進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1607201814493400
論文名稱(中文) 數值高程模型及等高線圖數位浮水印之研究
論文名稱(英文) A Study on Digital Watermarking DEMs and Contour Maps
校院名稱 成功大學
系所名稱(中) 測量及空間資訊學系
系所名稱(英) Department of Geomatics
學年度 106
學期 2
出版年 107
研究生(中文) 郭禹謙
研究生(英文) Yu-Qian Guo
學號 P66051012
學位類別 碩士
語文別 中文
論文頁數 100頁
口試委員 指導教授-蔡展榮
口試委員-趙鍵哲
口試委員-邱式鴻
口試委員-徐百輝
中文關鍵字 線性同餘法  峰值信號噪訊比  位元錯誤率 
英文關鍵字 Linear Congruential generator(LCG)  Peak Signal-to-Noise Ratio(PSNR)  Bit Error Rate(BER) 
學科別分類
中文摘要 根據著作權法與國家機密保護法規定,DEM與等高線圖的著作者享有其著作權且高精度的DEM以及等高線圖需要受到保護,因此DEM與等高線圖的數位浮水印技術有其研究的價值。
離散餘弦轉換(DCT)、離散傅立葉轉換(DFT)及離散小波轉換(DWT)為浮水印技術中常用的演算法,本研究提出以線性同餘法(LCG)產生密鑰並根據坡度分級與高程起伏量調整浮水印的嵌入強度,來設計出一種新的浮水印嵌入方法,並探討本研究提出的嵌入方法搭配三種演算法應用於DEM數位浮水印時的效果,再嘗試將DEM的測試經驗應用在等高線圖上,最後透過峰值信號噪訊比(PSNR)、均方根誤差(RMSD)及最大誤差來評估浮水印的成效,並進行攻擊測試,以位元錯誤率(BER)來檢視浮水印技術抵抗攻擊的能力。
實驗成果顯示本研究提出的方法,在DEM受到攻擊後萃取出的浮水印皆能以人眼辨識時,以DFT作為演算法造成的RMS dZ最小,山區、丘陵及平地分別為1.50m、0.51m及0.02m,分別佔實驗區高程起伏量的0.08%、0.10%及0.09%,抵抗破壞的能力最差,除了裁切攻擊外的BER最大值為25.6%;以哈爾小波作為演算法造成的RMS dZ最大,山區、丘陵及平地分別為3.35m、1.13m及0.05m,分別佔實驗區高程起伏量的0.18%、0.23%及0.23%,抵抗破壞的能力最好,除了裁切攻擊外的BER最大值為15.1%;DCT的表現介於前面兩者之間,對DEM造成的RMS dZ在山區、丘陵及平地分別為1.88m、0.64m及0.03m,分別佔實驗區高程起伏量的0.10%、0.13%及0.14%,除了裁切攻擊外的BER最大值為20.1%,而基於DCT的嵌入法對DEM造成的RMS dZ,在山區、丘陵及平原分別可以降低到0.75m、0.44m及0.01m,分別佔實驗區高程起伏量的0.04%、0.09%及0.05%,能夠符合國家規範,PSNR皆大於59dB,代表浮水印不可視,受到攻擊後浮水印的BER值皆小於35.8%,以本研究的實驗案例來說浮水印具有強韌性;而基於DCT的嵌入法對等高線圖造成的RMS dXY最大值為0.13m,節點的最大平面位移量為0.25m,受到攻擊後浮水印的BER值最大為38.5%,抵抗裁切破壞的能力較差,但能夠抵抗重新排列以及隨機亂數攻擊。
英文摘要 This study proposes a digital watermarking method for DEMs and contour maps. The method includes linear congruential generator(LCG), adaptive method, discrete cosine transform(DCT), discrete Fourier transform(DFT) and discrete wavelet transform(DWT). This study checks the robustness of watermarked DEM by using median filter, mean filter, random noise and clip attacks and checks watermarked contour maps by using clip, reordering and random noise attacks. The results of watermarked DEM with the proposed method by means of DCT are shown below. Maximum RMS dZ of DEM is 0.75m which means watermarked DEM can meet our national requirements. The peak signal-to-noise ratio(PSNR) value of all DEMs are larger than 59dB which means watermark is invisible. The bit error rate(BER) value of destroyed watermarks are all less than 35.8%. For my cases, the value of BER means that watermark can resist the attacks caused by four attack methods mentioned above. The results of watermarked contour map also are shown below. Maximum RMS dXY is 0.13m and maximal horizontal shift of vertex is 0.25m which means it can meet our national requirements and watermark cannot be perceived by human eyes which means watermark is invisible. The BER value of clip attack is 38.5% which is maximal. It means that the proposed method is weak to resist the attack caused by clip attack. But other BER values are smaller than 15.8%, for my case, it means that the proposed method can resist the attacks caused by reordering and random noise.
論文目次 中文摘要 I
Extrended Abstract III
致謝 X
目錄 XI
表目錄 XIV
圖目錄 XVI
第一章 前言 1
 §1-1 研究動機與目的 1
 §1-2 文獻回顧 3
  §1-2-1 隱寫術與浮水印 3
  §1-2-2 數位浮水印的處理程序 4
  §1-2-3 數位浮水印方法的分類 5
  §1-2-4 數位浮水印的發展 7
 §1-3 論文架構 11
第二章 研究使用的演算法 12
 §2-1 DCT 12
 §2-2 DWT 13
 §2-3 DFT 14
第三章 方法設計:浮水印的嵌入與萃取及品質分析 15
 §3-1 密鑰 15
 §3-2 DEM自適應法 16
  §3-2-1 坡度分級 16
  §3-2-2 高程起伏量 17
 §3-3 DEM嵌入浮水印 19
 §3-4 DEM萃取浮水印 20
 §3-5 等高線圖嵌入浮水印 20
 §3-6 等高線圖萃取浮水印 21
 §3-7 浮水印值 21
 §3-8 DEM攻擊測試 22
  §3-8-1 中值濾波 23
  §3-8-2 均值濾波 23
  §3-8-3 隨機亂數 23
  §3-8-4 裁切部分資料 23
 §3-9 等高線圖攻擊測試 24
  §3-9-1 裁切部分資料 24
  §3-9-2 重新排列 25
  §3-9-3 隨機亂數 25
 §3-10 品質分析的評估指標 25
  §3-10-1 均方根誤差 25
  §3-10-2 峰值信號噪訊比 26
  §3-10-3 位元錯誤率 26
第四章 實驗成果與分析 28
 §4-1 實驗資料 28
 §4-2 DEM實驗成果 30
  §4-2-1 DCT高程變化量測試與嵌入位置設計 31
  §4-2-2 DFT高程變化量測試與嵌入位置設計 39
  §4-2-3 DWT_H高程變化量測試與嵌入位置設計 45
  §4-2-4 三種演算法之比較 52
  §4-2-5 裁切攻擊測試 56
  §4-2-6 坡度分級嵌入強度與統一嵌入強度之比較 58
  §4-2-7 降低嵌入強度 61
  §4-2-8 DEM數位浮水印成果分析 65
  §4-2-9 不滿幅DEM 70
  §4-2-10 台灣目前DEM現況 71
 §4-3 等高線圖實驗成果 72
  §4-3-1 初步測試結果 72
  §4-3-2 降低嵌入強度測試結果 73
  §4-3-3 等高線圖攻擊測試 74
  §4-3-4 裁切攻擊測試 77
  §4-3-5 不同等高線間距攻擊測試 79
  §4-3-6 不同嵌入強度攻擊測試 80
  §4-3-7 等高線圖測試 82
  §4-3-8 等高線圖數位浮水印成果分析 88
第五章 結論與建議 92
參考文獻 98
參考文獻 Ahmed, N., Natarajan, T., & Rao, K. R. (1974). Discrete cosine transform. IEEE transactions on Computers, 100(1), pp. 90-93.
Cox, I., Miller, M., Bloom, J., Fridrich, J., & Kalker, T. (2007). Digital watermarking and steganography, Burlington: Morgan Kaufmann, pp. 1-13.
Gunjal, B. L., & Manthalkar, R. (2010). An overview of transform domain robust digital image watermarking algorithms. Journal of Emerging Trends in Computing and Information Sciences, 2(1), pp. 37-42.
He, X., & Liu, J. (2009). A Digital Watermarking Algorithm for DEM Image Based on Stationary Wavelet Transform. In Information Assurance and Security, 2009. IAS'09. Fifth International Conference on, Vol. 1, pp. 221-224.
Jain, A. K. (1989). Fundamentals of digital image processing, Upper Saddle River: Prentice-Hall, Inc., pp. 141-145.
Knuth, D. E. (1981). The Art of Computer Programming; Volume 2: Seminumeral Algorithms, Boston: Addison-Wesley.
Kundur, D., & Hatzinakos, D. (1998). Digital watermarking using multiresolution wavelet decomposition. In Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference on, Vol. 5, pp. 2969-2972.
Kutter, M., Bhattacharjee, S. K., & Ebrahimi, T. (1999). Towards second generation watermarking schemes. Image Processing, 1999. ICIP 99. Proceedings. 1999 International Conference on, Vol. 1, pp. 320-323.
Kang, H. I., Kim, K. I., & Choi, J. U. (2001). A map data watermarking using the generalized square mask. In Industrial Electronics, 2001. Proceedings. ISIE 2001. IEEE International Symposium on, Vol. 3, pp. 1956-1958.
Kim, J.-Y., & Park, S.-H. (2007). Vector Map Data Watermarking Method using Binary Notation. Journal of Korea Spatial Information Society, 15(4), pp. 385-395.
Liu, A., & Lv, G. (2008). Copyright protection of DEM by means of DCT-based digital watermarking. Geo-Information Science, 10(2), pp. 214-223.
Lee, S.-H., & Kwon, K.-R. (2013). Vector watermarking scheme for GIS vector map management. Multimedia tools and applications, 63(3), pp. 757-790.
Men, C., Cao, L., Li, X., & Wang, N. (2010). Global characteristic-based lossless watermarking for 2D-vector maps. In Mechatronics and Automation (ICMA), 2010 International Conference on, pp. 276-281.
Niu, X., Shao, C., & Wang, X. (2006). A survey of digital vector map watermarking. International Journal of Innovative Computing, Information and Control, 2(6), pp. 1301-1316.
Ohbuchi, R., Ueda, H., & Endoh, S. (2002). Robust watermarking of vector digital maps. In Multimedia and Expo, 2002. ICME'02. Proceedings. 2002 IEEE International Conference on, Vol. 1, pp. 577-580.
Ohbuchi, R., Ueda, H., & Endoh, S. (2003). Watermarking 2D vector maps in the mesh-spectral domain. In Shape Modeling International, 2003, pp. 216-225.
Shu, T. (1995). Uniform random numbers: Theory and practice, Alphen aan den Rijn: Kluwer Academic Publishers, pp. 57-58.
Sakamoto, M., Matsuura, Y., & Takashima, Y. (2000). A scheme of digital watermarking for geographical map data. In Symposium on cryptography and information security, Okinawa, Japan.
Solachidis, V., Nikolaidis, N., & Pitas, I. (2000). Fourier descriptors watermarking of vector graphics images. In Image Processing, 2000. Proceedings. 2000 International Conference on, Vol. 3, pp. 9-12.
Shih, F. Y. (2017). Digital watermarking and steganography: fundamentals and techniques, Boca Raton: CRC press, pp. 1-5.
Tirkel, A. Z., Rankin, G. A., Van Schyndel, R. M., Ho, W. J., Mee, N. R. A., & Osborne, C. F. (1993). Electronic watermark. Digital Image Computing, Technology and Applications, pp. 666-673.
Voigt, M., & Busch, C. (2002). Watermarking 2D-vector data for geographical information systems. In Security and Watermarking of Multimedia Contents IV, Vol. 4675, pp. 621-629.
Voigt, M., & Busch, C. (2003). Feature-based watermarking of 2D vector data. In Security and Watermarking of Multimedia Contents V, Vol. 5020, pp. 359-367.
Voigt, M., Yang, B., & Busch, C. (2004). Reversible watermarking of 2D-vector data. In Proceedings of the 2004 workshop on Multimedia and security, pp. 160-165.
Watson, A. B. (1994). Image compression using the discrete cosine transform. Mathematica journal, 4(1), pp. 81-88.
Zhou, X., Ren, Y., & Pan, X. (2006). Watermark embedded in polygonal line for copyright protection of contour map. International Journal of Computer Science and Network Security, 6(7B), pp. 202-205.
Zhu, C., Yang, C., & Wang, Q. (2008). A watermarking algorithm for vector geo-spatial data based on integer wavelet transform. Int Arch Photogramm Remote Sens Spat Inf Sci, 37(B4), pp. 15-18.
Zhu, C., Wang, Z., Long, Y., & Yang, C. (2009). An adaptive watermarking algorithm for DEM based on DFT. In Proceedings 24th international cartographic conference, Chile (in Chinese).

中華民國內政部地政司(1981),「臺灣地區基本圖測製管理規則」,內政部:台北。
中華民國內政部國土測會中心(2011),「建置都會區一千分之一數值航測地形圖作業工作手冊」,內政部:台北。
王志偉、朱長青、楊成松(2009),「一種基於坡度分析的DEM數字水印算法」,地理與地理信息科學,第25卷第1期,頁91-94。
王曉紅、聶洪峰、李成尊、汪勁(2006),「不同遙感數據源在礦山開發狀況及環境調查中的應用」,國土資源遙感,第2期,頁69-71。
何密、羅永、成禮智(2007),「數字高程模型數據的無損數字水印」,計算機工程與應用,第43卷第30期,頁40-43。
林政毅、蔡展榮(2016),「數位浮水印技術應用於數值高程模型」,第35屆測量及空間資訊研討會暨國土測繪成果發表會。
徐百輝、陳志丞(2013),「以特徵點為基礎的航測影像浮水印」,航測及遙測學刊,第17卷第4期,頁251-266。
劉愛利、丁滸、田丹、王麗、王少峰(2016),「基於坡度和坡向分析的DCT域DEM數字水印算法」,武漢大學學報:信息科學版,第41卷第7期,頁903-910。
劉學軍、龔健雅、周啟鳴、湯國安(2004),「基於DEM坡度坡向算法精度的分析研究」,測繪學報,第33卷第3期,頁258-263。
魏徵、閆浩文、張黎明、姜曉琴、李文德(2015),「抗高程平移和裁剪攻擊的網格DEM盲水印方法」,中華人民共和國專利公開號:CN104794672A。
羅永、成禮智、陳波、吳翊(2005),「數字高程模型數據整數小波水印算法」,軟件學報,第16卷第6期,頁1096-1103。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-07-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-07-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw