進階搜尋


   此篇論文尚未授權公開,紙本請查詢成功大學館藏
系統識別號 U0026-1608201213053100
論文名稱(中文) 乳酸脫氫酶乙型在癌症細胞代謝扮演的角色
論文名稱(英文) Role of Lactate Dehydrogenase B in Cancer Cell Metabolism
校院名稱 成功大學
系所名稱(中) 生物化學暨分子生物學研究所
系所名稱(英) Department of Biochemistry and Molecular Biology
學年度 100
學期 2
出版年 101
研究生(中文) 張皓竣
研究生(英文) Hao-Chun Chang
學號 s16994035
學位類別 碩士
語文別 中文
論文頁數 135頁
口試委員 指導教授-張文粲
口試委員-賴明德
口試委員-黃浩仁
中文關鍵字 瓦氏效應  乳酸脫氫酶乙型  惡性轉型  白藜蘆醇  六碳醣磷酸酶甲型 
英文關鍵字 Warburg effect  lactate dehydrogenase B  malignant tranformation  resveratrol  hexokinase I 
學科別分類
中文摘要 惡性的腫瘤細胞會將其生長代謝的方式由傳統的檸檬酸循環 (TCA cycle),轉變成較快速的糖解作用 (Glycolysis) 來獲取能量;這個現象稱為瓦氏效應 (Warburg effect)。過去研究指出代謝酵素的表現異常、有氧呼吸電子傳遞鏈的缺失、缺氧、酸性的微環境,都會使腫瘤細胞能量代謝轉移到糖解作用變得更惡性。乳酸脫氫酶 (Lactate dehydrogenase) 的主要功能為丙酮酸 (Pyruvate) 與乳酸 (Lactate) 之間的轉換,這個反應會伴隨著菸鹼醯胺腺嘌呤 (NADH) 的氧化與還原,進而去調控細胞能量代謝與抑癌基因p53的表現。乳酸脫氫酶是由兩種基因乳酸脫氫酶甲型與乙型 (LDHA, LDHB) 轉譯出五種不同的異構物。乳酸脫氫酶甲型常在腫瘤細胞中被大量表現,被認為與維持腫瘤細胞生長有關係;乳酸脫氫酶乙型在近幾年研究指出在腫瘤細胞中會有默化的現象,但詳細的機制則不清楚。為了解乳酸脫氫酶乙型在腫瘤細胞中扮演的角色、以及對其能量代謝的影響,本研究在子宮頸癌HeLa細胞株中穩定抑制乳酸脫氫酶乙型的表現。由實驗結果可發現,缺失乳酸脫氫酶乙型表現的細胞株不論增生或爬行的能力都獲得了提高。在表現變得更惡性得同時,我透過西方墨點法 (Western blot) 分析發現,該細胞株檸檬酸循環與電子傳遞鏈 (OHPHOS) 的酵素表現量皆有異常。經由流式細胞儀分析也可發現氧化代謝物 (ROS) 及H2O2的產生減少且粒線體膜電位 (Membrane potential) 大幅降低。暗示著這株細胞株能量代謝偏向利用糖解作用來獲得能量;限制細胞培養基裡的葡萄糖濃度 (Glucose deprivation),也可以發現喪失乳酸脫氫酶乙型表現的細胞株對此改變較為敏感,而大量走向細胞凋亡 (Apoptosis)。為了更進一步了解乳酸脫氫酶乙型是透過什麼作用機制導致腫瘤細胞的癌化,我利用了各種不同的化癌藥物 (2-Deoxyglucose, Etoposide)、放射線治療 (Radiation) 等方法處理該細胞株,皆發現較為惡性的抑制乳酸脫氫酶乙型的細胞株有較好的生存能力。處理白藜蘆醇 (Resveratrol) 可發現該細胞株對此藥物較為敏感,在極低濃度下細胞就會大量走向細胞凋亡。經由西方墨點法可發現,白藜蘆醇能抑制該細胞株六碳醣磷酸酶1(Hexokinase I)的作用,使細胞株無法進行糖解作用而死亡。本篇研究證實在子宮頸癌細胞株抑制乳酸脫氫酶乙型的表現,可以造成腫瘤細胞的惡化,也透過西方墨點法及藥物處理的實驗解釋了該細胞株透過瓦式效應促使腫瘤細胞轉型 (Transformation) 的機制。並且也提供了一個新穎的藥物治療標地去專一性地殺死此種類型的腫瘤細胞。
英文摘要 Malignant tumor obtains energy by Warburg effect, shifting its energy metabolism from traditional Tricarboxylic acid cycle (TCA cycle) to aerobic glycolysis. Dysregulation in metabolic enzymes control, defects in oxidative phosphorylation, hypoxia and acidic microenvironment are some of the possible factors that could cause Warburg effect. Lactate dehydrogenase (LDH) is a tetrameric enzyme composed by two different genes transcribes, LDHA and LDHB. LDH catalyzes the reversible conversion of pyruvate and lactate, with NADH and NAD+ oxidoreduction. Recent studies show that LDHA favors converting pyruvate to lactate and produces NAD+. Under this condition, the tumor suppressor gene p53 would be no longer stable, and the microenvironment would become acidic, which benefits tumor growth. On the opposite of that, LDHB seems to play a distinct role in tumor development. Previous research has indicated that LDHB would be downregulated in tumor cells, although the exact mechanism is still unknown. To approach more details and insightful results, I have established a stable knockdown LDHB in HeLa cell line by applying the RNAi technique. The analysis of the phenotype of this knockdown cell line showed that loss of LDHB expression would transform the tumor cells to a more malignant stage, including cell proliferation rate acceleration and cell migration ability enhancement. Besides the more malignant condition, western blot analysis indicated that loss of LDHB function results in aberrant TCA cycle and glycolysis enzymes expression and oxidative phosphorylation complexes dysregulation. Furthermore, flow cytometry assays showed that this cell had produced a low level of ROS and H2O2, and had a serious defect in mitochondria membrane potential. These results suggest that knockdown of LDHB in HeLa cell would shift its energy metabolism to glycolysis. To test this hypothesis, I cultured the cell under glucose deprivation condition, and the result showed that knockdown of LDHB cell line was sensitive to glucose concentration, confirming that the cell was under glucose dependent growth. In order to study the metabolic regulation in more depth, I used 2-deoxyglucose, etoposide, radiation and resveratrol to treat the cells. Surprisingly, malignant knockdown LDHB cells exhibited higher resistance to those treatments, which is a normal phenomenon for malignant cancer cell, but it is more sensitive to low dose resveratrol treatment. Further examination of underline mechanism, points out that resveratrol would downregulate hexokinase I expreesion, which is a key enzyme for glycolysis metabolism. This research tests that loss of LDHB expression results in malignant tumor transformation. Furthermore, phenotype change is affected by the alteration of energy metabolism, namely the Warburg effect. This research also proposed that resveratrol specific inihibits hexokinase I expression and blocks glycolysis pathway, that might be a specific target for cancer therapy.
論文目次 第一章 緒論
1-1 瓦氏效應與惡性腫瘤細胞的能量代謝…………………………11
1-2 腫瘤細胞的轉型…………………………………………………13
1-3 糖解作用與電子傳遞鏈在惡性腫瘤細胞的調控………………15
1-4 乳酸脫氫酶 (Lactate dehydrogenase) ...………………………..19
1-5 白藜蘆醇 (Resveratrol)………………………………………….20
1-6 研究動機……………………………………………….………...21
第二章 實驗材料及方法
2-1 實驗材料………………………………………………..23
2-1-1 勝任細胞株……………………………………………………23
2-1-2 限制酶………………………………………………………....23
2-1-3 載體……………………………………………………………23
2-1-4 細胞株…………………………………………………………23
2-1-5 化學藥品………………………………………………………24
2-1-6 試劑……………………………………………………………27
2-1-7 抗體……………………………………………………………27
2-1-8 培養液…………………………………………………………29
2-1-9 細菌用的培養基- LBA plate………………………………….30
2-1-10 緩衝液…………………………………………………………31
2-1-11 各種試劑配製…………………………………………………38
2-1-12 勝任細胞之製備………………………………………………40
2-1-13 儀器設備………………………………………………………40
2-2 實驗方法………………………………………………..41
2-2-1 基本分子生物技術……………………………………...41
2-2-1.1 質體的製備…………………………………………………..41
2-2-1.2 構築質體的方法……………………………………………..43
2-2-2 細胞培養………………………………………………...46
2-2-2.1 細胞株的繼代………………………………………………..46
2-2-2.2 細胞數目的計數……………………………………………..47
2-2-2.3 細胞的冷凍儲存……………………………………………..48
2-2-2.4 解凍細胞…………………………...………………………...48
2-2-2.5 短暫性轉染 (Transient transfection)………………………...49
2-2-2.6 建立持續抑制 LDHB 的穩定細胞株 (stable cell lines)…..49
2-2-2.7 細胞處理化學藥物、放射線實驗…………………………...49
2-2-3 細胞表現型分析相關實驗……………………………...50
2-2-3.1 細胞型態觀察實驗…………………………………………..50
2-2-3.2 細胞生長觀察實驗…………………………………………..50
2-2-3.3 細胞增殖分析 (MTT assay)………………………………...50
2-2-3.4 溴脫氧尿核苷酸混合實驗 (BrdU incorporation assay)……51
2-2-3.5 細胞集落形成法 (Colony formation assay)………………...51
2-2-3.6 軟洋菜膠細胞集落形成法 (Soft agar colony formation assay)..............................................52
2-2-3.7 乳酸脫氫酶活性測定 (LDH activity assay)………………...52
2-2-3.8 細胞培養液pH值測定………………………………………53
2-2-3.9 細胞內ATP含量測定………………………………………..53
2-2-3.10 細胞內ROS測定…………………………………………….54
2-2-3.11 細胞內H2O2測定………………………………………….....55
2-2-3.12 粒線體膜電位測定 (Mitochondria membrane potential)…...55
2-2-3.13 傷口癒合爬行能力測定 (Wound healing migration assay)...55
2-2-3.14 細胞爬行能力測定 (Boyden chamber cell migration assay).56
2-2-3.15 明膠酶基質金屬蛋白酵素測定 (Zymography MMP assay).57
2-2-3.16 細胞週期測定 (Cell cycle)………………………………….57
2-2-3.17 Propidium Iodide (PI) – Annexin V 雙染實驗……………...58
2-2-4 實驗質體的構築方法…………………………………...59
2-2-5 西方墨點法 (Western blotting)…………………………60
2-2-6 免疫螢光染色分析 (Immunofluorescence staining)…...61
2-2-7 F-actin染色 (Phalloidin staining)………………………62
2-2-8 其他實驗………………………………………………...63
2-2-8.1 雙重冷光基因活性的測定 (Dual- Luciferase assay)…….…63
2-2-8.2 蛋白質定量 (Micro BCATM protein assay reagent kit)……...63
2-2-8.3 觀察細胞綠螢光表現量……………………………………..63
第三章 實驗結果
3-1 分析LDHA和LDHB在不同的正常組織及腫瘤細胞的表現量…………………………………………………………………64
3-2 在HeLa細胞株建立穩定默化LDHB的細胞株………………65
3-3 喪失LDHB表現的細胞株粒線體功能出現缺失……………...66
3-4 喪失LDHB表現的細胞株因瓦氏效應轉變成惡性的腫瘤細胞…………………………………………………………………67
3-5 化療藥物2-DG、Etoposide、ATP與放射線治療無法專一性 地殺死惡性的shLDHB細胞株…………………………………70
3-6 Resveratrol可以透過抑制細胞糖解作用酵素Hexokinase I來專一性地殺死shLDHB細胞株……………………………………72
第四章 討論
4-1 總結………………………………………………………………75
4-2 Resveratrol是如何抑制Hexokinase I的表現量……………….75
4-3 NADH與NAD+ 與p53的關係………………………………...77
4-4 利用LC-MS分析HeLa代謝體的變化………………………..78
4-5 瓦氏效應與脂質的合成………………………………………...79
第五章 參考文獻……………………………………82
第六章 實驗結果圖表………………………………94

參考文獻 [1] Barker, J., M. A. Khan, et al. Mechanism of the Pasteur Effect. Nature 201: 1126-1127 (1964).
[2] Brown JM, Giaccia AJ, et al. The unique physiology of solid tumors: opportunities and problems for cancer therapy. Cancer Research 58 (7): 1408-1416 (1998).
[3] Helmlinger G, Yuan F, et al. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 3: 177-182 (1997).
[4] Rofstad, E. K., B. Mathiesen, et al. Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res 66 (13): 6699-6707 (2006).
[5] Warburg, O., Posener, K., et al. über den Stoffwechsel der Carcinomzelle. Biochem. Zeitschr. 152, 309-344 (1924).
[6] Racker, E. Bioenergetics and the problem of tumor growth. Am. Sci. 60, 56-63 (1972).
[7] Lu, H., R. A. Forbes, et al. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem 277 (26): 23111-23115 (2002)
[8] Minchenko, A., I, Leshchinsky, et al. Hypoxia-inducible factor-1- mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect. J Biol Chem 277 (8): 6183-6187 (2002)
[9] Bonuccelli G, Tsirigos A, et al. Ketones and lactate ‘fuel’ tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle 9, 3506-3514 (2010).
[10] Spugnini, E. P., G. Citro, et al. Proton pump inhibitors as anti vacuolar-ATPases drugs: a novel anticancer strategy. J Exp Clin Cancer Res 29: 44 (2010).
[11] Cardone RA, Casavola V & Reshkin SJ. The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer 5, 786-795 (2005).
[12] De Milito, A. and S. Fais. Tumor acidity, chemoresistance and proton pump inhibitors. Future Oncol 1 (6): 779-786 (2005).
[13] Muller, Florian. The nature and mechanism of superoxide production by the electron transport chain: Its relevance to aging. AGE 23 (4): 227-253 (2002).
[14] Sumbula, G., A. Columbano, et al. Increased ROS generation and p53 activation in alpha-lipoic acid-induced apoptosis of hepatoma cells. Apoptosis 12 (1): 113-123 (2007).
[15] Schulz TJ, Thierbach R, et al. Induction of oxidative metabolism by mitochondrial frataxin inhibits cancer growth: Otto Warburg revisited. J Biol Chem. 281, 977-981 (2006).
[16] Le A, Cooper CR, et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci. USA. 107, 2037-2042 (2010).
[17] Zawacka- Pankau, J., V. V. Grinkevich, et al. Inhibition of glycolytic enzymes mediated by pharmacologically activated p53: targeting Warburg effect to fight cancer. J Biol Chem 286 (48): 41600-41615 (2011).
[18] Chan, D. A., P. D. Sutphin, et al. Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Sci Transl Med 3 (94): 94ra70 (2011).
[19] Jiang, S., L. F. Zhang, et al. A novel miR-155/miR-143 cascade controls glycolysis by regulating hexokinase 2 in breast cancer cells. EMBO J 31 (8): 1985-1998 (2012).
[20] Wolf, A., S. Agnihotri, et al. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med 208 (2): 313-326 (2011).
[21] Sun, Q., X. Chen, et al. Mammalian target of rapamycin upregulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc Natl Acad Sci. USA. 108 (10), 4129-4134 (2011).
[22] Kosugi, M., R. Ahmad, et al. MUC1-C oncoprotein regulates glycolysis and pyruvate kinase M2 activity in cancer cells. PLoS One 6 (11): e28234 (2011).
[23] Markovets, A. A. and D. Herman. Analysis of cancer metabolism with high-throughput technologies. BMC Bioinformatics. 12 Suppl 10: S8 (2011).
[24] Chandra, D. and K. K. Singh. Genetic insights into OXPHOS defect and its role in cancer. Biochim Biophys Acta. 1807 (6): 620-625 (2011).
[25] Wang, X. and H. Jin The epigenetic basis of the Warburg effect. Epigenetics 5 (7): 566-568 (2010).
[26] Liu, X., X. Wang, et al. Warburg effect revisited: an epigenetic link between glycolysis and gastric carcinogenesis. Oncogene 29 (3): 442-450 (2010).
[27] Fang, R., T. Xiao, et al. MicroRNA-143 (miR-143) regulates cancer glycolysis via targeting Hexokinase 2 gene. J Biol Chem 287 (27): 23227-23235. (2012)
[28] Almeida, A., J. P. Bolanos, et al. E3 ubiquitin ligase APC.C-Cdh1 accounts for the Warburg effect by linking glycolysis to cell proliferation. Proc Natl Acad Sci. USA. 107 (2): 738-741 (2010).
[29] Dang, C. V. Links between metabolism and cancer. Genes Dev. 26 (9): 877-890 (2012).
[30] Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nature Reviews Cancer 4 (11): 891-899 (2004).
[31] Shakhova, O., C. Leung, et al. Lack of Rb and p53 delays cerebellar development and predisposes to large cell anaplastic medulloblastoma through amplification of N-Myc and Ptch2. Cancer Res 66 (10): 5190-5200 (2006).
[32] Grille, S. J., A. Bellacosa, et al. The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer Res 63 (9): 2172-2178 (2003).
[33] Yang, M. H., D. S. Hsu, et al. Bmi1 is essential in Twist1- induced epithelial- mesenchymal transition. Nat Cell Biol 12 (10): 982-992 (2010).
[34] Kudo-Saito, C., H. Shirako, et al. Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer cell 15 (3): 195-206 (2009).
[35] Shih, J. Y. and P. C. Yang. The EMT regulator slug and lung carcinogenesis. Carcinogenesis 32 (9): 1299-1304 (2011).
[36] Mandal, M., J. N. Myers, et al. Epithelial to mesenchymal transition in head and neck squamous carcinoma: association of Src activation with E-cadherin down-regulation, vimentin expression, and aggressive tumor features. Cancer 112 (9): 2088-2100 (2008).
[37] Orlichenko, L. S. and D. C. Radisky. Matrix metalloproteinases stimulate epithelial- mesenchymal transition during tumor development. Clin Exp Metastasis 25 (6): 593-600 (2008).
[38] Lin, C. Y., P. H. Tsai, et al. Matrix metalloproteinase-9 cooperates with transcription factor Snail to induce epithelial- mesenchymal transition. Cancer Sci 102 (4): 815-827 (2011).
[39] Schmidt, J., A. Riechers, et al. Targeting melanoma metastasis and immunosuppression with a new mode of melanoma inhibitory activity (MIA) protein inhibition. PLoS One 7 (5): e37941 (2012).
[40] Hurwitz, A. A. and S. K. Watkins. Immune suppression in the tumor microenvironment: a role for dendritic cell- mediated tolerization of T cells. Cancer Immunol Immunother 61 (2): 289-293 (2012).
[41] Thornalley, P. J. and N. Rabbani. Glyoxalase in tumourigenesis and multidrug resistance. Semin Cell Dev Biol 22 (3): 318-325 (2011).
[42] Nakano, A., D. Tsuji, et al. Glycolysis inhibition inactivates ABC transporters to restore drug sensitivity in malignant cells. PLoS One 6 (11): e27222 (2011).
[43] Joost H. Thorens B. The extended GLUT- family of sugar/polyol transport facilitators.: nomenclature, sequence characteristics, and potential function of its novel members. Mol. Membr. Biol. 18 (4): 247-56 (2001).
[44] Krzeslak, A., K. Wojcik-Krowiranda, et al. Expression of Glut1 and Glut3 glucose transporters in endometrial and breast cancers. Pathol Oncol Res 18 (3): 721-728 (2012).
[45] Ashton-Sager, A., A. F. Paulino, et al. GLUT-1 is preferentially expressed in atypical endometrial hyperplasis and endometrial adenocarcinoma. Appl Immunohistochem Mol Morphol 14 (2): 187-192 (2006).
[46] Mayer, A., M. Hockel, et al. GLUT-1 staining of squamous cell carcinomas of the uterine cervix identifies a novel element of invasion. Int J Oncol 38 (1): 145-150 (2011).
[47] Osthus, R. C., H. Shim, et al. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem 275 (29): 21797-21800 (2000).
[48] Wolf, A., S. Agnihotri, et al. Developmental profile and regulation of the glycolytic enzyme hexokinase 2 in normal brain and glioblastoma multiforme. Neurobiol Dis 44 (1): 84-91 (2011)..
[49] Brown, R. S., T. M. Goodman, et al. Expression of hexokinase II and Glut-1 in untreated human breast cancer. Nucl Med Biol 29 (4): 443-453 (2002).
[50] Shoshan- Barmatz, V. and M. Golan. Mitochondrial VDAC1: function in cell life and death and a target for cancer therapy. Curr Med Chem 19 (5): 714-735 (2012).
[51] Shoshan- Barmatz, V., M. Zakar, et al. Key regions of VDAC1 functioning in apoptosis induction and regulation by hexokinase. Biochim Biophys Acta 1787 (5): 421-430 (2009).
[52] Gordon, G. J., R. Bueno, et al. Genes associated with prognosis after surgery for malignant pleural mesothelioma promote tumor cell survival in vitro. BMC Cancer 11: 169 (2011).
[53] Luo W, Hu H, Chang R, et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia- inducible factor 1. Cell 145: 732-744 (2011).
[54] Kim JW, Tchernyshyov I, Semenza GL & Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3: 177-185 (2006).
[55] Swinnen, J. V., K. Brusselmans, et al. Increased lipogenesis in cancer cells: new players, novel targets. Curr Opin Clin Nutr Metab Care 9 (4): 358-365 (2006).
[56] Marin-Hernandez, A., S. Rodriguez-Enriquez, et al. Determining and understanding the control of glycolysis in fast- growth tumor cells. Flux control by and over- expressed but strongly product- inhibited hexokinase. FEBS J 273 (9): 1975-1988 (2006).
[57] Tomitsuka E, Hirawake H, Goto Y, et al. Direct evidence for two distinct forms of the flavoprotein subunit of human mitochondrial complex II (succinate- ubiquinone reductase). J Biochem 134 (2): 191-195 (2003).
[58] Horsefield R, Yankovskaya V, Sexton G, et al. Structural and computational analysis of the quinine-binding site of complex II (succinate-ubiquinone oxidoreductase): a mechanism of electron transfer and proton conduction during ubiquinone reduction. J Biol Chem 281 (11): 7309-7316 (2006).
[59] Bayley JP, Kunst HP, Cascon A, Sampietro ML, et al. SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma. Lancet Oncol 11, 363-372 (2010).
[60] Briere JJ, Favier J, Gimener-Roqueplo AP & Rustin P. Tricarboxylic acid cycle dysfunction as a cause of human diseases and tumor formation. Am J Physiol Cell Physiol 291, C1114-1120 (2006).
[61] Simonnet, H., J. Demont, et al. Mitochondrial complex I is deficient in renal oncocytomas. Carcinogenesis 24 (9): 1461-1466 (2003).
[62] Desouki, M. M., M. Kulawiec, et al. Cross talk between mitochondria and superoxide generating NADPH oxidase in breast and ovarian tumors. Cancer Biol Ther 4 (12): 1367-1373 (2005).
[63] Yankovskaya V, Horsefield R, Tornroth S, et al. Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299 (5607): 700-704 (2003).
[64] Simonnet, H., N. Alazard, et al. Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma. Carcinogenesis 23 (5): 759-768 (2002).
[65] Annunen-Rasila, J., S. Ohlmeier, et al. Proteome and cytoskeleton responses in osteosarcoma cells with reduced OXPHOS activity. Proteomics 7 (13): 2189-2200 (2007).
[66] Riva F, Zuco V, Vink A A, et al. UV-induced DNA incision and proliferating cell nuclear antigen recruitment to repair sites occur independently of p53-replication protein A interaction in p53 wild type and mutant ovarian carcinoma cells. Carcinogenesis 22 (12): 1971-1978 (2001).
[67] Bernal JA, Luna Rosa, et al. Human securin interacts with p53 and modulates p53-mediated transcriptional activity and apoptosis. Nat Genet 32 (2): 306-311 (2002).
[69] Green, D. R. and J. E. Chipuk. p53 and metabolism: Indide the TIGAR Cell 126 (1): 30-32 (2006).
[70] Matoba, S., J. G. Kang, et al. p53 regulates mitochondrial respiration. Science 312 (5780): 1650-1653 (2006).
[71] Markert, C. L., J. B. Shaklee, et al. Evolution of a gene. Multiple genes for LDH isozymes provide a model of the evolution of gene structure, function and regulation. Science 189 (4197): 102-114 (1975).
[72] Maekawa, M., M. Inomata, et al. Eletrophoretic variant of a lactate dehydrogenase isoenzyme and selective promoter methylation of the LDHA gene in a human retinoblastoma cell line. Clin Chem 48 (11): 1938-1945 (2002).
[73] Korshunov, A., K. Neben, et al. Gene expression patterns in ependymomas correlate with tumor location, grade, and patient age. Am J Pathol 163 (5): 1721-1727 (2003).
[74] Dang, C. V., A. Le, et al. Myc-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res 15 (21): 6479-6483 (2009).
[75] Dang, C. V. The interplay between MYC and HIF in the Warburg effect. Ernst Schering Found Symp Proc (4): 35-53 (2007).
[76] Le, A., C. R. Cooper, et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA 107 (5): 2037-2042 (2010).
[77] Torres, M. P., S. Rachagani, et al. Graviola: A novel promising natural-derived deug that inhibits tumorigenicity and metastasis of pancreatic cancer cells in vitro and in vivo through altering cell metabolism. Cancer Lett 323 (1): 29-40 (2012).
[78] Kim, J. H., E. L. Kim, et al. Decreased lactate dehydrogenase B expression enhances claudin 1-mediated hepatoma cell invasiveness via imtochondrial defects. Exp Cell Res 317 (8): 1108-1118 (2011).
[79] Leiblich, A., S. S. Cross, et al. Lactate dehydrogenase-B is silenced by promoter hypermethylation in human prostate cancer. Oncogene 25 (20): 2953-2960 (2006).
[80] Xiaojun Zha, Fang Wang, Ying Wang, et al. Lactate dehydrogenase B is critical for hyperactive mTOR-mediated tumorigenesis. Cancer Res 71 (1): 13-18 (2011).
[81] Takashi Kinoshita, Nijiro Nohata, et al. Tumor suppressive microRNA-375 regulates lactate dehydrogenase B in maxillary sinus squamous cell carcinoma. Int J Onco 40: 185-193 (2012).
[82] Bass TM, Weinkove D, Houthoofd K, et al. Effects of resveratrol on lifespan in Drosophila melanogaster and caenorhabditis elegans. Mech Ageing Dev 128 (10): 546-552 (2007).
[83] Stef G, Csiszar A, Lerea K, et al. Resveratrol inhibits aggregation of platelets from high-risk cardiac patients with aspirin resistance. J. Cardovasc. Pharmacol 48 (2): 1-5 (2006).
[84] Sharma M, Gupta YK. Chronic treatment with trans resveratrol prevents intracerebroventricular streptozotocin induced cognitive impairment and oxidative stress in rats. Life Sci 71 (21): 2489-2498 (2002).
[85] Sinha K, Chaudhary G, Gupta YK. Protective effect of resveratrol against oxidative stress in middle cerebral artery occlusion model of stroke in rats. Life Sci 71 (6): 655-665 (2003).
[86] Leone, S., T. Cornetta, et al. Resveratrol induces DNA double-strand breaks through human topoisomerase II interaction. Cancer Lett 295 (2): 167-172 (2010).
[87] Vergara, D., C. M. Valente, et al. Resveratrol inhibits the epidermal growth factor- induced epithelial mesenchymal transition in MCF-7 cells. Cancer Lett 310 (1): 1-8 (2011).
[88] Delmas, D., E. Solary, et al. Resveratrol, a phytochemical inducer of multiple cell death pathways: apoptosis, autophagy and mitotic catastrophe. Curr Med Chem 18 (8): 1100-1121 (2011).
[89] Lqbal, M. A. and R. N. Bamezai. Resveratrol inhibits cancer cell metabolism by down regulating pyruvate kinase M2 via inhibition of mammalian target of rapamycin. PLoS One 7 (5): e36764 (2012).
[90] Muqbil, I., F. W. Beck, et al. Old wine in a new bottle: the Warburg effect and anticancer mechanisms of resveratrol. Curr Pharm Des 18 (12): 1645-1654 (2012).
[91] Shamim, U., S. Hanif, et al. Resveratrol-induced apoptosis is enhanced in low pH environments associated with cancer. J Cell Physiol 227 (4): 1493-1500 (2012).
[92] Alex C. Liao., Chien Feng Li, Kun Hung Shen, et al. Loss of lactate dehydrogenase B subunit expression is correlated with tumour progression and independently predicts inferior disease-specific survival in urinary bladder urothelial carcinoma. Pathyology 43 (7): 707-712 (2011).
[93] Hagiwara, K., N. Kosaka, et al. Stilbene derivatives promote Ago-2 dependent tumour-suppressive microRNA activity. Sci Rep 2: 314 (2012)
[94] Perschiaroli, A., A. Giacobbe, et al. miR-143 regulates hexokinase 2 expression in cancer cells. Oncogene 10: 1038 (2012).
[95] Yano, T. The energy-transducing NADH: quinine oxidoreductase, complex I. Mol Aspects Med 23 (5): 345-368 (2002).
[96] Van der Laan, L., A. Coremans, et al. NADH videofluorimetry to monitor the energy state of skeletal muscle in vivo. J Surg Res 74 (2): 155-160 (1998).
[97] McLure, K. G., M. Takagi, et al. NAD+ modulates p53 DNA binding specificity and function. Mol Cell Biol 24 (22): 9958-9967 (2004).
[98] Tsvetkov, P., G. Asher, et al. Inhibition of NAD(P)H: quinone oxidoreductase 1 activity and induction of p53 degradation by the natural phenolic compound curcumin. Proc Natl Acad Sci USA 102 (15): 5535-5540 (2005).
[99] Aksoy, P., C. Escande, et al. Regulation of SIRT1 mediated NAD dependent deacetylation: a noel role for the multifunctional enzyme CD38. Biochem Biophys Res Commun 349 (1): 353-359.
[100] Hung Y. P., Albeck J. G., Tantama M., Yellen G. Imaging cytosolic NADH-NAD (+) redox state with a genetically ecnoded fluorescent biosensor. Cell Metab 14 (4): 545-554 (2011).
[101] Xia, J., Psychogios, N., Yound N. and Wishart, D. S. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucl. Acids Res. 37 W652-660. (2009).
[102] Xia, J., Mandal, R., Sinelnikov, I., Broadhurst, D., and Wishart, D. S. MetaboAnalyst 2,0 – a comprehensive server for metabolomic data analysis. Nucl. Acids Res. First published online May 2, 2012.
[103] Ralph J. DeBerardinis, Anthony Mancuso, et al. Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 104 (49): 19345-19350 (2007).
[104] Erickson, J. W. and R. A. Cerione. Glutaminase: a hot spot for regulation of cancer cell metabolism? Oncotarget 1 (8): 734-740 (2010).
[105] T. Mashima, H Seimiya, and T. Tsuruo. De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. British Journal of Cancer 100 1369-1372 (2009).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw