進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1608201215340700
論文名稱(中文) 應用Modified Electrical Aerosol Detector (MEAD)於現場奈米暴露評估之適用性探討及奈米發生源排放係數推估之研究
論文名稱(英文) Field testing of the Modified Electrical Aerosol Detector (MEAD) for Nanoparticle Exposure Assessments and Its Implication on Determining Nanoparticle Emission Factors
校院名稱 成功大學
系所名稱(中) 環境醫學研究所
系所名稱(英) Institute of Environmental and Occupational Health
學年度 100
學期 2
出版年 101
研究生(中文) 王櫻芳
研究生(英文) Ying-Fang Wang
學號 S78961014
學位類別 博士
語文別 英文
論文頁數 87頁
口試委員 指導教授-蔡朋枝
共同指導教授-廖寶琦
召集委員-李文智
口試委員-吳聰能
口試委員-謝正悅
口試委員-劉宏信
口試委員-戴聿彤
中文關鍵字 奈米微粒  Modified electrical aerosol detector (MEAD)  碳黑  油霧滴  金屬燻煙  暴露評估  逸散係數 
英文關鍵字 Nanoparticle  Modified electrical aerosol detector (MEAD)  carbon black  oil mist  metal fume  exposure assessment  emission factor 
學科別分類
中文摘要 本研究目的在於確認Modified Electrical Aerosol Detector (MEAD)對於帶有不同電雙極特性之奈米微粒量測之有效性,並應用其於瞭解奈米微粒之暴露特徵及奈米微粒排放係數之測定。整體研究可分為三部分:(Ⅰ)以MEAD對所選定三種不同電雙極特性的奈米物質進行量測,並輔以Nanoparticle Surface Area Monitor (NSAM)及Scanning Mobility Particle Sizer (SMPS)之測定結果,以探討MEAD量測之有效性;(Ⅱ)評估所選奈米物質場所或製程之暴露特徵;(Ⅲ)應用MEAD於奈米微粒逸散係數之測定。本研究所選取三種不同電雙極特性之奈米微粒,包括低導電固態微粒:碳黑(導電常數:2.5-3.0)、低導電液態微粒:油霧滴(導電常數:2.1-3.3),及高導電金屬燻煙(導電常數:9.7-14.2)。前兩者分別選取碳黑製造工廠及螺絲製造工廠進行奈米微粒之量測,而後者則利用暴露腔之建置來評估其逸散情形。上述場所/製程奈米微粒之測定皆以MEAD、NSAM及SMPS同步進行量測。研究結果顯示:對於三種奈米微粒之測定結果而言,MEAD與NSAM之結果具一致性,此乃因兩種儀器設計具相同的基本原理所致;而MEAD與SMPS的結果兩者之間的測定濃度有差異,但其存在相同的分佈趨勢,此乃因兩種儀器設計原理不同,故其量測結果具有系統性的誤差存在,唯經標準化後,兩者則無顯著差異。因此於三不同場所,確認具有體積小、便宜及方便操作特性之MEAD,應足以進行場所中奈米微粒的暴露評估。以MEAD進行奈米微粒暴露評估之結果發現,在碳黑製造場所中,其碳黑奈米微粒的粒徑呈現雙峰分佈的情形;而油霧滴奈米微粒在螺絲生產場所與銲接過程中則皆呈現單峰分佈。對於評估奈米微粒沈積於肺部不同呼吸道之濃度,我們發現三種物質之奈米微粒沈積於肺泡區之比例皆遠大於氣管支氣管區及頭區,而且利用不同暴露濃度的評估單位探討不同區域的沈積情形,則呈現不同比例的結果,因此本研究建議在探討勞工奈米微粒暴露情形時,不同之暴露濃度單位之量測均需納入考量。另外,對於奈米微粒排放源逸散係數的測定結果,本研究發現金屬燻煙具高奈米微粒之排放率與排放係數,因此本研究建議在進行銲接作業時,首先作業場所亦應具有有效之局部排氣通風裝置,再輔以局部排氣裝置,才能有效避免金屬燻煙的暴露;而個人防護具之使用,則列為第二考量之保護裝置。
英文摘要 The present study were set out (Ⅰ) to verify the suitability of a newly developed modified electrical aerosol detector (MEAD) for measuring nanoparticles with different intrinsic dielectric properties by reference to two instruments of a nanoparticle surface area monitor (NSAM) and a scanning mobility particle sizer (SMPS), (Ⅱ) to characterize nanoparticle exposures in the selected workplaces/or manufacturing processes, and (Ⅲ) to determine nanoparticle emission rate and emission factor of metal fumes during the selected welding processes. Three types of nanoparticles with different intrinsic dielectric properties were selected in the present study, including one particle phase/low dielectric constant nanoparticles (carbon black; dielectric constant= 2.5-3.0), one liquid phase/low dielectric constant nanoparticles (oil mist; dielectric constant= 2.1-3.3), and one high dielectric constant nanoparticles (metal fume; dielectric constants= 9.7-14.2). For the former two types, a carbon black manufacturing plant and a fastener manufacturing factory were selected for conducting nanoparticle measurement, respectively. For the last one type, nanoparticle measurements were conducted in a exposure chamber built based on JIS Z 3930. A MEAD, a NSAM, and a SMPS were used to conduct nanoparticle samplings in the present study. Results show that both NSAM and MEAD measured concentrations obtained from the three types of nanoparticles were quite comparable because the same intrinsic design principles were adopted for both instruments. On the other hand, significant differences were found between MEAD and SMPS measured concentrations obtained from the three types of nanoparticles. This obviously is due to different design principles adopted by the two instruments and hence results in a systemic error in their measured results. However, no significant difference can be found between the results obtained from SMPS and MEAD after being normalized. Considering the MEAD is less expensive, less bulky, and easy to use, our results further support the suitability of using MEAD in the field for nanoparticle exposure assessments. To characterize the emitted nanoparticles, this study found that size distributions of carbon black nanoparticles were consistently in the form of bi-model in carbon black manufacturing industry workplace atmosphere, but a uni-modal was found for both oil mist nanoparticles in fastener manufacturing process atmosphere, and fume nanoparticles emitted from welding processes. The fractions of the nanoparticles deposited on the alveolar (A) region were much higher than the other two regions of the head airway (H), tracheobronchial (TB) for all selected nanoparticles measured from the selected workplaces/processes in both number and surface area concentrations. However, significant differences were found in farctions of nanoparticles deposited on each of the three regions while different exposure metrics were adopted. In present study, high emission factors of fume nanoparticles were found during various welding processes. In order to reduce the health effects of welding fumes, it is suggested that an efficient local exhaust ventilation, in accompany with a general exhaust ventilation system, should be installed as a primary option for reducing workers’ exposures during welding processes. The use personal respiratory protection equipment for workers, on the other hand, should be considered as the second option.
論文目次 Abstract (Chinese) I
Abstract (English) III
Acknowledgements V
Table of Contents VI
List of Tables IX
List of Figures XI
Chapter 1 Introduction 1
Chapter 2 Literature review 7
2.1 Definition of Nanoparticles 7
2.2 Toxicity of nanoparticles 7
2.3 Formation mechanisms of nanoparticles 8
2.4 Deposition of nanoparticles in the respiratory tract 9
2.5 Exposure metrics of nanoparticles 11
2.6 Methods for the analysis of nanoparticles 12
2.6.1 Nanoparticle surface area monitor (NSAM) 12
2.6.2 Scanning mobility particle sizer (SMPS) 13
2.6.3 Modified electrical aerosol detector (MEAD) 13
2.6.2 Data-reduction scheme of MEAD 15
2.7 Literature review of nanoparticle concentrations from various workplaces 16
2.8 Emission rate and emission factor of nanoparticle from various sources 17
Chapter 3 Materials and methods 26
3.1 Research framework 26
3.2 Selections of testing nanoparticles and workplaces/working procedures 26
3.3 Experimental procedures and data analysis 26
3.3.1 Carbon black nanoparticle 26
3.3.2 Oil mist nanoparticle 30
3.3.3 Metal fume nanoparticle 31
Chapter 4 Results and discussion 39
4.1 Verifying MEAD used in measuring carbon black nanoparticle and charactering its concentration in carbon black manufacturing industry 39
4.1.1 Size distributions of nanoparticles obtained from the three selected workplaces using the MEAD 39
4.1.2 Number concentrations and surface area concentrations of nanoparticles obtained from the three selected workplaces using MEAD 40
4.1.3 Estimating number and surface area concentrations of nanoparticles deposited on different regions of the respiratory tract 42
4.1.4 Confirmation of MEAD results 43
4.2 Verifying MEAD used in measuring oil mist nanoparticle and charactering its concentration in fastener manufacturing factory 50
4.2.1 Size distributions of nanoparticles 50
4.2.2 Number concentrations and surface area concentrations of nanoparticles 50
4.2.3 Estimated concentrations of nanoparticles deposited on different regions of the respiratory tract 52
4.3 Verifying MEAD used in measuring metal fume nanoparticle and charactering its concentration during Gas metal arc and flux cored welding processes 59
4.3.1 Size distributions, number concentrations, and surface area concentrations of emitted fume nanoparticles 59
4.3.2 Number and surface area concentrations of the emitted fume nanoparticles deposited on different regions of the respiratory tract 61
4.3.3 Confirmation of MEAD measured results 63
4.4 Using MEAD to determine emission rate and emission factor of fume nanoparticle emission 70
4.4.1 Measured size distributions of fume nanoparticles emitted from tested welding processes 70
4.4.2 Corrected size distributions and number concentrations of fume nanoparticles emitted from tested welding processes 71
4.4.3 Emission rate of fume nanoparticle for the selected welding processes 71
4.4.4 Emission factor of fume nanoparticle for the selected welding processes 72
Chapter 5 Conclusions and Recommends 78
Chapter 6 References 80
參考文獻 Antonini, J. M. Health effects of welding. Critical Reviews on Toxicology. 2003, 33, 61103.
Antonini, J.M., Lewis, A.B., Roberts J.R., Whaley D.A., 2003. Pulmonary effects of welding fumes: Review of worker and experimental animal studies. Am. J. Ind. Med. 43(4):350-360.
Antonini, J. M.; Stone, S.; Roberts, J. R.; Chen, B.; Schwegler-Berry, D.; Afshari, A. A.; Frazer, D. G. Toxicology and Applied pharmacology. 2007, 223, 234245.
Brown, J. S.; Zeman, K. L.; Bennett, W. D. Ultrafine particle deposition and clearance in the healthy and obstructed lung. Am. J. Resp. Crit. Care Med. 2002, 166, 12401247.
Brouwer, D. H.; Gijsbers, J. H. J.; Lurvink, M. W. M. Personal exposure to ultrafine particles in the workplace: exploring sampling techniques and strategies. Annual of Occupational Hygiene. 2004, 48, 439453.
Buonanno, G.; Morawska, L.; Stabile, L. Particle emission factors during cooking activities. Atmospheric Environment. 2009, 43, 32353242.
Buonanno, G.; Morawska, L.; Stabile, L. Exposure to welding particles in automotive plants. Journal of aerosol science. 2011, 42, 295304.
Chan, T. L.; D’Arcy, J. B.; Siak, J. Size characteristics of machining fluid aerosols in an industrial metalworking environment. Appl. Occup. Environ. Hyg. 1990, 5, 162170.
Chen, M. R.; Tsai, P. J.; Chang, C. C.; Shih, T. S.; Lee, W. J.; Liao, P. C. Particle size distributions of oil mists in workplace atmospheres and their exposure concentrations to workers in a fastener manufacturing industry. J. Hazared Mater. 2007, 146, 393398.
Chen, Y.C.; Zhang, Y.H.; Barber, E.M. A dynamic method to estimate indoor dust sink and source. Build Environ. 2003, 35, 215221.
Cooper, S.; Leith, D. Evaporation of metalworking fluid mist in laboratory and industrial mist collectors. AIHA J. 1998, 59, 4551.
Daniel, H. H.; Richard, D. S. Heat Treating Fasteners – Part 1: Tips of the Trade. Fastener Technology International. 2008, 3437.
Dash, J.; D’Arcy, J. B.; Gundrum, A.; Sutherland, J.; Johnson, J.; Carlson, D. Characterization of fine particles from machining in automotive plants. J. Occup. Environ. Hyg. 2005, 2, 609625.
Dockery, D. W.; Pope, C. A.; Xu, X.; Spengler, J. D.; Ware, J. H.; Fay, M. E. An Association between air pollution and mortality in six U.S. cities. N. Engl. J. Med. 1993, 329, 17531759.
Donaldson, K.; Li, X. Y.; MacNee, W. Ultrafine (nanometer) particle mediated lung injury. J Aerosol Sci. 1998, 29, 553560.
Donaldson, K.; Stone, V.; Clouter, A.; Renwick, L.; MacNee, W. Ultrafine particles. Occup Environ Med. 2001, 58, 211216.
Donaldson, K.; Brown, D.; Clouter, A.; Duffin, R.; MacNee, W.; Renwick, L.; Tran, L.; Stone, V. The pulmonary toxicology of ultrafine particles. J. Aerosol. Med. 2002, 15, 213220.
Donaldson, K.; Stone, V. Current hypotheses on the mechanisms of toxicity of ultrafine particles. Ann 1st Super Sanita. 2003, 39, 405410.
Elder, A.; Gelein, R.; Finkelstein, J. N.; Driscoll, K. E.; Harkema, J.; Oberdörster, G. Effects of subchronically inhaled carbon black in three species.Ⅰ. Retention kinetics, lung inflammation, and histopathology. Toxicol. Sci. 2005, 88, 614629.
Ellen, A. E.; Thomas, J. S.; David, K.; Susan, R. W.; Douglas, J. M.; Susan, M. K.; Stuart, S.; Richard, R. M. Respiratory health of automobile workers and exposures to metal-working fluid aerosols: lung spirometry. Am. J. Ind. Med. 2001, 39, 443453.
Ferin, J.; Oberdörster, G.; Penney, D. P. Pulmonary retention of ultrafine and fine particles in rats. Am. J. Respir. Cell Mol. Biol. 1992, 6, 535542.
Ferry and Ginther, G.B., 1953. Gases produce by inert gas welding, Weld J. 32:396-398.
Fissan, H.; Trampe, A.; Neunman, S.; Pui, D. Y. H.; Shin, W. G. Rationale and principle of an instrument measuring lung deposition area. Journal of Nanoparticle Research. 2007, 9, 5359.
Gray, C. N.; Hewitt, P. J. Control of particulate emissions from electrical welding by process modification. Annals of Occupational Hygiene. 1982, 25, 431438.
Gray, C. N.; Hewitt, P. J.; Dare, P.R.M. New approach would help control weld fumes at source part two: MiG fumes. Welding and metal farbrication. 1982, 10, 393397.
Gwinn, M.R.; Vallyathan, V. Nanoparticles: Health effects-pros and conc. Environmental Health Perspectives. 2006, 114, 18181825.
He, C.; Morawska, L.; Hitchins, J.; Gilbert, D. Contribution from indoor sources to particle number and mass concentrations in residential houses. Atmos Environ. 2004, 38(21), 34053415.
Heile, R. R.; Hill, D. C. particulate fume genetration in arc welding processes. Welding Journal. 1975, 54, 201s210s.
Heitbrink, W. A.; D’Arcy, J. B.; Yacher, J.M. Mist genetration at a machining center. Am. Ind. Hyg. Assoc. J. 2000, 61, 2230.
Heitbrink, W. A.; Yacher, J. M.; Deye, G. J.; Spencer, A. B. Mist control at machining center, Part 1: mist characterization. Am. Ind. Hyg. Assoc. J. 2000, 61, 275281.
Heitbrink, W. A.; Evans, D. E.; Peters, T. M.; Slavin, T. J. Characterization and mapping of very fine particles in an engine machining and assembly facility. J. Occup. Environ. Hyg. 2007, 4, 341351.
Hewett, P.J.; Hirst, A. A. A systems approach to the control of welding fumes at the source. Annals of Occupational Hygiene. 1993, 37, 297306.
Hewett P.J. Reducing fume emissions through process parameter selections. Occupational Hygiene. 1995, 1:35–45.
Hinds, W. C. Condensation and evaporation, in: aerosol technology properties, behavior, and measurement of airborne particles. Second ed. John Wiely and Sons, Inc. New York, USA. 1999, 278303.
Hilton, D. E.; Plumridge, P. N. Particulate fume generation during GMAW and GTAW. Welding and Metal Fabrication. 1991, 59, 555562.
IARC monographs on the evaluation of carcinogenic risks to humans: printing processes and printing inks, carbon blacks and some nitro compounds. IARC Monogr. Eval. Carcinog. Risks Hum. 1996, 65, 149262.
ICRP, International Commission on Radiological Protection. Human respiratory tract model for radiological protection, Publication 66,Annals of ICRP. Oxford, Pergamon: London, UK. 1994.
ISO, Workplace atmospheres-Ultrafine, nanoparticle and nano-structured aerosols-Inhalation exposure characterization and assessment. ISO/TR 27628. 2007. International Organization for Standardization, Geneva, Switzerland.
James, A. C.; Bailey, M. R.; Dorrian, M. D. LUDEP Software Version 2.07: program for implementing ICRP-66 Respiratory tract model, RPB, Chilton, Didcot, OXON, OX11 ORQ, UK. 2000.
Jenkins, N. T.; Eagar, T. W. Chemical analysis of welding fume particles. Welding Research. 2005s, 84, 87s92s..
JIS Z 3930. Determination of emission rate of particulate fume in arc welding. Japanese Standards Association. 2001.
Jun, O.; Nobuyuki, S.; Takeshi, I. Laboratory evaluation of welder’s exposure and efficiency of air duct ventilation for welding work in a confined space. Industrial Health. 2000, 38, 2429.
Kazerouni, N.; Thomas, T. L.; Petralia, S. A.; Hayes, R. B. Mortality among workers exposed to cutting oil mist: update of previous reports. Am. J. Ind. Med. 2000, 38, 410416.
Kennedy, S. M.; Chan, Y. M.; Teschke, K.; Karlen, B. Change in airway responsiveness among apprentices exposed to metalworking fluids. Am. J. Respir. Crit. Care Med. 1999, 159, 8793.
Knutson, E.o.; Whitby, K.T. Aerosol classification by electric mobility: apparatus, theory, and applications. Journal of aerosol science. 1975, 6, 443451.
Kobayashi, M.; Maki, S.; Hashimoto, Y.; Suga, T. Investigations on chemical composition of welding fumes. Welding journal. 1983, 7, 190s196s.
Koike, E.; Kobayashi, T. Chemical and biological oxidative effects of carbon black nanoparticles. Chemosphere. 2006, 65, 946951.
Kreyling, W. G.; Semmler, M.; Erbe, F.; Mayer, P.; Takenaka, S.; Schulz, H. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J. Toxicol. Environ. Health. 2002, 65, 15131530.
Kreyling, W. G.; Semmler, M.; Moller, W. Health implications of nanoparticles. Journal of nanoparticle research. 2006, 8, 543562.
Kuhlbusch, T. A. J.; Neumann, S.; Fissan, H. Number size distribution, mass concentration, and particle composition of PM1, PM2.5, and PM10 in bag filling areas of carbon black production. J. Occup. Environ. Hygiene. 2004, 1, 660671.
Kuhlbusch, T. A. J.; Neumann, S.; Fissan, H. Particle characteristics in the reactor and pelletizing areas of carbon black production. J. Occup. Environ. Hygiene. 2006, 3, 558567.
Li, L.; Chen, D. R.; Tsai, P. J. Use of An Electrical Aerosol Detector (EAD) for Nanoparticle Size Distribution Measurement. Journal of Nanoparticle Research. 2009, 11, 111120.
Li, L.; Chen, D. R.; Tsai, P. J. Evaluation of an Electrical Aerosol Detector (EAD) for the Aerosol Integral Parameter Measurement. Journal of Electrostatics. 2009, 67, 765773.
Li, X. Y.; Gilmour, P.S.; Donaldson, K.; MacNee, W. Free radical activity and proinflammatory effects of particulate air pollution (PM10) in vivo and in vitro. Thorax. 1996, 51, 12161222.
Li, X. Y.; Brown, D.; Smith, S.; MacNee, W.; Donaldson, K. Short term inflammatory responses following intratracheal instillation of fine and ultrafine carbon black in rats. Inhal. Toxicol. 1999, 11, 709731.
MacNee, W.;Donaldson, K. Mechanism of lung injury caused by PM10 and ultrafine particles with special reference to COPD. European Respiratory Journal. 2003, 21, 47s51s.
Maynard, A.D. Estimating aerosol surface area for number and mass concentration measurements. Annals of occupational hygiene. 2003, 42, 123144.
Maynard, A.D.; Aitken, R.J. Assessing exposure to airbone nanomaterials: current abilities and future requirements. Nanotoxicology. 2007, 1, 2641.
McCawley, M.A.; Kent, M.S.; Berakis, M.T. Ultrafine beryllium number concentration as a possible metric for chronic beryllium disease risk. Applied Occupational and Environmental Hygiene. 2001, 16, 631638.
Michalek, D. J.; Hii, W. W. S.; Sun, J. S.; Gunter, K. L. Experimental and analytical efforts to characterize cutting fluid mist formation and behavior in machining. Appl. Occup. Environ. Hyg. 2003, 18, 842854.
Nel, A.; Xia, T.; Madler, L.V.; Li, N. Toxic potential of materials at the nanolevel. Science. 2006, 311, 622627.
NIOSH, National Institute for Occupational Safety and Health. Approaches to safe nanotechnology: An information exchange with NIOSH. 2005.
Oberdörster, G.; Ferin, J.; Gelein, R.; Soderholm, S.C.; Finkelstein, J. Role of the alveolar macrophage in lung injury: studies with ultrafine particles. Environmental Health Perspectives. 1992, 97, 193199.
Oberdörster, G.; Ferin, J.; Lehnert, B.E. Correlation betweenparticle-size, in-vivo particle persistence, and lung injury. Environmental Health Perspectives. 1994, 102(S5), 173179.
Oberdörster, G. Pulmonary effects of inhaled ultrafine particles. Int. Arch. Occup. Environ. Health. 2001, 74, 18.
Oberdörster, G. Toxicology of ultrafine particles: in vivo studies. Philos. Trans. R. So.c Lond A. 2000, 358, 27192740.
Oberdörster, E. Manufactured nanomaterials (Fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ. Health Perspect. 2004, 112, 10581062.
Oberdörster, G.; Sharp, Z; Atudorei, V; Elder, A; Gelein, R; Kreyling, W; Cox, C. Translocation of inhaled ultrafine particles to the brain. Inh Tox. 2004, 16, 437445.
Oberdörster, G. Significance of particle parameters in the evaluation of exposure-dose-response relationships of inhaled particles. Part. Sci. Technol. 1996, 14, 135151.
Oberdörster, G.; Oberdörster O, E. Oberdörster, J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environment Health Perspectives. 2005, 113, 823839.
Pagels, J.; Wierzbicka, A.; Nilsson, E.; Isaxon, C.; Dahl, A.; Gudmundsson, A.; Swietlicki, E.; Bohgard, M. Chemical composition and mass emission factors of candle smoke particles. Aerosol Science. 2009, 40, 193208.
Paik, S.Y.; Zalk, D.M.; Swuste, P. Application of a pilot control banding tool for risk level assessment and control of nanoparticle exposures. Annals of occupational hygiene. 2008, 52, 419428.
Pankow, J. F. An absorption model of the gas/particle partitioning of organic compounds in the atmosphere. Atmos. Environ. 1994, 28, 185188.
Peters, A.; Wichmann, H. E.; Tuch, T.; Heinrich, J.; Heyder, J. Respiratory effects are associated with the number of ultrafine particles. Am. J. Respir. Crit. Care Med. 1997, 155, 13761383.
Pires, I.; Quintino, L.; Miranda, R.M. Analysis of the influence of shielding gas mixtures on the gas metal arc welding metal transfer modes and fume formation rate. Materials and Design. 2007, 28, 16231631.
Portela, J. R.; Lopez, J.; Nebot, E.; Martínez de la Ossa E. Elimination of cutting oil wastes by promoted hydrothermal oxidation. J. Hazared Mater. 2001, 88, 95106.
Raynor, R. C.; Cooper, S.; Leith, D. Evaporation of polydisperse multicomponent oil droplets. AIHA J. 1996, 57, 11281136.
Redding, C.J. Fume model for gas metal arc welding. Welding journal. 2002, 95s103s.
Renwick, L.C.; Donaldson, K.; Clouter, A. Impairment of alveolar macrophage phagocytosis by ultrafine particles. Toxicology and Applied Pharmacology. 2001, 172, 119127.
Rodelsperger, K.; Bruckel, B.; Barbisan, P.; Walter, D.; Woitowitz, H. J. The amount of ultrafine particles in welding fume aerosols. Gefahrstoffe Reinhaltung Der Luft. 2000, 60, 7982.
Ross, A. S.; Teschke, K.; Brauer, M.; Kennedy, S. M. Determinants of exposure to metalworking fluid aerosol in small machine shops. Ann. Occup. Hyg. 2004, 48, 383391.
Russi, M.; Dubrow, R.; Flannery, J. T.; Cullen, M. R., Mayne, S. T. Occupational exposure to machining fluids and laryngeal cancer risk: contrasting results using two separate control groups. Am. J. Ind. Med. 1997, 31, 166171.
Sjogren, B., Hansen, K.S., Kjuus, H., Persson, P.G., 1994. Exposure to stainless-steel welding fumes and lung-cancer – a metaanlysis. Occup. Environ. Med. 51:335-336.
Sowards, J.W.; Ramirez, A.J.; Lippold, J.C.; Dickinson, D.W. Characterization procedure for the analysis of arc welding fume. Welding journal. 2008, 87, 76s83s.
Stabile, L.; Fuoco, F.C.; Buonanno, G. Characteristics of partlcles and black carbon emitted by combustion of incenses, candles and anti-mosquito products. Building and Environment. 2012, 56, 184191.
Stoeger, T.; Reinhard, C.; Takenaka, S.; Schroeppel, A.; Karg, E.; Ritter, B.; Heyder, J.; Schulz, H. Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environ. Health Perspect. 2006, 114, 328333.
Stone, V.; Shaw, J.; Brown, D.M.; MacNee, W.; Faux, S.P.; Donaldson, K. The role of oxidative stress in the prolonged inhibitory effect of ultrafine carbon black on epithelial cell function. Toxicology in Vitro. 1998, 12, 649659.
Sun, Z.; Huang, Z.; Wang, J.S. Studies on the size distribution, number and mass emission factors of candle particles characterized by modes of burning. Journal of aerosol science. 2006, 37, 14841496.
Thatcher, T.L.; Layton, D.W. Deposition, resuspension, and penetration of particles within a residence. Atmos Environ. 1995, 29, 14871497.
Thornburg, D. L. Mist genetration during metal machining. J. Trib. 2000, 122, 544549.
Thornburg, J.; Leith, D. Size distribution of mist genetrated during metal machining. Appl. Occup. Environ. Hyg. 2000, 15, 618628.
Tin-Tin, W. S.; Yamamoto, S.; Ahmed, S.; Kakeyama, M.; Kobayashi, T.; Fujimaki, H. Brain cytokine and chemokine mRNA expression in mice induced by intranasal instillation with ultrafine carbon black. Toxicol. Lett. 2006, 163(2), 153160.
Tran, C. L.; Buchanan, D.; Cullen, R. T.; Searl, A.; Jones, A. D.; Donaldson, K. Inhalation of poorly soluble particles. Ⅱ. Influence of particle surface area on inflammation and clearance. Inhal. Toxicol. 2000, 12, 11131126.
Tsai, P. J.; Shieh, H. Y.; Lee, W. J. Characterization of PAHs in the Atmosphere of Carbon Black Manufacturing Workplaces. Journal of Hazardous Materials. 2002, 91, 2542.
Vincent, J.; Clement, C. Ultrafine particles in workplace atmospheres. The Royal Society. 2000, 358, 26732682.
Wang, Y. F.; Tsai, P. J.; Chen, C. W.; Chen, D. R.; Hsu, D. J. Using a modified electrical aerosol detector (MEAD) to predict nanoparticle exposures to different regions of the respiratory tract for workers in a carbon black manufacturing industry. Environ. Sci. Tech. 2010, 44,67676774.
Wake, D. Ultrafine particles in the workplace. HSL Report number ECO/00/18. 2001.
Wehner, B.; Uhrner, U.; Lowis S.; Zallinger, M.; Wiedensohler, A. Aerosol number size distributions within the exhaust plume of a diesel and a gasoline passenger car under on-road conditions and determination of emission factors. Atmospheric Environment. 2009, 43, 12351245.
Wilson, M.R.; Lightbody, J.H.; Donaldson, K.; Sales, J.; Stone, V. Interactions between ultrafine particles and transition metals in vivo and in vitro. Toxicology Applied Pharmacology. 2002, 184, 172179.
Wilson, W. E.; Han, H. S.; Stanek, J.; Turner, J.; Chen, D. R.; Pui, D. Y. H. Use of the electrical aerosol detector as an indicator of the surface area of fine particles deposited in the lung. J. Air & Waste Manage. Assoc. 2007, 57, 211220.
Woo, K. S.; Chen, D. R.; Pui, D. Y. H.; Wilson, W. E. Use of continuous measurements of integral aerosol parameters to estimate particle surface area. Aerosol Sci. Tech. 2001, 34, 5765.
Zimmer A.T. & P. Biswas. 2001. Characterization of the aerosols resulting from arc welding processes. J. Aerosol Sci. 32, 993-1008.
Zimmer A.T., P.A. Barson & P. Biswas. 2002. The influence of operational parameters on number-weighted aerosol size distribution genetrated from a gas metal arc welding process. J. Aerosol Sci. 33, 519-531.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw