進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1608201520360700
論文名稱(中文) 具透明金屬電極之平板鈣鈦礦太陽能電池
論文名稱(英文) Planar Perovskite Solar Cells with Transparent Metal Contact
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 103
學期 2
出版年 104
研究生(中文) 王淵霆
研究生(英文) Yuan-Ting Wang
學號 L76021082
學位類別 碩士
語文別 中文
論文頁數 98頁
口試委員 指導教授-賴韋志
口試委員-郭宗枋
口試委員-許進恭
口試委員-郭政煌
中文關鍵字 甲基銨碘化鉛  鎳金薄膜  太陽能電池  氧化鋅 
英文關鍵字 perovskite  Ni/Au  solar cells  ZnO 
學科別分類
中文摘要 本論文主要探討以鎳金薄膜退火氧化後作為透明導電層與電洞傳輸層,並濺鍍氧化鋅作為電子傳輸層,應用於鈣鈦礦系列太陽能電池之研究。
首先蒸鍍不同金薄膜厚度並改變鎳金薄膜退火參數,探究其穿透率、功函數以及材料之電阻值,並輔以SEM圖來佐證不同鎳金薄膜厚度與退火溫度的影響。
使用甲基銨碘化鉛(methylammonium lead iodide)製備平板鈣鈦礦結構的主動層,透過元件的製作了解不同金薄膜厚度與退火參數對太陽能元件所產生的影響以及物理意義。
此外,我們試圖濺鍍氧化鋅於鈣鈦礦薄膜上,致力於製造p型與n型材料全無機的結構,使鈣鈦礦太陽能元件在大氣中獲得穩定且持久的效率。然而在濺鍍氧化鋅於鈣鈦礦薄膜上時,會造成結構上的傷害,此時覆蓋一層C60作為阻擋層可以避免效率值的流失,然而C60的厚度扮演著關鍵的角色,過少將無法有效阻擋損傷的發生,而過多則導致元件效率寄生電阻的增加。最後將兩者結合,進而探究不同載子傳輸層對元件各個光電特性參數之趨勢。
英文摘要 In this work ,we demonstrated efficient planar perovskite solar cell using annealed Ni/Au thin film, and combined sputtering ZnO film to fabricate a solar cell with all inorganic n-type and p-type material. Replacement of the ITO/PEDOT:PSS bilayer in the state-of-the-art ITO/PEDOT:PSS/Perovskite/C60/BCP structure by annealed Ni/Au transparent metal film led to similar power conversion efficiency(PCE) of ITO-free planar perovskite heterojunction solar cells with Ni/Au contact. By varying the annealing temperature and thickness of Au, we can modulate the transmittance and resistance of transparent metal material and find out a better match of perovskite’s HOMO. The best of our devices deliver Voc=1.02V、Jsc=13.04mA/cm2、FF=0.76、η= 10.23%、Rs=56.71Ω·cm2和Rp=446.22MΩ MΩ. And then, we use the sputter to deposit a thin ZnO film as an electron transport layer but unable to be measured any PCE . With a C60 buffer layer , the PCE of this structure shows a large improvement. Therefore, the perovskite solar cell combined with Ni/Au film and sputtering ZnO material further emphasize the versatility and performance potential of lead halide perovskite materials for photovoltaic applications.
論文目次 摘要..........................................I
致謝..........................................VIII
目錄..........................................IX
圖目錄........................................XII
表目錄........................................XVIII
第一章 序論...................................1
1.1 簡介......................................1
1.2 平板鈣鈦礦結構之太陽能電池之介紹.............2
1.2.1 鈣鈦礦光伏元件簡介與現今發展...............2
1.2.2 光生載子特性.............................4
1.3 研究目的與動機.............................7
第二章 理論基礎...............................11
2.1 太陽能電池簡介.............................11
2.1.1 p-n接面.................................11
2.1.2 p-i-n接面...............................13
2.2 太陽能電池等效電路模型......................14
2.2.1 理想化等效電路模型........................14
2.2.2 非理想等效電路模型........................16
2.3 太陽能電池元件相關參數分析...................17
2.3.1 開路電壓(Open-circuit Voltage, VOC)......17
2.3.2 短路電流(Short Current, ISC).............18
2.4.3 最大輸出功率(Maximum Output Power, PMAX)、最大輸出電壓(VMAX)、最大輸出電流(IMAX)......................19
2.4.4 填充因子(Fill Factor, FF)................20
2.4.5 光電轉換效率(Energy Conversion Efficiency, η) ..............................................21
2.4.6 串聯電阻與並聯電阻對於太陽能電池之影響......21
第三章 材料介紹與實驗流程.......................27
3.1 材料介紹...................................27
3.1.1 PEDOT:PSS...............................27
3.1.2 甲基碘化鉛...............................27
3.2 實驗流程...................................28
3.2.1 實驗流程簡介.............................28
3.2.2 太陽能元件製作流程........................29
第四章 實驗結果分析與討論.......................35
4.1 鎳金沉積層退火氧化之特性探討.................35
4.1.1 Ni/Au退火氧化層之SEM圖....................35
4.1.2 Ni/Au退火氧化層之SKPM量測.................36
4.1.3 Ni/Au退火氧化層之四點探針量測..............38
4.1.4 Ni/Au退火氧化層之穿透率量測................39
4.2 鈣鈦礦主動層披覆形貌分析.....................40
4.3 Ni/Au作為透明金屬電極之鈣鈦礦太陽能電池元件....41
4.3.1 Ni/Au之Au厚度變化元件參數..................42
4.3.2 Ni/Au與PEDOT:PSS作為電洞傳輸層之比較.......44
4.3.3 Ni/Au之變化退火溫度元件參數................45
4.4 以ZnO作為電子傳輸層之鈣鈦礦太陽能元件..........48
4.4.1 PEDOT:PSS作為電洞傳輸層之元件探討...........48
4.4.2 加入C60作為plasma damage阻擋層.............49
4.4.3 Ni/Au透明導電層與ZnO電子傳輸層結合之元件探討..52
4.4.4 以TEM觀察退火後Ni/Au與sputter ZnO之薄膜.....53
第五章 結論與未來展望.............................91
5.1 結論.........................................91
5.2 未來展望.....................................92
參考文獻.........................................93
參考文獻 [1] 李榮, “以鎳金屬氧化作為氧化鎳電洞傳輸層應用於鈣鈦礦系列太陽能電池之研究,” 光電科學與工程學系, 國立成功大學, 台南市, 2014.
[2] M. Gratzel, “Powering the planet,” Nature, vol. 403, no. 6768, pp. 363, 2000.
[3] M. A. Green, “Third generation photovoltaics: Ultra‐high conversion efficiency at low cost,” Progress in Photovoltaics: Research and Applications, vol. 9, no. 2, pp. 123-135, 2001.
[4] T. Miyasaka, “Perovskite Photovoltaics: Rare Functions of Organo Lead Halide in Solar Cells and Optoelectronic Devices,” Chemistry Letters, vol. 44, no. 6, pp. 720-729, 2015.
[5] N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “Compositional engineering of perovskite materials for high-performance solar cells,” Nature, vol. 517, no. 7535, pp. 476-480, 2015.
[6] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature, vol. 499, no. 7458, pp. 316-319, 2013.
[7] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009.
[8] H. Kim, C. Lee, J. Im, K. Lee, T. Moehl, A. Marchioro, S. Moon, R. Humphry-Baker, J. Yum, and J. Moser, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Scientific reports, vol. 2, pp. 591, 2012.
[9] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science, vol. 338, no. 6107, pp. 643-647, 2012.
[10] M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat Photon, vol. 8, no. 7, pp. 506-514, 2014.
[11] B. Suarez, V. Gonzalez-Pedro, T. S. Ripolles, R. S. Sanchez, L. Otero, and I. Mora-Sero, “Recombination Study of Combined Halides (Cl, Br, I) Perovskite Solar Cells,” The Journal of Physical Chemistry Letters, vol. 5, no. 10, pp. 1628-1635, 2014.
[12] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells,” Energy & Environmental Science, vol. 7, no. 3, pp. 982-988, 2014.
[13] Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy & Environmental Science, vol. 7, no. 8, pp. 2619-2623, 2014.
[14] G. Giorgi, J.-I. Fujisawa, H. Segawa, and K. Yamashita, “Small Photocarrier Effective Masses Featuring Ambipolar Transport in Methylammonium Lead Iodide Perovskite: A Density Functional Analysis,” The Journal of Physical Chemistry Letters, vol. 4, no. 24, pp. 4213-4216, 2013.
[15] E. Mosconi, E. Ronca, and F. De Angelis, “First-Principles Investigation of the TiO2/Organohalide Perovskites Interface: The Role of Interfacial Chlorine,” The Journal of Physical Chemistry Letters, vol. 5, no. 15, pp. 2619-2625, 2014.
[16] F. Brivio, K. T. Butler, A. Walsh, and M. Van Schilfgaarde, “Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers,” Physical Review B, vol. 89, no. 15, pp. 155204, 2014.
[17] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science, vol. 342, no. 6156, pp. 341-344, 2013.
[18] Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, and Y. Kanemitsu, “Photocarrier Recombination Dynamics in Perovskite CH3NH3PbI3 for Solar Cell Applications,” Journal of the American Chemical Society, vol. 136, no. 33, pp. 11610-11613, 2014.
[19] W.-J. Yin, T. Shi, and Y. Yan, “Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber,” Applied Physics Letters, vol. 104, no. 6, pp. 063903, 2014.
[20] Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, and P. Meredith, “Electro-optics of perovskite solar cells,” Nature Photonics, vol. 9, no. 2, pp. 106-112, 2014.
[21] C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High charge carrier mobilities and lifetimes in organolead trihalide perovskites,” Advanced Materials, vol. 26, no. 10, pp. 1584-1589, 2014.
[22] H. Kunugita, T. Hashimoto, Y. Kiyota, Y. Udagawa, Y. Takeoka, Y. Nakamura, J. Sano, T. Matsushita, T. Kondo, and T. Miyasaka, “Excitonic Feature in Hybrid Perovskite CH3NH3PbBr3 Single Crystals,” Chemistry Letters, vol. 44, no. 6, pp. 852-854, 2015.
[23] F. Hao, C. C. Stoumpos, D. H. Cao, R. P. Chang, and M. G. Kanatzidis, “Lead-free solid-state organic-inorganic halide perovskite solar cells,” Nature Photonics, vol. 8, no. 6, pp. 489-494, 2014.
[24] O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong internal and external luminescence as solar cells approach the Shockley–Queisser limit,” Photovoltaics, IEEE Journal of, vol. 2, no. 3, pp. 303-311, 2012.
[25] R. Dong, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, X. C. Zeng, and J. Huang, “High‐Gain and Low‐Driving‐Voltage Photodetectors Based on Organolead Triiodide Perovskites,” Advanced Materials, vol. 27, no. 11, pp. 1912-1918, 2015.
[26] L. Dou, Y. M. Yang, J. You, Z. Hong, W.-H. Chang, G. Li, and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nature Communications, vol. 5, pp. 5404, 2014.
[27] Y. Kutes, L. Ye, Y. Zhou, S. Pang, B. D. Huey, and N. P. Padture, “Direct observation of ferroelectric domains in solution-processed CH3NH3PbI3 perovskite thin films,” The Journal of Physical Chemistry Letters, vol. 5, no. 19, pp. 3335-3339, 2014.
[28] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale, vol. 3, no. 10, pp. 4088-4093, 2011.
[29] M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature, vol. 501, no. 7467, pp. 395-398, 2013.
[30] L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Grätzel, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells,” Journal of the American Chemical Society, vol. 134, no. 42, pp. 17396-17399, 2012.
[31] M. Grätzel, “The light and shade of perovskite solar cells,” Nature materials, vol. 13, no. 9, pp. 838-842, 2014.
[32] S.-I. Na, S.-S. Kim, J. Jo, and D.-Y. Kim, “Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes,” Adv. Mater, vol. 20, no. 21, pp. 4061-4067, 2008.
[33] J.-K. Ho, C.-S. Jong, C. C. Chiu, C.-N. Huang, K.-K. Shih, L.-C. Chen, F.-R. Chen, and J.-J. Kai, “Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films,” Journal of Applied Physics, vol. 86, no. 8, pp. 4491-4497, 1999.
[34] J. Sheu, Y.-K. Su, G.-C. Chi, P. Koh, M. Jou, C. Chang, C. Liu, and W. Hung, “High-transparency Ni/Au ohmic contact to p-type GaN,” Applied physics letters, vol. 74, no. 16, pp. 2340-2342, 1999.
[35] K.-D. Kim, D. C. Lim, J. Hu, J.-D. Kwon, M.-G. Jeong, H. O. Seo, J. Y. Lee, K.-Y. Jang, J.-H. Lim, and K. H. Lee, “Surface modification of a ZnO electron-collecting layer using atomic layer deposition to fabricate high-performing inverted organic photovoltaics,” ACS applied materials & interfaces, vol. 5, no. 17, pp. 8718-8723, 2013.
[36] D. A. Neamen, Semiconductor physics and devices: McGraw-Hill Higher Education, 2003.
[37] 黃泯舜, “提升氮化銦鎵太陽能電池轉換效率之研究,” 光電科學與工程研究所, 國立成功大學, 台南市, 2010.
[38] A. Luque, and S. Hegedus, Handbook of photovoltaic science and engineering: John Wiley & Sons, 2011.
[39] 紀國鐘, 光電半導體技術手冊: 電子材料元件協會, 2002.
[40] J. Nelson, The physics of solar cells: World Scientific, 2003.
[41] 李佳輝, “氮化鎵摻雜錳應用於中間能帶太陽能電池之研究,” 光電科學與工程學系, 國立成功大學, 台南市, 2012.
[42] A. Luque, and A. Martí, “The intermediate band solar cell: progress toward the realization of an attractive concept,” Advanced Materials, vol. 22, no. 2, pp. 160-174, 2010.
[43] J. Y. Jeng, K. C. Chen, T. Y. Chiang, P. Y. Lin, T. D. Tsai, Y. C. Chang, T. F. Guo, P. Chen, T. C. Wen, and Y. J. Hsu, “Nickel Oxide Electrode Interlayer in CH3NH3PbI3 Perovskite/PCBM Planar‐Heterojunction Hybrid Solar Cells,” Advanced Materials, vol. 26, no. 24, pp. 4107-4113, 2014.
[44] J. Ouyang, Q. Xu, C.-W. Chu, Y. Yang, G. Li, and J. Shinar, “On the mechanism of conductivity enhancement in poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) film through solvent treatment,” Polymer, vol. 45, no. 25, pp. 8443-8450, 2004.
[45] J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen, and T. C. Wen, “CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells,” Advanced Materials, vol. 25, no. 27, pp. 3727-3732, 2013.
[46] A. M. Herrero, P. T. Blanchard, A. Sanders, M. D. Brubaker, N. A. Sanford, A. Roshko, and K. A. Bertness, “Microstructure evolution and development of annealed Ni/Au contacts to GaN nanowires,” Nanotechnology, vol. 23, no. 36, pp. 365203, 2012.
[47] S. Lee, H. Jang, D. Noh, and H. Kang, “Connected Au network in annealed Ni/Au thin films on p-GaN,” Applied Physics Letters, vol. 91, no. 20, pp. 201905-201905, 2007.
[48] W.-C. Lai, K.-W. Lin, T.-F. Guo, and J. Lee, “Perovskite-Based Solar Cells With Nickel-Oxidized Nickel Oxide Hole Transfer Layer,” Electron Devices, IEEE Transactions on, vol. 62, no. 5, pp. 1590-1595, 2015.
[49] 陳貞夙, “金-氧化鎳薄膜作為 p 型氮化鎵之歐姆接觸研究,” 2001.
[50] F. Huang, Y. Dkhissi, W. Huang, M. Xiao, I. Benesperi, S. Rubanov, Y. Zhu, X. Lin, L. Jiang, and Y. Zhou, “Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells,” Nano energy, vol. 10, pp. 10-18, 2014.
[51] D. Liu, and T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,” Nature photonics, vol. 8, no. 2, pp. 133-138, 2014.
[52] 林育如, “利用共濺鍍法調製多層漸變折射率ZnxSiyO3薄膜以改善氮化鎵發光二極體出光效率,” 光電科學與工程研究所, 國立成功大學, 台南市, 2010.
[53] B. Chapman, D. Downer, and L. Guimaraes, “Electron effects in sputtering and cosputtering,” Journal of Applied Physics, vol. 45, no. 5, pp. 2115-2120, 1974.
[54] Y. Li, X. Xu, C. Wang, C. Wang, F. Xie, and Y. Gao, “Degradation by Exposure of Co-Evaporated CH3NH3PbI3 Thin Films,” arXiv preprint arXiv:1506.06454, 2015.
[55] Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, “Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells,” Nature communications, vol. 5, pp. 5784, 2014.
[56] A. Hamed, Y. Sun, Y. Tao, R. Meng, and P. Hor, “Effects of oxygen and illumination on the in situ conductivity of C 60 thin films,” Physical Review B, vol. 47, no. 16, pp. 10873, 1993.
[57] A. H. Jayatissa, A. Nadarajah, and A. K. Dutta, "Investigation of C 60 films for surface finishing applications." in Nanofabrication: Technologies, Devices, and Applications II, pp. 269-275, 2005.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-24起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-08-24起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw