進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1607201516242600
論文名稱(中文) 以延伸式科技接受模型探討銀髮族對磨課師之使用意圖
論文名稱(英文) A Study of Senior Citizens' Intention of Using MOOCs Based on Extended Technology Acceptance Model
校院名稱 成功大學
系所名稱(中) 工業與資訊管理學系
系所名稱(英) Department of Industrial and Information Management
學年度 103
學期 2
出版年 104
研究生(中文) 賴玟橞
研究生(英文) Wen-Hui Lai
學號 R36021144
學位類別 碩士
語文別 中文
論文頁數 97頁
口試委員 指導教授-呂執中
口試委員-傅新彬
口試委員-林耀欽
口試委員-陸偉明
中文關鍵字 科技接受模型  銀髮族  磨課師  使用意圖 
英文關鍵字 Technology Acceptance Model (TAM)  Web-based Learning  Senior Citizen  MOOCs 
學科別分類
中文摘要 本研究之目的在於探討銀髮族對於磨課師的使用意圖。人口老化近年來成為重要的議題之一,不斷上升的老年人口帶來許多社會化問題以及成人教育的重視程度,但資訊科技進步以及電子化時代讓銀髮族在學習上有很大的衝擊,取代過去傳統的課堂教學,現今銀髮族為了因應時代的變遷必須提升網路學習以及電腦操作之能力。大量開放式線上課程(磨課師)為近年來所興起的網路教學模式,顧名思義為無國界的免費網路課程,搭配線上作業、考試等機制使其與傳統的網路教學比起來更為嚴謹、更有系統,在未來將成為一種新興的教學模式。
因此,本研究為了要探討銀髮族對磨課師的使用意圖,以科技接受模行為理論基礎發展出延伸式科技接受模型,提出個人因素包含網路自我效能、認知吸收以及電腦焦慮及教學模式因素包含功能性以及互動性作為架構中的外部變數,再以認知有用性、認知易用性以及認知愉悅性作為中介變數,以探討銀髮族的使用態度以及行為意圖,由於磨課師目前尚未普及,本研究除了利用問卷調查法調查外,並使用焦點團體法對銀髮族進行訪談,透過兩組焦點團體對於磨課師本身之使用經驗與看法進行討論,並且歸納銀髮族對磨課師的相關建議。
本研究以全台樂齡大學為主要研究對象,共回收了205份有效問卷,利用PLS進行結構方程式分析,研究結果發現認知吸收、電腦焦慮以及功能性對於銀髮族在網路學習是關鍵因素,說明銀髮族會因為自身使用網路或電腦學習效果不彰而降低使用行為,而訪談結果發現雖然銀髮族普遍認為磨課師是創新且優質的教學方式且課程多元有趣,但多為自主性學習而不重視線上考試與作業機制,且表示若樂齡大學能多提升電腦使用能力未來將會提升使用意願,而在未來推廣方向也傾向樂意推薦親友,此研究結果可提供未來全台欲推廣磨課師之樂齡大學做為參考。
英文摘要 There is a trend that the average life in Taiwan has become longer in the past few decades. Many senior citizens, however, still enjoy the learning and participate actively. With the development of Massive Open Online Courses (MOOCs), senior citizens have another channel in their learning environment. The main purpose of this study is to discuss the key factors of their motivation and the degree of acceptance of MOOCs for the senior citizens. Selective senior citizens (over 55 years old) that participated in senior citizen colleges were surveyed and perceived enjoyment was added into technology acceptance model as the theory basis. The model is analyzed using partial least squares (PLS) analysis and focus group is further performed to gain
more insight. Overall, it is found out that individual factors and teaching factors have
significant impact on the web-based learning, and the functionality plays a key role as
well. Senior citizens, in general, have a positive attitude toward MOOCs based on
this investigation.
論文目次 目錄
摘要 I
Abstract II
誌謝 VI
目錄 VIII
表目錄 XI
圖目錄 XII
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 2
第三節 研究範圍與限制 3
第四節 研究流程 3
第二章 文獻探討 5
第一節 銀髮族與資訊科技互動之現況 5
2.1.1  銀髮族之定義與學習型態 5
2.1.2  目前銀髮族電腦網路之使用狀況 6
第二節 大量開放式線上課程(磨課師) 8
2.2.1  磨課師之發展 8
2.2.2  磨課師之特性 9
2.2.3  網路學習 13
第三節 科技接受模式 16
2.3.1  科技接受模式之內涵 16
2.3.2  科技接受模式之延伸 18
2.3.3  個人因素 20
2.3.4  教學模式因素 23
第四節 焦點團體訪問法 26
2.4.1  焦點團體法 26
2.4.2  小結 27
第三章 研究方法 28
第一節 研究架構 28
第二節 構面衡量與研究假說 29
3.2.1  網路自我效能與認知有用性、認知易用性、認知愉悅性之關係 29
3.2.2  認知吸收與認知有用性、認知易用性與認知愉悅性之關係 29
3.2.3  電腦焦慮與認知有用性、認知易用性、認知愉悅性之關係 30
3.2.4  功能性與認知有用性、認知易用性、認知愉悅性之關係 31
3.2.5  互動性與認知易用性、認知有用性、認知愉悅性之關係 31
3.2.6  認知易用性與認知有用性、認知愉悅性、使用態度之關係 32
3.2.7  認知有用性與使用態度之關係 32
3.2.8  認知愉悅性與使用態度之關係 33
3.2.9  使用態度與行為意圖之關係 33
第三節 問卷設計 36
3.3.1  延伸式科技接受模型之問卷設計 36
第四節 焦點團體訪談法 39
3.4.1  焦點團體訪問流程及內容 40
第五節 問卷前測與資料分析 41
3.5.1  前測 41
3.5.2  資料蒐集方法 46
3.5.3  資料分析方法 47
3.5.4  小結 49
第四章 資料分析與訪談結果 50
第一節 問卷資料分析 50
4.1.1  敘述性統計分析與常態性檢定 50
4.1.2  問卷信度分析 56
4.1.3  相關分析 61
4.1.4  衡量模式-測量模式分析 62
4.1.5  衡量模式-結構模式分析 67
第二節 實證結果分析 70
4.2.1  個人因素 70
4.2.2  教學模式因素 71
第三節 焦點團體訪談結果 72
4.3.1  訪問對象與結果 72
4.3.2  訪談對象對磨課師特性之觀點 73
4.3.3  訪談對象對磨課師之使用看法與未來推廣建議 75
第五章 結論 79
第一節 研究結論 79
第二節 研究貢獻 80
5.2.1 學術貢獻 80
5.2.2 實務貢獻 80
第三節 未來研究方向 82
參考文獻 83
中文文獻 83
英文文獻 83
參考網站 88
附錄一 前測問卷 89
附錄二 正式問卷 93
附錄三 訪問大綱 97

參考文獻 中文文獻
1. 行政院研究發展考核委員會(2012),100年個人家戶數位機會調查報告。
2. 行政院研究發展考核委員會(2013),101年個人家戶數位落差調查報告。
3. 內政部社會司(2009),老人福利法規。
4. 吳明隆與涂金堂(2006),SPSS 與統計應用分析.,五南圖書出版股份有限公司
5. 翟本瑞(2014),磨課師:改變學習,學習改變研討會,逢甲大學,台中。
英文文獻
Agarwal, R., & Karahanna, E. (2000). Time flies when you're having fun: Cognitive absorption and beliefs about information technology usage. MIS quarterly, 24(4), 665-694.
Agarwal, R., & Prasad, J. (1998). The antecedents and consequents of user perceptions in information technology adoption. Decision support systems, 22(1), 15-29.
Alenezi, A. R. (2011). E-learning acceptance: Technological key factors for successful students’ engagement in E-learning system. Instructional Technology Department, Aljouf University, Saudi Arabia.
Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the academy of marketing science, 16(1), 74-94.
Bates, T. (2014). MOOCs: getting to know you better. Distance Education, 35(2), 145-148.
Boulton-Lewis, G. M. (2010). Education and learning for the elderly: Why, how, what. Educational Gerontology, 36(3), 213-228.
Boulton-Lewis, G. M., Buys, L., & Lovie-Kitchin, J. (2006). Learning and active aging. Educational Gerontology, 32(4), 271-282.
Brown, I. T. (2002). Individual and technological factors affecting perceived ease of use of web-based learning technologies in a developing country. The Electronic Journal of Information Systems in Developing Countries, 9(5),16.
Chen, H. R., & Tseng, H. F. (2012). Factors that influence acceptance of web-based e-learning systems for the in-service education of junior high school teachers in Taiwan. Eval Program Plann, 35(3), 398-406.
Chen, M. L., Lu, T. E., Chen, K. J., & Liu, C. E. (2011). A TAM-based study on senior citizens’ digital learning and user behavioral intention toward use of broadband network technology services provided via television. African Journal of Business Management, 5(16), 7099-7110.
Chen, M. L., Su, Z. Y., Wu, T. Y., Shieh, T. Y., & Chiang, C. H. (2011). Influence of dentistry students’e-Learning satisfaction: a questionnaire survey. Journal of medical systems, 35(6), 1595-1603.
Chen, Y., & Persson, A. (2002). Internet use among young and older adults: Relation to psychological well-being. Educational Gerontology, 28(9), 731-744.
Cheng, Y. M. (2011). Antecedents and consequences of e‐learning acceptance. Information Systems Journal, 21(3), 269-299.
Cheng, Y. M. (2013). Exploring the roles of interaction and flow in explaining nurses' e-learning acceptance. Nurse Educ Today, 33(1), 73-80.
Cheung, R., & Vogel, D. (2013). Predicting user acceptance of collaborative technologies: An extension of the technology acceptance model for e-learning. Computers & Education, 63, 160-175.
Chu, R. J. C. (2010). How family support and Internet self-efficacy influence the effects of e-learning among higher aged adults–Analyses of gender and age differences. Computers & Education, 55(1), 255-264.
Clark, R. C., & Mayer, R. E. (2011). E-learning and the science of instruction: Proven guidelines for consumers and designers of multimedia learning: John Wiley & Sons.
Damodaran, L., Olphert, C. W., & Sandhu, J. (2014). Falling off the bandwagon? Exploring the challenges to sustained digital engagement by older people. Gerontology, 60(2), 163-173.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management science, 35(8), 982-1003.
Downes, S. (2012). Connectivism and Connective Knowledge: essays on meaning and learning networks. Stephen Downes Web.
Ekstrom, R. B., French, J. W., Harman, H. H., & Dermen, D. (1976). Manual for kit of factor referenced cognitive tests: Educational Testing Service.
Fischer, G. (2014). Beyond hype and underestimation: identifying research challenges for the future of MOOCs. Distance Education, 35(2), 149-158.
Fitzgerald Bone, P. (1991). Identifying mature segments. Journal of consumer Marketing, 8(4), 19-32.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50.
Hackbarth, G., Grover, V., & Mun, Y. Y. (2003). Computer playfulness and anxiety: positive and negative mediators of the system experience effect on perceived ease of use. Information & Management, 40(3), 221-232.
Hair, J. F. (2010). Hair, Joseph F., et al. Multivariate Data Analysis: A Global Perspective. 7th ed. Upper Saddle River: Prentice Hall, 2009. Print.
Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate data analysis (Vol. 6): Pearson Prentice Hall Upper Saddle River, NJ.
Hanson, V. L. (2009). Age and web access: the next generation. Paper presented at the Proceedings of the 2009 International Cross-Disciplinary Conference on Web Accessibililty (W4A).
Hassanzadeh, A., Kanaani, F., & Elahi, S. (2012). A model for measuring e-learning systems success in universities. Expert Systems with Applications, 39(12), 10959-10966.
Hsia, J. W., Chang, C. C., & Tseng, A. H. (2014). Effects of individuals' locus of control and computer self-efficacy on their e-learning acceptance in high-tech companies. Behaviour & Information Technology, 33(1), 51-64.
Hsu, M. H., & Chiu, C. M. (2004). Internet self-efficacy and electronic service acceptance. Decision support systems, 38(3), 369-381.
Hu, P. J., Chau, P. Y., Sheng, O. R. L., & Tam, K. Y. (1999). Examining the technology acceptance model using physician acceptance of telemedicine technology. Journal of management information systems,16(2), 91-112.
Igbaria, M., Guimaraes, T., & Davis, G. B. (1995). Testing the determinants of microcomputer usage via a structural equation model. Journal of management information systems, 11(4), 87-114.
Islam, A. N. (2013). Investigating e-learning system usage outcomes in the university context. Computers & Education, 69, 387-399.
Jarvenpaa, S. L., Shaw, T. R., & Staples, D. S. (2004). Toward contextualized theories of trust: The role of trust in global virtual teams. Information systems research, 15(3), 250-267.
Kannan, V. R., & Tan, K. C. (2005). Just in time, total quality management, and supply chain management: understanding their linkages and impact on business performance. Omega, 33(2), 153-162.
Kay, J., Reimann, P., Diebold, E., & Kummerfeld, B. (2013). MOOCs: So Many Learners, So Much Potential. IEEE Intelligent Systems, 28(3), 70-77.
Kim, T. G., Lee, J. H., & Law, R. (2008). An empirical examination of the acceptance behaviour of hotel front office systems: An extended technology acceptance model. Tourism management, 29(3), 500-513.
Lee, M. C. (2010). Explaining and predicting users’ continuance intention toward e-learning: An extension of the expectation–confirmation model. Computers & Education, 54(2), 506-516.
Lee, M. K. O., Cheung, C. M. K., & Chen, Z. (2005). Acceptance of Internet-based learning medium: the role of extrinsic and intrinsic motivation. Information & Management, 42(8), 1095-1104.
Lee, W., Xiong, L., & Hu, C. (2012). The effect of Facebook users’ arousal and valence on intention to go to the festival: Applying an extension of the technology acceptance model. International Journal of Hospitality Management, 31(3), 819-827.
Lee, Y. C. (2006). An empirical investigation into factors influencing the adoption of an e-learning system. Online Information Review, 30(5), 517-541.
Leontyev, A., & Baranov, D. (2013). Massive open online courses in chemistry: A comparative overview of platforms and features. Journal of Chemical Education, 90(11), 1533-1539.
Liaw, S. S. (2002). Understanding user perceptions of World‐wide web environments. Journal of Computer Assisted Learning, 18(2), 137-148.
Lin, H. F. (2009). Examination of cognitive absorption influencing the intention to use a virtual community. Behaviour & Information Technology, 28(5), 421-431.
Mackness, J., Waite, M., Roberts, G., & Lovegrove, E. (2013). Learning in a small, task–oriented, connectivist MOOC: Pedagogical issues and implications for higher education. The International Review of Research in Open and Distributed Learning, 14(4), 141-159.
Moon, J. W., & Kim, Y. G. (2001). Extending the TAM for a World-Wide-Web context. Information & Management, 38(4), 217-230.
Moore, M. G. (2001). Editorial: Surviving as a distance teacher. THE AMERICAN JOURNAL OF DISTANCE EDUCATION, 15 (2), 1-5.
Mun, Y. Y., & Hwang, Y. (2003). Predicting the use of web-based information systems: self-efficacy, enjoyment, learning goal orientation, and the technology acceptance model. International Journal of human-computer studies, 59(4), 431-449.
Ong, C. S., Lai, J. Y., & Wang, Y. S. (2004). Factors affecting engineers’ acceptance of asynchronous e-learning systems in high-tech companies. Information & Management, 41(6), 795-804.
Park, Y., Son, H., & Kim, C. (2012). Investigating the determinants of construction professionals' acceptance of web-based training: An extension of the technology acceptance model. Automation in Construction, 22, 377-386.
Patton, M. Q. (2005). Qualitative research: Wiley Online Library.
Phang, C. W., Sutanto, J., Kankanhalli, A., Li, Y., Tan, B. C., & Teo, H.-H. (2006). Senior citizens' acceptance of information systems: A study in the context of e-government services. Engineering Management, IEEE Transactions on, 53(4), 555-569.
Pituch, K. A., & Lee, Y. k. (2006). The influence of system characteristics on e-learning use. Computers & Education, 47(2), 222-244.
Premkumar, G., & Bhattacherjee, A. (2008). Explaining information technology usage: A test of competing models. Omega, 36(1), 64-75.
Purdie, N., & Boulton-Lewis, G. (2003). The learning needs of older adults. Educational Gerontology, 29(2), 129-149.
Qureshi, I., & Compeau, D. (2009). Assessing between-group differences in information systems research: a comparison of covariance-and component-based SEM. MIS quarterly, 33(1), 197-214.
Roca, J. C., Chiu, C. M., & Martínez, F. J. (2006). Understanding e-learning continuance intention: An extension of the Technology Acceptance Model. International Journal of human-computer studies, 64(8), 683-696.
Rosenberg, M. J. (2001). E-learning: Strategies for Delivering Knowledge in the Digital. Mcgraw-2001.
Saadé, R., & Bahli, B. (2005). The impact of cognitive absorption on perceived usefulness and perceived ease of use in on-line learning: an extension of the technology acceptance model. Information & Management, 42(2), 317-327.
Schepers, J., & Wetzels, M. (2007). A meta-analysis of the technology acceptance model: Investigating subjective norm and moderation effects. Information & Management, 44(1), 90-103.
Siemens, G. (2005). Connectivism: A learning theory for the digital age. International journal of instructional technology and distance learning, 2(1), 3-10.
Spector, J. M. (2014). Remarks on MOOCS and Mini-MOOCS. Educational Technology Research and Development, 62(3), 385-392.
Stoel, L., & Hye Lee, K. (2003). Modeling the effect of experience on student acceptance of Web-based courseware. Internet Research, 13(5), 364-374.
Tanaka, J. S. (1987). " How big is big enough?": Sample size and goodness of fit in structural equation models with latent variables. Child development, 58(1), 134-146.
Teo, T., & Noyes, J. (2011). An assessment of the influence of perceived enjoyment and attitude on the intention to use technology among pre-service teachers: A structural equation modeling approach. Computers & Education, 57(2), 1645-1653.
Thatcher, J. B., Loughry, M. L., Lim, J., & McKnight, D. H. (2007). Internet anxiety: An empirical study of the effects of personality, beliefs, and social support. Information & Management, 44(4), 353-363.
Tsai, M. J., & Tsai, C. C. (2003). Information searching strategies in web-based science learning: The role of Internet self-efficacy. Innovations in Education and Teaching International, 40(1), 43-50.
Van Raaij, E. M., & Schepers, J. J. (2008). The acceptance and use of a virtual learning environment in China. Computers & Education, 50(3), 838-852.
Wagner, N., Hassanein, K., & Head, M. (2010). Computer use by older adults: A multi-disciplinary review. Computers in Human Behavior, 26(5), 870-882.
Wan, Z., Wang, Y., & Haggerty, N. (2008). Why people benefit from e-learning differently: The effects of psychological processes on e-learning outcomes. Information & Management, 45(8), 513-521.
Wang, C.-H., Shannon, D. M., & Ross, M. E. (2013). Students’ characteristics, self-regulated learning, technology self-efficacy, and course outcomes in online learning. Distance Education, 34(3), 302-323.
Wang, H., Chung, J. E., Park, N., McLaughlin, M. L., & Fulk, J. (2011). Understanding online community participation: A technology acceptance perspective. Communication Research, 0093650211408593.
Wolf, M. A. (2009). Older adult women learners in transition. New directions for adult and continuing education, 2009(122), 53-62.
Wu, J., & Liu, D. (2007). The effects of trust and enjoyment on intention to play online games. Journal of electronic commerce research, 8(2), 128-140.
Wu, J. H., Tennyson, R. D., & Hsia, T. L. (2010). A study of student satisfaction in a blended e-learning system environment. Computers & Education, 55(1), 155-164.
Wu, Y. T., & Tsai, C. C. (2006). University Students' Internet Attitudes and Internet Self-Efficacy: AStudy at Three Universities in Taiwan. Cyberpsychology & behavior, 9(4), 441-450.
Yang, K., & Jolly, L. D. (2008). Age cohort analysis in adoption of mobile data services: gen Xers versus baby boomers. Journal of consumer Marketing, 25(5), 272-280.
Yeung, P., & Jordan, E. (2007). The continued usage of business e-learning courses in Hong Kong corporations. Education and Information Technologies, 12(3), 175-188.
Yoo, S. J., Han, S. H., & Huang, W. (2012). The roles of intrinsic motivators and extrinsic motivators in promoting e-learning in the workplace: A case from South Korea. Computers in Human Behavior, 28(3), 942-950.
參考網站
1. 內政部統計處 http://www.moi.gov.tw/stat/index.aspx
2. 台灣網路資訊中心 http://www.twnic.net.tw/index4.php
3. 教育部全球資訊網 http://www.edu.tw/
4. The MOOC Guide https://sites.google.com/site/themoocguide/
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-05起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw