valinsky, L., Kopelowitz, J., Yishai, R., Agmon, V., Parsons, M., Bopp, C., and Weinberger, M. (2008). Clinical characteristics and molecular subtyping of Vibrio vulnificus illnesses, Israel. Emerging Infectious Diseases 14, 1875-1882.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-08-26起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-08-26起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw