進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1607201917440000
論文名稱(中文) 過渡金屬硫化物之成長及其元件應用
論文名稱(英文) The Growth of Transition Metal Dichalcogenides and Their Device Applications
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 107
學期 2
出版年 108
研究生(中文) 劉家瑋
研究生(英文) Chia-Wei Liu
學號 L76061197
學位類別 碩士
語文別 中文
論文頁數 112頁
口試委員 指導教授-林時彥
口試委員-張書維
口試委員-李欣縈
口試委員-許進恭
中文關鍵字 二維材料  原子層蝕刻  上閘極場效電晶體  銻烯  異質結構 
英文關鍵字 2D materials  Atomic layer etching  Top-gate field effect transistor  antimonene  Hetero-structures 
學科別分類
中文摘要 在本論文中,我們探討不同真空度下以過渡金屬硫化法成長均勻且大面積的過渡金屬硫化物薄膜,同時利用了濺鍍時間的改變、建立出二維材料層數及 ∆k 值的對應關係。並在原先使用低功率氧電漿進行原子層蝕刻的技術基礎上,以原子力顯微鏡測量出二硫化鉬對於二硫化鉬、鉬氧化物及藍寶石基板之吸附力強弱,得出原子層蝕刻之機制。之後我們將薄膜應用於上閘極場效電晶體,由並透過電晶體的特性來進行氧化層的最佳化。在氧化層最佳化的過程中發現高溫之氧化層成長製程可以於二硫化鉬與氧化層接面產生氧化鉬,其可幫助電子傳遞,提升電晶體之特性。再以熱退火處理來提升氧化層之品質並幫助氧化鉬生成,持續提升電晶體特性。於此同時將原子層蝕刻技術導入電晶體製程中,以改變源極與汲極下方不同層數、不同接觸面積之二硫化鉬薄膜。並發現完全接觸之元件,其金屬與二硫化鉬之蕭基能障,能夠迫使更多的電子進入通道中,因此擁有較小之截止電壓。而當閘極電壓大於8伏時,由於金屬與材料接面上持續累積的電子達到飽和,加上空乏區的退縮,致使累積的電子會開始沿著二硫化鉬之表面形成接面電流。使得原本應該進入飽和區之 ID-VDS 持續的增加。為了更進一步增加電晶體特性,將銻烯此金屬性二維材料電極與異質結構也加入元件製程。利用銻烯與二硫化鉬之間具備低接觸電阻;異質結構會形成類似 Type-II 的能帶結構等特性,使二硫化鉬通道獲得更多的載子注入,以達元件特性之提升。
英文摘要 In this work, we grow large-area transition metal dichalcogenide films with different approaches. We have also investigated the mechanism of atomic layer etching by using the low-power oxygen plasma. We optimize the growth of the dielectric layer through the fabrication of top-gate MoS2 transistors. During alter the different layer numbers and area which underneath the source and drain electrodes could have the higher on current and lower threshold voltage. To enhance the on current of the device, both the metallic 2-D material and hetero-structures also be used into the transistor fabrication.
論文目次 摘要 ....... i
Abstract ...... ii
誌謝 ....... v
目錄 ....... 1
表目錄 ....... 5
圖目錄 ....... 6
第一章緒論 ...... 11
1-1 二硫化鉬與二硫化鎢的基本性質 .... 12
1-1-1 二硫化鉬與二硫化鎢的晶體結構 .... 12
1-1-2 二硫化鉬與二硫化鎢的拉曼光譜分析 .... 12
1-1-3 二硫化鉬與二硫化鎢的光激螢光光譜分析 .... 13
1-2 過渡金屬硫化物之製備方式 .... 14
1-2-1 機械剝離法 ...... 14
1-2-2 化學氣相沉積法 ...... 14
1-3 研究方向與架構 ...... 15
第二章實驗儀器介紹 ...... 22
2-1 材料成長系統 ...... 22
2-1-1 射頻濺鍍系統 ...... 22
2-1-2 低真空硫化系統 ...... 23
2-1-3 高真空二維材料成長系統 .... 24
2-2 材料分析設備 ...... 25
2-2-1 高解析共焦拉曼顯微光譜儀 .... 25
2-2-2 光激螢光光譜儀 ...... 25
2-2-3 X射線光電子能譜分析儀 ..... 26
2-2-4 穿透式電子顯微鏡 ...... 26
2-3 電晶體製程設備 ...... 27
2-3-1 熱蒸鍍系統 ...... 28
2-3-2 原子層沉積系統 ...... 28
2-3-3 反應式離子乾蝕刻系統 .... 28
2-3-4 電子槍真空蒸鍍系統 ...... 29
2-3-5 原子層蝕刻系統 ...... 29
第三章高真空與低真空系統內成長二維材料之分析與比較 .. 38
3-1 高真空系統內成長二硫化鉬 .... 38
3-1-1 樣品基板製備與鉬金屬沉積 .... 38
3-1-2 鉬金屬硫化 ...... 39
3-1-3 改變成長溫度之比較 ...... 39
3-1-4 不同鍍鉬時間之比較 ...... 40
3-1-5 二次硫化對二硫化鉬之影響 .... 40
3-1-6 外部鍍鉬後以高真空腔體進行成長 .... 41
3-1-7 以不同比例之氫氣成長二硫化鉬 .... 41
3-2 低真空系統內成長二硫化鉬 .... 42
3-2-1 樣品基板製備與鉬金屬沉積 .... 42
3-2-2 鉬金屬硫化 ...... 43
3-2-3 改變鍍鉬秒數硫化之比較 .... 43
3-3 小結 ...... 44
第四章原子層蝕刻技術開發及元件製作 .... 55
4-1 原子層蝕刻技術開發與探討 .... 55
4-1-1原子層蝕刻技術開發 ..... 55
4-1-2 原子層蝕刻之機制探討 .... 56
4-1-3二維材料層數確認 ..... 57
4-2 二硫化鉬之電晶體製作 ...... 58
4-2-1 上閘極場效電晶體之製備 .... 58
4-2-1-1 定義源極與汲極..... 58
4-2-1-2 定義場效電晶體通道..... 59
4-2-1-3 氧化層沉積..... 59
4-2-1-4 定義上閘極金屬..... 59
4-2-1-5 二硫化鉬電晶體量測..... 60
4-2-2 氧化層品質優化 ...... 60
4-2-2-1 氬氣熱退火對氧化層之影響..... 60
4-2-2-2 氫氣熱退火化層之影響..... 61
4-2-2-3 不同氧化層成長方式之探討..... 61
4-2-3 二硫化鉬元件之不同階段氬氣熱退火處理與機制探討 .. 62
4-2-4 不同層數之二硫化鉬元件 .... 63
4-2-5 源極/ 汲極下不同二硫化鉬層數對電晶體特性之影響 .. 64
4-2-6 源極/ 汲極下不同接觸金屬之二硫化鉬元件比較 ...65
4-2-7 改變源極/ 汲極下二硫化鉬面積對電晶體特性之影響 ...66
4-3 異質結構元件 ...... ..67
4-3-1 源極/ 汲極下不同二維材料對異質結構元件電晶體特性之影響. 67
4-3-2 源極/ 汲極下不同接觸金屬之異質結構元件比較 .. 68
4-4 小結 ...... 69
第五章總結 ....... 106
參考文獻 ....... 109
參考文獻 [1] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., ... & Firsov, A. A. “Electric field effect in atomically thin carbon films”, Science, 306(5696), 666-669. (2004).
[2] Choi, W., Lahiri, I., Seelaboyina, R., & Kang, Y. S. “Synthesis of graphene and its applications: a review”, Critical Reviews in Solid State and Materials Sciences, 35(1), 52-71. (2010).
[3] Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., ... & Hong, B. H. “Large-scale pattern growth of graphene films for stretchable transparent electrodes”, nature, 457(7230), 706. (2009).
[4] Schwierz, F. “Graphene transistors”, Nature nanotechnology, 5(7), 487, (2010).
[5] Mak, K. F., Lee, C., Hone, J., Shan, J., & Heinz, T. F. “Atomically thin MoS 2: a new direct-gap semiconductor”, Physical review letters, 105(13), 136805. (2010).
[6] Li, H., Lu, G., Yin, Z., He, Q., Li, H., Zhang, Q., & Zhang, H. “Optical identification of single‐and few‐layer MoS2 sheets”, Small, 8(5), 682-686. (2012).
[7] Chen, W., Zhao, J., Zhang, J., Gu, L., Yang, Z., Li, X., ... & Lin, X. “Oxygen-assisted chemical vapor deposition growth of large single-crystal and high-quality monolayer MoS2”, Journal of the American Chemical Society, 137(50), 15632-15635. (2015).
[8] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti and A. Kis “Single-layer MoS2 Transistors”, Nature Nanotechnology. 6, 147–150. (2011).
[9] P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang. “Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2”, Optics express. 4908-4916. (2013).
[10] Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C. Y., & Wang, F. “Emerging photoluminescence in monolayer MoS2”, Nano letters, 10(4), 1271-1275. (2010).
[11] Dhakal, K. P., Duong, D. L., Lee, J., Nam, H., Kim, M., Kan, M., ... & Kim, J. “Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2”. Nanoscale, 6(21), 13028-13035. (2014).
[12] Terrones, H., López-Urías, F., & Terrones, M. “Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides”. Scientific reports, 3, 1549. (2013).
[13] Zhao, W., Ghorannevis, Z., Chu, L., Toh, M., Kloc, C., Tan, P. H., & Eda, G. “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2”. ACS nano, 7(1), 791-797. (2012).
[14] Gutiérrez, H. R., Perea-López, N., Elías, A. L., Berkdemir, A., Wang, B., Lv, R., ... & Terrones, M. “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers”. Nano letters, 13(8), 3447-3454. (2012).
[15] Johari, P., & Shenoy, V. B. “Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains”. ACS nano, 6(6), 5449-5456. (2012).
[16] Ye, M., Winslow, D., Zhang, D., Pandey, R., & Yap, Y. “Recent advancement on the optical properties of two-dimensional molybdenum disulfide (MoS2) thin films”. In Photonics (Vol. 2, No. 1, pp. 288-307). Multidisciplinary Digital Publishing Institute. (2015).
[17] Lee, C., Yan, H., Brus, L. E., Heinz, T. F., Hone, J., & Ryu, S. “Anomalous lattice vibrations of single-and few-layer MoS2”. ACS nano, 4(5), 2695-2700. (2010).
[18] Li, H., Zhang, Q., Yap, C. C. R., Tay, B. K., Edwin, T. H. T., Olivier, A., & Baillargeat, D. “From bulk to monolayer MoS2: evolution of Raman scattering”. Advanced Functional Materials, 22(7), 1385-1390. (2012).
[19] Changgu Lee, Hugen Yan, Louis E. Brus, Tony F. Heinz, James Hone and Sunmin Ryu “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2”. ACS Nano. vol4, April. (2010).
[20] Zeng, H., Liu, G. B., Dai, J., Yan, Y., Zhu, B., He, R., ... & Cui, X. “Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides”. Scientific reports, 3, 1608. (2013).
[21] Dhakal, K. P., Duong, D. L., Lee, J., Nam, H., Kim, M., Kan, M., & Kim, J. “Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2”. Nanoscale, 6(21), 13028-13035. (2014).
[22] Eda, G., Yamaguchi, H., Voiry, D., Fujita, T., Chen, M., & Chhowalla, M. “Photoluminescence from chemically exfoliated MoS2”. Nano letters, 11(12), 5111-5116. (2011).
[23] Gutiérrez, H. R., Perea-López, N., Elías, A. L., Berkdemir, A., Wang, B., Lv, R., ... & Terrones, M. “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers”. Nano letters, 13(8), 3447-3454. (2012).
[24] Li, X., Shi, Y., Li, S., Shi, W., Han, W., Zhou, C., ... & Liang, B. “Layer-number dependent reflection spectra of MoS 2 flakes on SiO 2/Si substrate”. Optical Materials Express, 8(10), 3082-3091. (2018).
[25] Schmidt, H., Wang, S., Chu, L., Toh, M., Kumar, R., Zhao, W., ... & Eda, G. “Transport properties of monolayer MoS2 grown by chemical vapor deposition”. Nano letters, 14(4), 1909-1913. (2014).
[26] Kim, H., & Maeng, W. J. “Applications of atomic layer deposition to nanofabrication and emerging nanodevices”. Thin Solid Films, 517(8), 2563-2580. (2009).
[27] Chen, K. C., Chu, T. W., Wu, C. R., Lee, S. C., & Lin, S. Y. “Atomic layer etchings of transition metal dichalcogenides with post healing procedures: equivalent selective etching of 2D crystal hetero-structures”. 2D Materials, 4(3), 034001. (2017).
[28] Chen, K. C., Wu, C. R., Chang, X. R., Chang, S. W., Lee, S. C., & Lin, S. Y. “Enhancement of field-effect mobility in molybdenum-disulfide transistor through the treatment of low-power oxygen plasma”. Japanese Journal of Applied Physics, 55(9), 090302. (2016).
[29] Chen, H. A., Sun, H., Wu, C. R., Wang, Y. X., Lee, P. H., Pao, C. W., & Lin, S. Y. “Single-Crystal Antimonene Films Prepared by Molecular Beam Epitaxy: Selective Growth and Contact Resistance Reduction of the 2D Material Heterostructure”. ACS applied materials & interfaces, 10(17), 15058-15064. (2018).
[30] Wu, C. R., Chang, X. R., Chu, T. W., Chen, H. A., Wu, C. H., & Lin, S. Y. “Establishment of 2D crystal heterostructures by sulfurization of sequential transition metal depositions: preparation, characterization, and selective growth”. Nano letters, 16(11), 7093-7097. (2016).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-07-08起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-07-08起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw