進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1608201616251100
論文名稱(中文) 高尺度量子邏輯閘之模擬與設計
論文名稱(英文) Scheme for Simulation and Designing of Large-Scale Quantum Logic Gate
校院名稱 成功大學
系所名稱(中) 工程科學系
系所名稱(英) Department of Engineering Science
學年度 104
學期 2
出版年 105
研究生(中文) 余啟成
研究生(英文) Chi-Cheng Yu
學號 N96021583
學位類別 碩士
語文別 中文
論文頁數 113頁
口試委員 指導教授-黃吉川
口試委員-廖德祿
口試委員-王雲哲
中文關鍵字 量子資訊  量子控制  量子演算法  量子電腦 
英文關鍵字 quantum information  quantum computer  quantum algorithm 
學科別分類
中文摘要 本論文的研究為三氯甲烷分子在核磁共振(NMR)系統,透過脈衝雷射整形的模擬實驗,將最佳化控制場,選取重要頻率位置將其保留,以飛秒脈衝雷射的波形結合特定染色體參數型式,透過基因演算法步驟求解得到最佳化可行性雷射場達成量子邏輯閘演化操作。另外,本論文亦使用IBM公開的量子電腦平台進行模擬與實驗,也就是說,我們可透過此平台直接使用量子電腦進行模擬與實驗設計出我們想要的量子電路,本部分主要以五個量子位元的貝爾不等式量測電路、五個量子位元的量子穩定碼邏輯閘電路以及四個量子位元的搜尋演算法邏輯電路來做討論。由於該平台能夠進行模擬與實驗,因此可藉由這兩者與理想的結果進行比較,評估所模擬與實驗對象的可行性。最後本論文成功以最佳化控制整合基因演算法模擬二個量子位元之糾纏邏輯閘,以及使用IBM所公開的量子電腦平台實現了上述的三種邏輯閘電路,且對每一種電路串接的組合進行輸出態的分析,並將理想、模擬以及實驗的結果互相比較。
英文摘要 In thesis, we tested three quantum algorithm of circuits on five qubit IBM quantum computer, that’s include five qubit Bell-Mermin inequality measurement circuit、five qubit of quantum stabilizer code and four qubit Grover search algorithm . For Bell Mermain inequality measurement ,we can calculate expected values and distinguish the result is principle of local realism( principle of locality) or quantum mechanical, quantum stabilizer code circuit can executed quantum error correction , Grover search algorithm can using the minimum number of times to find a specific state. We executed ten experiments and compare with result of ideal , then we calculate the mean fidelity and standard error.
論文目次 中文摘要 I
Abstract II
誌謝 XI
目錄 XII
表目錄 XV
圖目錄 XVI
符號說明 XXI
第一章 緒論 1
1-1研究背景 1
1-2文獻回顧 3
1-3研究動機 6
1-4本文架構 7
第二章 量子資訊基礎理論 8
2-1 量子力學四大公設 8
2-2 量子位元與量子邏輯閘 11
2-3 希爾伯特空間與約化李維空間 15
2-4 密度算符與動態演化方程式 18
2-5量子過程掃描解析與保真度 20
第三章 量子演算法 23
3-1 貝爾定理與GHZ論述 23
3-2 量子穩定碼電路 27
3-2-1 量子穩定碼定義 28
3-2-2 糾錯性質 33
3-3 搜尋演算法 35
第四章 整合量子最佳化控制與基因演算法 38
4-1三氯甲烷分子系統 38
4-2糾纏回授疊代演算法 43
4-3求解最佳化可行性雷射場 48
第五章 模擬與實驗結果分析 55
5-1 糾纏邏輯閘之模擬結果 55
5-2 IBM量子電腦簡介 68
5-3量子邏輯閘設計概要 71
5-4量子電腦模擬與實驗 74
5-5 貝爾不等式量測電路之模擬與實驗 75
5-6 穩定碼電路邏輯閘之模擬與實驗 82
5-7 搜尋演算法邏輯閘之模擬與實驗 95
第六章 結論與未來展望 105
6-1 結論 105
6-2 未來展望 105
參考文獻 107
參考文獻 [1]Feynman, R.P., Quantum mechanical computers. Foundations of physics, 1986. 16(6): p. 507-531.
[2]Shor, P.W., Algorithm for quantum computation:Discrete logarithms and factoring ,in preceedings of the symposium on the foundations of computer science. Los Alamitos,California, IEEE Computer society press,New York, 1994: p. 124-134.
[3]Grover, L.K., A fast quantum mechanics algorithm for database search, in proceedings of the twenty-eighth annual symposium on the theory of computing. Philadelphia,Pennsylvania,ACM Press,New York, 1996: p. pp212-218.
[4]Grover, L.K., Quantum mechanics helps in searching for a needle in a haystack. Physical Review Letters, 1997. 79(2): p. 325-328.
[5]Sleator, T. and H. Weinfurter, Realizable universal quantum logic gates. Physical Review Letters, 1995. 74(20): p. 4087-4090.
[6]Brune, M., et al., Quantum rabi oscillation: A direct test of field quantization in a cavity. Physical Review Letters, 1996. 76(11): p. 1800-1803.
[7]Schmidt-Kaler, F., et al., Realization of the Cirac-Zoller controlled-NOT quantum gate. Nature, 2003. 422(6930): p. 408-411.
[8]Loss, D. and D.P. DiVincenzo, Quantum computation with quantum dots. Physical Review A, 1998. 57(1): p. 120-126.
[9]Vandersypen, L.M.K., et al., Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance. Nature, 2001. 414(6866): p. 883-887.
[10]Niskanen, A.O., et al., Quantum coherent tunable coupling of superconducting qubits. Science, 2007. 316(5825): p. 723-726.
[11]Yusa, G., W. Izumida, and M. Hotta, Quantum energy teleportation in a quantum Hall system. Physical Review A, 2011. 84(3).
[12]He, G.Q., et al., Continuous-variable quantum teleportation in bosonic structured environments. Physical Review A, 2011. 84(3).
[13]Prakash, H. and A.K. Maurya, Quantum teleportation using entangled 3-qubit states and the 'magic bases'. Optics Communications, 2011. 284(20): p. 5024-5030.
[14]Pan, C.N., et al., Fidelity of quantum teleportation of atomic-state in dissipative environment. Acta Physica Sinica, 2011. 60(9).
[15]He, G.P., Quantum key distribution based on orthogonal states allows secure quantum bit commitment. Journal of Physics a-Mathematical and Theoretical, 2011. 44(44).
[16]Dong, L., et al., Controlled quantum key distribution with three-photon polarization-entangled states via the collective noise channel. Journal of Experimental and Theoretical Physics, 2011. 113(4): p. 583-591.
[17]Aron, J., Quantum keys let submarines talk securely. New Scientist, 2011. 212(2836): p. 22-23.
[18]Kawahara, H., T. Oka, and K. Inoue, Differential-phase-shift quantum key distribution with phase modulation to combat sequential attacks. Physical Review A, 2011. 84(5).
[19]Honjo, T., T. Inoue, and K. Inoue, Influence Of light source linewidth in differential-phase-shift quantum key distribution systems. Optics Communications, 2011. 284(24): p. 5856-5859.
[20]Hong, F.Y., et al., Low temperature dynamics of neutral atoms for quantum logic. Quantum Information & Computation, 2011. 11(11-12): p. 925-936.
[21]Novitsky, D.V. and S.Y. Mikhnevich, Logic gate based on a one-dimensional photonic crystal containing quantum dots. Journal of Applied Spectroscopy, 2010. 77(2): p. 232-237.
[22]Strauch, F.W., Quantum logic gates for superconducting resonator qudits. Physical Review A, 2011. 84(5).
[23]Huo, J.L. and S.J. Wang, Quantum logic gates for spin cluster qubits. Journal of Physics B-Atomic Molecular and Optical Physics, 2010. 43(12).
[24]Leshem, A. and O. Gat, Entanglement generation by interaction with semiclassical radiation. Physical Review A, 2011. 84(5).
[25]Kumar, S. and A. Pandey, Entanglement in random pure states: spectral density and average von Neumann entropy. Journal of Physics a-Mathematical and Theoretical, 2011. 44(44).
[26]Tichy, M.C., F. Mintert, and A. Buchleitner, Essential entanglement for atomic and molecular physics. Journal of Physics B-Atomic Molecular and Optical Physics, 2011. 44(19).
[27]Muller, M.M., et al., Optimizing entangling quantum gates for physical systems. Physical Review A, 2011. 84(4).
[28]Butkovskii, A.G. and Y.I. Samoilenko, Control of quantum systems. Automation and Remote Control, 1979. 40(4): p. 485-502.
[29]Butkovskii, A.G. and Y.I. Samoilenko, Control of quantum systems .2. Automation and Remote Control, 1979. 40(5): p. 629-645.
[30]Butkovskii, A.G. and Samoilenko, II, Controllability of quantum objects. Doklady Akademii Nauk Sssr, 1980. 250(1): p. 51-55.
[31]Warren, W.S., H. Rabitz, and M. Dahleh, Coherent control of quantum dynamics - the dream is alive. Science, 1993. 259(5101): p. 1581-1589.
[32]Viola, L., S. Lloyd, and E. Knill, Universal control of decoupled quantum systems. Physical Review Letters, 1999. 83(23): p. 4888-4891.
[33]Judson, R.S. and H. Rabitz, TEACHING LASERS TO CONTROL MOLECULES. Physical Review Letters, 1992. 68(10): p. 1500-1503.
[34]Phan, M.Q. and H. Rabitz, Learning control of quantum-mechanical systems by laboratory identification of effective input-output maps. Chemical Physics, 1997. 217(2-3): p. 389-400.
[35]Gross, P., D. Neuhauser, and H. Rabitz, teaching lasers to control molecules in the presence of laboratory field uncertainty and measurement imprecision. Journal of Chemical Physics, 1993. 98(6): p. 4557-4566.
[36]T. J. Tarn , G.M.H.a.J.W.C., Modelling of Quantum Mechanical Control Systems. Mathematical Modelling 1980: p. 109.
[37]Clark, J.W., et al., Quantum nondemolition filters. Mathematical Systems Theory, 1985. 18(1): p. 33-55.
[38]C. K. Ong, G.M.H., T.J.Tarn amd J.W. Clark, Invertibility of Quantum-Mechanical Control System. Math. Syst Theory, 1984: p. 335.
[39]Geremia, J.M. and H. Rabitz, Optimal identification of Hamiltonian information by closed-loop laser control of quantum systems. Physical Review Letters, 2002. 89(26).
[40]Bardeen, C.J., et al., Quantum control of NaI photodissociation reaction product states by ultrafast tailored light pulses. Journal of Physical Chemistry A, 1997. 101(20): p. 3815-3822.
[41]Meshulach, D. and Y. Silberberg, Coherent quantum control of two-photon transitions by a femtosecond laser pulse. Nature, 1998. 396(6708): p. 239-242.
[42]M. Tsubouchi and T. Momose, Rovibrational wave-packet manipulation using shaped midinfrared femtosecond pulses toward quantum computation: Optimization of pulse shape by a genetic algorithm.PHYSICAL REVIEW A 77, 052326 2008
[43]D. Shyshlov and D. Babikov, Complexity and simplicity of optimal control theory pulses shaped for controlling vibrational qubits.THE JOURNAL OF CHEMICAL PHYSICS 137, 194318 ,2012
[44]Yi-Hui Ho, Scheme for Implementing Quantum Logic Gate Via Optimal Quantum Logic Gate via Optimal Quantum Control Theorem,Department of Engineering Science,NCKU,2010.
[45]Yu-Yang Zhuang,Optimal Quantum-Process-Tomography Control of Quantum Logic Gate In Open Systems, Department of Engineering Science,NCKU,2014.
[46]Daniel Alsina,Experimental test of Mermin inequalities on a 5-qubit quantum computer, arxiv:1605.04220v1[quant-ph],13 May 2016
[47]Simon J. Devitt,Quantum Error Correction for Beginners, arxiv:0905.2794v4 [quant-ph]21 Jun 2013,21 Jun 2013
[48]Chi-Chang Fu,Scheme for Implementing Quantum Algorithm via Quantum Process Tomography Optimal Control Theorem Engineering Science,NCKU,2012
[49]I. L. Chuang† ,” NMR techniques for quantum control and computation”, REVIEWS OF MODERN PHYSICS, VOLUME 76, OCTOBER 2004
[50]Yasushi KONDO, Mikio NAKAHARA, Kazuya HATA and Shogo TANIMURA,” Hamiltonian of Homonucleus Molecules for NMR Quantum Computing”,J.School Sci,Eng.Kinki Univ.42,2006
[51]D. E. Spence, P. N. Kean, and W. Sibbett ,60-fsec pulse generation from a self-mode-locked Ti:sapphire laser, OPTICS LETTERS Vol. 16, No. 1 January 1, 1991
[52]Kun-You Peng,Scheme for Designing Quantum Logic Gate Via Integrated Optimal Control and Genetic Algorithm, Department of Engineering Science,NCKU,2015
[53]Andreas Assion and Thomas Baumert, Femtosecond Laser Pulses: Linear Properties,Manipulation, Generation and Measurement,2003
[54]D. Zeidler, Coherent Control of Molecular Dynamics with Shaped Femtosecond Pulses, Dissertation an der Fakulta ̈t fu ̈r Physik der Ludwig-Maximilians-Universita ̈t Mu ̈nchen, 19.10.2001
[55]http://www.research.ibm.com/quantum/,2016
[56]Brett Giles,Exact synthesis of multiqubit Clifford+T circuits, arxiv:1212.0506v3[quant-ph],2 Apr 2013
[57]Z. Diao et al , A Quantum Circuit Design for Grover’s Algorithm, Department of Mathematics Texas A&M University College Station, May 15, 2002
[58]Matthew Morrison and Nagarajan Ranganathan ,A Novel Optimization Method for Reversible Logic Circuit Minimization, IEEE Computer Society Annual Symposium on VLSI,2013
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw