進階搜尋


 
系統識別號 U0026-1608201314373400
論文名稱(中文) 集水區降雨誘發土壤沖蝕之探討及其評估模式之建置
論文名稱(英文) Analysis and Construction of Evaluation Model for Rainfall-induced Soil Erosion in Watersheds
校院名稱 成功大學
系所名稱(中) 土木工程學系碩博士班
系所名稱(英) Department of Civil Engineering
學年度 101
學期 2
出版年 102
研究生(中文) 許嘉峻
研究生(英文) Chia-Chun Shu
學號 N66004218
學位類別 碩士
語文別 中文
論文頁數 111頁
口試委員 指導教授-陳景文
口試委員-黃添坤
口試委員-倪勝火
口試委員-陳怡睿
口試委員-李維峰
中文關鍵字 沖蝕釘試驗  土壤沖蝕  最佳數值搜尋 
英文關鍵字 field erosion pins test  soil erosion  optimum seeking method  universal soil loss equation 
學科別分類
中文摘要 近年來由於全球氣候異常,降雨量豐沛且強度集中,加上台灣地形陡峻、坡短流急、表土沖蝕量大。因此,若能針對降雨影響集水區坡地之土壤沖蝕進行持續地觀察監測與分析,將有助於瞭解坡地表土受降雨沖蝕之影響,並進行坡地保護之動作。
土壤沖蝕應屬地域性相關之研究,現階段台灣的土壤沖蝕研究仍顯不足,尚缺乏全台灣土壤沖蝕之現地調查資料。本研究針對全台灣各流域之上游集水區,運用現地沖蝕釘試驗,進行土壤沖蝕的調查及其資料庫的建置,並推算其土壤沖蝕量,再參照試區自然環境,以通用土壤流失公式(USLE)推算土壤沖蝕指數,進而探討不同自然環境下,降雨對土壤沖蝕之影響。另為確認並比較擇定各試區之土壤沖蝕指數,本研究亦針對試區之土樣進行現地及試驗室土壤試驗,並參考水土保持技術規範之室內試驗方法,推估各試區之土壤沖蝕指數。
此外,本研究運用最佳數值搜尋原理之黃金切割法及MATLAB程式平台,探究建構一通用土壤沖蝕評估模式之可行性,本研究所考量之影響土壤沖蝕因子,包括坡度、土質種類、坡向、距水系距離、高程及常態化差異植生指數(NDVI)等共六項因子。
研究結果顯示,現地試區內不論何種土壤特性,當觀測期間之累積雨量增加,則土壤沖蝕量亦有隨之增加的趨勢。在相同觀測期間之累積雨量下,現地試區之地表覆蓋率較高、土壤透水速度越快、表土剪力強度或表土硬度越強,其相對應之土壤沖蝕量則有較小的趨勢;且當現地試區之坡度越陡,其相對應之土壤沖蝕量則有越大的趨勢。結果亦顯示,本研究建構之土壤沖蝕評估模式,其所推算之沖蝕指數與現地量測沖蝕指數間之平均誤差約為30%,優於直接由現地試驗數據經迴歸分析所得結果之約60%平均誤差,因此,本研究建置之評估模式應有其合理之評估能力,期能做為估算全台土壤沖蝕指數之參考。
英文摘要 In recent years, due to global climate anomalies, abundant rainfall and intensity of concentration, and coupled with steep slope and rapid stream, and large amount of soil erosion. Therefore, if the rainfall-induced soil erosion in watersheds can be observed and analyzed continuously. It will help to realize the impact of soil erosion by heavy rainfall on slope land, and action for the protection of the slope.
Soil erosion should be related to regional research, and research of soil erosion in Taiwan is still insufficient at this stage, and lack of site survey data of soil erosion in Taiwan. In this research, we conduct a survey of soil erosion and build the database by field erosion pins test at every upstream watersheds in Taiwan, and calculate the amount of soil erosion, and then we use universal soil loss equation (USLE) to estimate soil erosion index, and also explore the effect of rainfall on soil erosion by different natural conditions. In addition, to confirm and compare to each soil erosion index of the test area, we also do field test and laboratory test with soil sample, and we estimate the soil erosion index of every test area by reference Technical Regulations for Soil and Water Conservation.
In this research, we use golden section search method of optimum seeking method and MATLAB program to explore the feasibility of building a soil erosion model. In this search, we concern the factors of impacting soil erosion, including slope, soil type, slope direction, away from the water distance, elevation and normalized difference vegetation index (NDVI).
The results show that the test area regardless of soil characteristics, when the cumulative rainfall during the observation period increases, also increases soil erosion. In the same cumulative rainfall during the period of observation, the ground surface coverage of the test area is high, and the faster permeable soils, and the stronger of soil hardness and soil shear strength, corresponding amount of soil erosion is small; and when the test area has steeper slope, corresponding amount of soil erosion is larger. The results also show that the construction of this soil erosion research model, the estimation results of erosion index compare to results of site measurements of erosion index, the average error between is about 30%, it's better than the data directly from the in site testing results obtained by regression analysis of the approximately 60% of the average error, therefore, the evaluation model built in this research should have its reasonable assessment capabilities, we hope that this research can be served as a reference for estimating soil erosion index in Taiwan.
論文目次 摘要 I
Abstract III
致謝 V
目錄 VII
表目錄 IX
圖目錄 XI
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究流程 3
1.4 研究範圍 3
第二章 文獻回顧 9
2.1 土壤沖蝕公式之發展 9
2.3 現地沖蝕釘試驗之相關研究 11
2.4 地理資訊系統相關研究 12
2.5 最佳化方法 14
第三章 研究試區現地與試驗室試驗 17
3.1 研究試區說明及選定 17
3.2 研究試區土壤現地試驗 23
3.3 土壤試驗室試驗 32
3.4 現地沖蝕釘試驗 41
第四章 土壤沖蝕推算成果分析與探討 45
4.1 土壤沖蝕量推算 45
4.2土壤沖蝕指數推算 47
4.3 土壤沖蝕指數之擇定 57
4.4 土壤沖蝕指數空間分布特性 63
4.5 降雨影響土壤沖蝕之探討 65
第五章 土壤沖蝕指數評估模式建立之初探 77
5.1 土壤沖蝕指數影響因子之選定 77
5.2 土壤沖蝕指數影響因子之分級 78
5.3 土壤沖蝕指數影響因子之相關性檢定 82
5.4 土壤沖蝕指數評估模式建置與驗證 84
5.5 土壤沖蝕之迴歸模式與評估模式比較 91
第六章 結論與建議 97
6.1 結論 97
6.2 建議 99
參考文獻 101
附錄一 水土保持技術規範台灣各地年降雨沖蝕指數表 105
附錄二 水土保持技術規範C值對照表 109
附錄三 水土保持技術規範P值對照表 111
參考文獻 1. 上官百龍(2001),「最佳數值搜尋法在土壤液化潛勢評估之研究」,長榮大學土地管理與開發學系研究所碩士論文。
2. 行政院農委員會水土保持局(2006),「水土保持手冊」。
3. 李禹璇、李建堂(2009),「陽明山國家公園磺嘴山步道品質與土壤沖蝕研究」,地理學報,第56期,第1-16頁。
4. 林俐玲、蔡義誌、游韋菁(2008),「礫石敷蓋與混合對土壤沖蝕影響之研究」,中華水土保持學報,第39卷,第2期,第195-206頁。
5. 林俐玲、張舒婷(2008),「土壤沖蝕性指數估算公式之研究」,中華水土保持學報,第39卷,第4期,第355-366頁。
6. 邱浩政(2000),「量化研究與統計分析:SPSS中文視窗板資料分析範例與解析」,第一版,台北五南圖書公司。
7. 林震岩(2007),「多變量分析:SPSS的操作與應用」,智勝文化。
8. 范正成、楊智翔、劉哲欣(2009),「台北地區降雨沖蝕指數推估公式之建立及歷年變化趨勢分析」,中華水土保持學報,第40卷,第2期,第113-121頁。
9. 范正成(1993),「台灣地區土壤沖蝕預測公式之回顧、研究與展望」,中華水土保持學報,第24卷,第2期,第131-152頁。
10. 陳永寶、陳志偉、郭志民、黃傳偉、蘇杭生、阮伏水(2003),「USLE在我國的應用與發展」,中國水土保持(SWCC),第10期,第11-13頁。
11. 陳樹群、王士豪、林俊岳、陳駿豪(2008),「不同類型人造被覆資材抑制坡地沖蝕之成效分析」,中華水土保持學報,第39卷,第3期,第289-302頁。
12. 陳樹群、吳俊毅、吳岳霖、王士豪(2009),「GIS圖層及修正因子建置台灣通用土壤流失公式(TUSLE)–以石門水庫集水區為例」,中華水土保持學報,第40卷,第2期,第185-197頁。
13. 張雲岳(2013),「現地沖蝕釘試驗應用於集水區降雨影響土壤沖蝕之探討」,長榮大學土地管理與開發研究所碩士論文。
14. 梁惠儀、許振崑、林伯勳、鄭錦桐、冀樹勇(2010),「極端暴雨事件於石門水庫集水區之土壤沖蝕量估算及探討」,中興工程季刊,第106期,第5-15頁。
15. 黃敏郎、劉守恆(2005),「地理資訊系統基礎操作實務」,台北,松崗。
16. 黃敬元(2012),「最佳數值搜尋原理應用於土壤液化評估」,國立成功大學土木工程研究所碩士論文。
17. 辜炳寰、胡光復、沈哲緯、鄭錦桐、林伯勳(2009),「最佳化方法於工程上之應用」,中興工程季刊,第103期,第13-24頁。
18. 楊斯曉、詹錢登、黃文舜、曾國訓(2010),「運用時雨量資料推估降雨沖蝕指數」,中華水土保持學報,第41卷,第3期,第189-199頁。
19. 萬鑫森、黃俊義(1989),「臺灣坡地土壤沖蝕」,中華水土保持學報,第20卷,第2期,第17-45頁。
20. 蔡博文、丁志堅(2006),「新一代地理資訊系統ArcView9.X剖析」,台北,仲琦科技。
21. 盧光輝(1999),「降雨沖蝕指數之修訂」,中華水土保持學報,第30卷,第2期,第87-94頁。
22. Brady, N. C., and Weil, R. R. (1996), “The nature and properties of soils,” 12th Edition. Upper Saddle River, NJ: Prentice-Hall, Inc. 881p.
23. Chen, Y.R., Hsieh, S.C., and Shan-Kung, B.L.(2003), “A Practical Method in Evaluating Liquefaction Potential of Soils,” The Proceedings of The Thirteenth International Offshore and Polar Engineering Conference, Honolulu , May, Vol. II, pp. 481-485 , Hawaii, USA.
24. Foster, G.R., McCool, D.K., Renard, K.G., and Moldenhauer, W.C. (1987), “Conservation of the universal soil loss equation to SI metric units,” Journal of Soil and Water Conservation, Vol.36, pp.355-359.
25. Foster, G.R., Simanton, J.R., Reard, K.G., Lane, L.J., and Osborn, H.B. (1981), “Discussion of application of the universal soil loss equation to rangeland on a per-storm basis”, Journal of Range Management, Vol.34, pp.161-165.
26. Hoek, E. and Bray, J.W. (1981), “Rock Slope Engineering (Revised Third Edition),” Inst. Mining and Metallurgy, London.
27. Schäfer, K.(1996), “Strut-and-Tie Models for the Design of Structural Concrete,” Notes of Workshop, Department of Civil Engineering, National Cheng Kung University, Tainan, Taiwan, p.140.
28. Wischmeier, W.H. (1972), “Upslope Erosion Analysis, In Environmental Impact on Rivers,” Water Resources, Publications, Colorado: Fort Collins, Vol.15, pp.1-26.
29. Wischmeier, W.H., Johnson, C.B., and Cross, B.V. (1971), “A soil erodibility nomograph for farmland and construction sites,” Journal of Soil and Water Conservation, Vol.26, pp.189-193.
30. Zhang, L. (1998), “Assessment of Liquefaction Potential Using Optimum Seeking Method,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.124, No.8, pp.739-748.
31. Zhang, L. (1998), “Predicting Seismic Liquefaction Potential of Sands by Optimum Seeking Method,” Soil Dynamics and Earthquake Engineering 17, pp.219-226.
【網站資料】
國立中央大學太空及遙測研究中心,www.cscr.ncu.edu.tw
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-27起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-08-27起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw