進階搜尋


下載電子全文  
系統識別號 U0026-1608201118044500
論文名稱(中文) 針對雲端串流服務之多目標資源仲介
論文名稱(英文) Multi-criteria Resource Brokering for Cloud Streaming Service
校院名稱 成功大學
系所名稱(中) 資訊工程學系碩博士班
系所名稱(英) Institute of Computer Science and Information Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 謝偉群
研究生(英文) Wei-Chun Hsieh
學號 P76984275
學位類別 碩士
語文別 英文
論文頁數 45頁
口試委員 指導教授-鄭憲宗
口試委員-劉立頌
口試委員-陳響亮
口試委員-陳嘉玫
口試委員-謝錫堃
中文關鍵字 雲端運算  資源供給與配置  多目標決策  多目標規劃 
英文關鍵字 Cloud computing  Resource provisioning  Multiple criteria decision making (MCDM)  Goal programming 
學科別分類
中文摘要 藉由雲端基礎設施即服務這類型的雲端運算架構及技術,像是硬體主機、儲存以及網路等運算資源的委外服務對於一些網路應用服務提供商的營運是相當有效益的。隨著這股趨勢持續上升,能透過服務層級協議確保服務品質並且避免超量供給以減少支出的資源配置方法的設計對於像是串流服務這類由複雜服務所構成的平台而言,是相當關鍵且充滿挑戰的。
另一方面,基礎設施即服務的供應商在提供虛擬化資源的同時也有本身像是獲利表現以及能源消耗等各方面的考量。因此在這篇論文中,考慮服務導向以及基礎設施導向的準則,我們將這個資源供給配置問題視為多目標決策問題並且提出一個有效且基於多目標規劃模型的權衡方法。而為了驗證它的有效性,我們構築了一個基於串流服務的雲端架構並且針對相關準則進行研究分析。模擬結果顯示我們提出的方法能夠良好地權衡這些互相衝突的準則,並同時達成確保服務品質的目標。
英文摘要 By leveraging cloud computing such as Infrastructure as a Service (IaaS), the outsourcing of computing resources used to support operations, including servers, storage and networking components is quite beneficial for various providers of Internet application. With this increasing trend, resource allocation that both assures QoS via Service Level Agreement (SLA) and avoids over-provisioning in order to reduce cost becomes a crucial priority and challenge in the design and operation of complex service-based platforms such as streaming service. On the other hand, providers of IaaS also concern their profit performance and energy consumption while offering these virtualized resources. In this thesis, considering both service-oriented and infrastructure-oriented criteria, we regard this resource allocation problem as Multi-criteria Decision Making problem and propose an effective trade-off approach based on Goal Programming Model. To validate its effectiveness, a cloud architecture for streaming application is addressed and extensive analysis are performed for related criteria. The results of numerical simulations show that the proposed approach strikes a balance between these conflicting criteria commendably and achieves the goals of QoS.
論文目次 摘 要 i
ABSTRACT ii
ACKNOWLEDGEMENT iii
TABLE OF CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES vii
1. INTRODUCTION & MOTIVATION 1
1.1 Cloud Computing & Utility / Services Computing 1
1.2 Thesis Overview 4
2. RELATED WORKS 6
2.1 Resource Allocation & Provisioning 6
2.2 Service Level Agreement (SLA) 7
3. CLOUD STREAMING SERVICE 9
3.1 Architecture for Cloud Streaming Service 9
3.2 System Model & Assumption 11
4. CRITERIA FOR STREAMING SERVICE 14
4.1 Service-oriented Criteria (SoC) 14
4.1.1 Service Utility 14
4.1.2 QoS of Service Clients 15
4.2 Infrastructure-oriented Criteria (IoC) 21
5. GOAL PROGRAMMING MODEL 24
5.1 MCDM & Goal Programming 24
5.2 Problem Formulation 25
5.3 Goal Programming Approach 27
5.3.1 Objective Function Reform 28
5.3.2 Linear Piecewise Approximation 28
5.3.3 Simplex Method Loop 30
5.3.4 Simplex Algorithm 31
6. PERFORMANCE EVALUATION 35
6.1 Simulation Settings 35
6.2 Results & Evaluation 37
6.2.1 Utilization 38
6.2.2 Response Time 39
6.2.3 Startup Latency 40
6.2.4 Transcoding Efficiency 41
6.2.5 Energy Consumption & Profit Performance 42
7. CONCLUSIONS AND FUTURE WORKS 43
REFERENCES 44
參考文獻 [1] Justin.tv, http://www.justin.tv/
[2] P. Mell and T. Grance, “The NIST Definition of Cloud Computing (Draft),” NIST Special Publication 800-145 (Draft), 2011.
[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” In Proceedings of the 19th ACM Symposium on Operating Systems Principles (SOSP ’19), 2003.
[4] Amazon EC2, http://aws.amazon.com/ec2/.
[5] R. Buyya, C. S. Yeo, and S. Venugopal, “Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility,” In Proceedings of the 10th IEEE International Conference on High Performance Computing and Communications, 2008.
[6] O. Yazir, C. Matthews, R. Farahbod, Y. Coady, S. Neville, S. Ganti, A. Guitouni, “Dynamic Resource Allocation in Computing Clouds Using Distributed Multiple Criteria Decision Analysis,” In Proceedings of the 3rd IEEE International Conference on Cloud Computing, 2010.
[7] H. N. Van, F. D. Tran, and J. M. Menaud, “Performance and Power Management for Cloud Infrastructures,” In Proceedings of the 3rd IEEE International Conference on Cloud Computing, 2010.
[8] Y. Zhang, G. Huang, X. Liu, and H. Mei, “Integrating Resource Consumption and Allocation for Infrastructure Resources on-Demand,” In Proceedings of the 3rd IEEE International Conference on Cloud Computing, 2010
[9] P. Patel, A. Ranabahu, and A. Sheth, “Service Level Agreement in Cloud Computing,” in Proceedings of the Workshop on Best Practices in Cloud Computing: Implementation and Operational Implications for the Cloud at ACM International Conference on Object- Oriented Programming, Systems, Languages, and Applications, 2009
[10] D.A. Menascé, “QoS Issues in Web Services,” IEEE Internet Computing, vol. 6, no. 6, 2002.
[11] D.A. Menascé, “Response Time Analysis of Composite Web Services,” IEEE Internet Computing, vol. 8, no. 1, 2004.
[12] D.A. Menascé, “Composing Web Services: A QoS View,” IEEE Internet Computing, vol. 8, no. 6, 2004.
[13] J. Gray and A. Reuter, “Transaction Processing: Concepts and Techniques,” 1993.
[14] C. Devlin, “SaaS Capacity Planning: Transaction Cost Analysis Revisited,” http://msdn.microsoft.com/en-us/library/cc261632.aspx, 2008.
[15] H. Al-Hilali, D. Guimbellot, and M. Oslake "Capacity Model for Internet Transactions," http://research.microsoft.com/pubs/69700/tr-99-18.doc, 1999.
[16] S. S. Rao, H. M. Vin, and A. Tarafdar, “Comparative Evaluation of Server-push and Client-pull Architectures for Multimedia Servers,” in Proceedings of 6th NOSSDAV (NOSSDAV ‘96), 1996.
[17] J. Y. B. Lee, “Parallel video servers—A tutorial,” IEEE Multimedia, vol.5, 1998.
[18] J. Y. B. Lee and P. C. Wong, “Performance Analysis of a Pull-based Parallel Video Server,” IEEE Transactions on Parallel and Distributed Systems, vol. 11, 2000.
[19] J. Y. B. Lee, “Buffer Management and Dimensioning for a Pull-based Parallel Video Server,” IEEE Transactions on Circuits and Systems for Video Technology, Vol.11, Iss.4, 2001.
[20] Z. Tian, J. Xue, W. Hu, T. Xu, and N. Zheng, "High performance cluster-based transcoder," in Proceedings of International Conference on Computer Application and System Modeling (ICCASM 2010), 2010.
[21] Y. Sambe, S. Watanabe, D. Yu, T. Nakamura, and N. Wakamiya, "Distributed Video Transcoding and its Application to Grid Delivery," in Proceedings of the 9th Asia-Pacific Conference on Communications (APCC ‘03), Vol. 1, 2003.
[22] K. Breitman, M. Endler, R. Pereira, and M. Azambuja, “When TV Dies, Will It Go to the Cloud?,” IEEE Computer, Vol. 43, Iss. 4, 2010.
[23] J. Baliga, R. Ayre, K. Hinton, and R. Tucker, “Green cloud computing: Balancing energy in processing, storage, and transport,” in Proceedings of the IEEE, vol. 99, no. 1, 2011.
[24] J. P. Ignizio, “A Review of Goal Programming: A Tool for Multiobjective Analysis,” Journal of the Operational Research Society, vol. 29, 1978
[25] M. Tamiz, D. Jones, and C. Romero, “Goal programming for decision making: An overview of the current state-of-the-art,” European Journal of Operational Research, vol. 111, 1998.
[26] D.F. Jones and M. Tamiz, “Expanding the Flexibility of Goal Programming via Preference Modelling Techniques,” Omega, vol. 23, 1995
[27] H. P. Williams, “Model Building in Mathematical Programming,” Wiley, 1978
[28] J.C. Nash, “The (Dantzig) Simplex Method for Linear Programming,” Computing in Science and Engineering, vol. 2, no. 1, 2000.
[29] W.L. Winston, “Operations Research: Applications and Algorithms,” Duxbury Press, 3rd ed., 1997.
[30] “Management of Service Level Agreements for Multimedia Internet Service Using a Utility Model,” IEEE Communications Magazine, vol. 39, no. 5, 2001.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-08-24起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-08-24起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw