進階搜尋


下載電子全文  
系統識別號 U0026-1607201510415800
論文名稱(中文) Sn1-xSbxS奈米晶光學能隙及霍爾效應研究
論文名稱(英文) Optical bandgap and Hall effect of Sn1-xSbxS nanocrystals
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 103
學期 2
出版年 104
研究生(中文) 林凱翔
研究生(英文) Kai-Xiang Lin
學號 N56021501
學位類別 碩士
語文別 中文
論文頁數 78頁
口試委員 指導教授-林文台
口試委員-蔡文達
口試委員-方炎坤
口試委員-朱聖緣
口試委員-李明逵
中文關鍵字 摻雜Sb的SnS奈米晶  太陽能材料  電性  光學能隙 
英文關鍵字 Sb-doped SnS nanocrystals  solar energy materials  electrical properties  optical bandgap 
學科別分類
中文摘要 本研究以高壓釜在180℃合成摻雜Sb的單一SnS相奈米晶,並探討其電性及光學性質。Sb於SnS晶體中的固溶度約為7 at%。SnS試樣在Sb濃度低於5 at%時仍為p型,當濃度達7 at%時便轉換為n型。隨著SnS中Sb摻雜濃度的上升,能隙值由1.27 eV增加至1.37 eV。目前的研究顯示,有潛力製造具能隙調控的SnS/SnS:Sb之p-n同質接面,使其應用在太陽能電池。
英文摘要 The electrical and optical properties of Sb-doped SnS nanocrystals with single phase synthesized in an autoclave at 180℃ were explored. The substitution solubility of Sb in SnS is about 7 at%. The samples with the Sb concentration below 5 at% remain p-type, while those with the Sb concentration at 7 at% convert to the n-type nature. The bandgap of Sb-doped SnS increases from 1.27 to 1.37 eV with increasing the Sb concentration. The present study reveals that it may be promising to fabricate the SnS/SnS:Sb p-n homojunction with the tunable bandgap for applications in solar cell devices.
論文目次 中文摘要 I
Extended Abstract II
致謝 VII
目錄 VIII
表目錄 X
圖目錄 XI
第一章 引言 1
第二章 文獻回顧 4
2.1太陽能電池之原理 4
2.1.1光伏特效應(Photovoltaic effect) 4
2.1.2光傳導效應(Photoconductive effect) 5
2.2太陽能材料說明 5
2.2.1太陽能電池材料應具備的特性 5
2.2.2太陽能電池的類別[5] 6
2.3材料的可調控能隙性質介紹 9
2.3.1材料的可調控能隙性質文獻回顧 9
2.3.2 SnS奈米晶的合成法與特性簡介 11
2.3.3藉由控制尺寸調控SnS能隙 12
2.3.4藉由元素摻雜調控SnS能隙 14
2.4研究動機 16
第三章 實驗步驟與方法 19
3.1 液相合成在高壓釜(autoclave)中合成Sn1-xSbxS奈米晶 19
3.2 材料特性分析 20
3.2.1 X光繞射儀(X-ray Diffractometer)[67,68] 20
3.2.2 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) [67] 22
3.2.3 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) [67,69] 24
3.2.4 X光能量散佈分析儀(Energy Dispersive X-ray Spectrometer, EDS) [67] 25
3.2.5 紫外/可見光(UV-vis)光譜儀[70-74] 27
3.2.6 化學分析電子光譜儀(Electron Spectroscopy for Chemical Analysis, ESCA)[75] 28
3.2.7 霍爾效應分析儀 (Hall Effect Analyzer )[76,77] 30
第四章 結果與討論 32
4.1液相合成於高壓釜合成SnS與Sn1-xSbxS奈米晶 32
4.2 SnS和Sn1-xSbxS奈米晶微結構 33
4.3 SnS與Sn1-xSbxS奈米晶之光學性質 35
4.4 Sb摻雜對Sn1-xSbxS奈米晶之電性影響 36
第五章 結論 38
參考文獻 39
附錄 73
JCPDS Cards No. 00-039-0354 (SnS) 73
JCPDS Cards No. 00-026-1481 (Si) 74
霍爾量測電性數據 (SnS),電流:100 μA 75
霍爾量測電性數據 (Sn0.94Sb0.06S) ,電流:2.00 μA 76
霍爾量測電性數據 (Sn0.90Sb0.10S) ,電流:0.15 μA 77
霍爾量測電性數據 (Sn0.86Sb0.14S) ,電流:0.05 μA 78
參考文獻 [1] 郭博堯, "全球化石能源危機時代與我國所面臨挑戰," 財團法人國家政策研究 基金會, 2002.
[2] 賴麗蓉, "京都議定書之分析及未來發展勢," 能源季刊, vol. 28, 1998.
[3] M. Grätzel, "Photoelectrochemical cells," Nature, vol. 414, pp. 338-344, 2001.
[4] M. Grätzel, "Powering the planet," Nature, vol. 403, pp. 363, 2000.
[5] 莊嘉琛, "太陽能工程-太陽能電池篇," 台北:全華科技圖書股份有限公司, 2008.
[6] C. T. Dervos, P. D. Skafidas, J. A. Mergos, and P. Vassiliou, "p-n junction photocurrent modelling evaluation under optical and electrical excitation," Sensors, vol. 4, pp. 58-70, 2004.
[7] W. G. Adams, and R. E. Day, "The Action of Light on Selenium," Phil. Trans. R. Soc. Lond., vol. 167, pp. 313-349, 1877.
[8] R. Tena-Zaera, M. A. Ryan, A. Katty, G. Hodes, S. Bastide, and C. Levy-Clement, "Fabrication and characterization of ZnO nanowires/CdSe/CuSCN eta-solar cell," C. R. Chimie, vol. 9, pp. 717-729, 2006.
[9] A. de Vos, "Detailed balance limit of the efficiency of tandem solar cells," J. Phys. D: Appl. Phys., vol. 13, pp. 839-846, 1980.
[10] S. Chen, X. G. Gong, A. Walsh, and S. H. Wei, "Crystal and electronic band structure of Cu2ZnSnX4 (X = S and Se) photovoltaic absorbers: first-principles insights," Appl. Phys. Lett., vol. 94, pp. 041903-1-3, 2009.
[11] B. O'Regan, M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," Nature, vol. 353, pp. 737-740, 1991.
[12] J. N. Clifford, E. Palomares, M. K. Nazeeruddin, R. Thampi, M. Grätzel, and J. R. Durrant, "Multistep electron transfer processes on dye co-sensitized nanocrystalline TiO2 films," J. Am. Chem. Soc., vol. 126, pp. 5670-5671, 2004.
[13] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, "New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%," Prog. Photovolt: Res. Appl., vol. 19, pp. 894-897, 2011.
[14] V. M. Andreev, V. A. Grilikhes, V. P. Khvostikov, O. A. Khvostikova, V. D. Rumyantsev, N. A. Sadchikov, M. Z. Shvarts, "Concentrator PV modules and solar cells for TPV systems," Sol. Energ. Mat. Sol. C., vol. 84, pp. 3-17, 2004.
[15] M. Yamaguchi, T. Takamoto, K. Araki, N. Ekins-Daukes, "Multi-junction III–V solar cells: current status and future potential," Sol. Energy, vol. 79, pp. 78-85, 2005.
[16] A. Marti, G. L. Arafijo, "Limiting efficiencies for photovoltaics solar conversion in multigap systems," Sol. Energ. Mat. Sol. C., vol. 43, pp. 203-222, 1996.
[17] S. Furukawa, and T. Miyasato, "Quantum size effects on the optical band gap of microcrystalline Si:H," Phys. Rev. B, vol. 38, pp. 5726-5729, 1988.
[18] L. S. Li, J. Hu, W. Yang, and A. P. Alivisatos, "Band Gap Variation of Size- and Shape-Controlled Colloidal CdSe Quantum Rods," Nano Lett., vol. 1, pp. 349-351, 2001.
[19] J. Sharma, G. Singh, A. Thakur, G. S. S. Saini, N. Goyal, S. K. Tripathi, "Preparation and characterization of SnSe nanocrystalline thin films," J. Optoelectron. Adv. M., vol. 7, pp. 2085-2094, 2005.
[20] F. K. Shan, Y. S. Yu, "Band gap energy of pure and Al-doped ZnO thin films," J. Eur. Ceram. Soc., vol. 24, pp. 1869-1872, 2004.
[21] M. Ferhat, A. Zaoui, and R. Ahuja, "Magnetism and band gap narrowing in Cu-doped ZnO," Appl. Phys. Lett., vol. 94, pp. 142502-1-3, 2009.
[22] Alamgir, W. Khan, S. Ahmad, M. M. Hassan, A. H. Naqvi, "Structural phase analysis, band gap tuning and fluorescence properties of Co doped TiO2 nanoparticles," Opt. Mater., vol. 38, pp. 278-285, 2014.
[23] P. Sinsermsuksakul, R. Chakraborty, S. B. Kim, S. M. Heald, T. Buonassisi, and R. G. Gordon, "Antimony-Doped Tin(Ⅱ) Sulfide Thin Films," Chem. Mater., vol. 24, pp. 4556-4562, 2012.
[24] P. A. Fernandes, P. M. P. Salomé, A. F. da Cunha, "Study of polycrystalline Cu2ZnSnS4 films by Raman scattering," J. Alloys Compd., vol. 509, pp. 7600-7606, 2011.
[25] S. H. Chaki, M. D. Chaudhary, M. P. Deshpande, "Effect of indium and antimony doping in SnS single crystals," Mater. Res. Bull., vol. 63 , pp. 173-180, 2015.
[26] I. Lefebvre, M. A. Szymanski, J. Olivier-Fourcade, and J. C. Jumas, "Electronic structure of tin monochalcogenides from SnO to SnTe," Phys. Rev. B, vol. 58, pp. 1896-1906, 1998.
[27] H. Safak, M. Merdan, O. F. Yuksel, "Dispersion analysis of SnS and SnSe," Turk. J. Phys., vol. 26, pp. 341-347, 2002.
[28] E. Guneri, C. Ulutas, F. Kirmizigul, G. Altindemir, F. Gode, C. Gumus, "Effect of deposition time on structural, electrical, and optical properties of SnS thin films deposited by chemical bath deposition," Appl. Surf. Sci., vol. 257, pp. 1189-1195, 2010.
[29] N. R. Mathews, H. B. M. Anaya, M. A. Cortes-Jacome, C. Angeles-Chavez, J. A. Toledo-Antonio, "Tin Sulfide Thin Films by Pulse Electrodeposition: Structural, Morphological, and Optical Properties," J. Electrochem. Soc., vol. 157, pp. H337-H341, 2010.
[30] P. Sinsermsuksakul, J. Heo, W. Noh, A. H. Hock, and R. G. Gordon, "Atomic Layer Deposition of Tin Monosulfide Thin Films," Adv. Energy Mater., vol. 1, pp. 1116-1125, 2011.
[31] M. Ichimura, K. Takeuchi, Y. Ono, E. Arai, "Electrochemical deposition of SnS thin films," Thin Solid Films, vol. 361-362, pp. 98-101, 2000.
[32] H. Zhu, D. Yang, H. Zhang, "Hydrothermal synthesis, characterization and properties of SnS nanoflowers," Mater. Lett., vol. 60, pp. 2686-2689, 2006.
[33] D. S. Koktysh, J. R. McBride, S. J. Rosenthal, "Synthesis of SnS nanocrystals by the solvothermal decomposition of a single source precursor," Nanoscale Res. Lett., vol. 2, pp. 144-148, 2007.
[34] B. Ghosh, M. Das, P. Banerjee, S. Das, "Fabrication and optical properties of SnS thin films by SILAR method," Appl. Surf. Sci., vol. 254, pp. 6436-6440, 2008.
[35] H. Li, J. Ji, X. Zheng, Y. Ma, Z. Jin, H. Ji, "Preparation of SnS quantum dots for solar cells application by an in-situ solution chemical reaction process," Mat. Sci. Semicon. Proc., vol. 36, pp. 65-70, 2015.
[36] A. A. Shama, H. M. Zeyada, "Electronic dielectric constants of thermally evaporated SnS thin films," Opt. Mater., vol. 24, pp. 555-561, 2003.
[37] A. Tanusevski, "Optical and photoelectric properties of SnS thin films prepared by chemical bath deposition," Semicond. Sci. Technol., vol. 18, pp. 501-505, 2003.
[38] M. Devika, N. K. Reddy, K. Ramesh, K. R. Gunasekhar, E. S. R. Gopal, and K. T. R. Reddy, "Influence of annealing on physical properties of evaporated SnS films," Semicond. Sci. Technol., vol. 21, pp. 1125-1131, 2006.
[39] S. Sohila, M. Rajalakshmi, C. Ghosh, A. K. Arora, C. Muthamizhchelvan, "Optical and Raman scattering studies on SnS nanoparticles," J. Alloys Compd., vol. 509, pp. 5843-5847, 2011.
[40] M. Devika, N. K. Reddy, K. Ramesh, K. R. Gunasekhar, E. S. R. Gopal, K. T. R. Reddy, "Low Resistive Micrometer-Thick SnS:Ag Films for Optoelectronic Applications," J. Electrochem. Soc., vol. 153, pp. G727-G733, 2006.
[41] S. Zhang, S. Cheng, "Thermally evaporated SnS: Cu thin films for solar cells," Micro. Nano. Lett,. vol. 6, pp. 559-562, 2011.
[42] H. Wei, Y. Su, S. Chen, Y. Lin, Z. Yang, X. Chen, and Y. Zhang, "Novel SnSxSe1-x nanocrystals with tunable band gap: experimental and first-principles calculations," J. Mater. Chem., vol. 21, pp. 12605-12608, 2011.
[43] K. S. Kumar, C. Manoharan, S. Dhanapandian, A. G. Manohari, "Effect of Sb dopant on the structural, optical and electrical properties of SnS thin films by spray pyrolysis technique," Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., vol. 115, pp. 840-844, 2013.
[44] T. Minami, T. Kakumu, Y. Takeda, S. Takata, "Highly transparent and conductive ZnO-In2O 3 thin films prepared by d.c. magnetron sputtering," Thin Solid Films, vol. 290-291, pp. 1-5, 1996.
[45] H. Gómez-Pozos, A. Maldonado, M. de la L. Olvera, "Effect of the [Al/Zn] ratio in the starting solution and deposition temperature on the physical properties of sprayed ZnO:Al thin films," Mater. Lett., vol. 61, pp. 1460-1464, 2007.
[46] A. G. Manohari, S. Dhanapandian, C. Manoharan, K. S. Kumar, T. Mahalingam, "Effect of doping concentration on the properties of bismuth doped tin sulfide thin films prepared by spray pyrolysis," Mat. Sci. Semicon. Proc., vol. 17, pp. 138-142, 2014.
[47] K. S. Kumar, C. Manoharan, S. Dhanapandian, A. G. Manohari, T. Mahalingam, "Effect of indium incorporation on properties of SnS thin films prepared by spray pyrolysis," OPTIK, vol. 125, pp. 3996-4000, 2014.
[48] M. Gunasekaran, M. Ichimura, "Photovoltaic cells based on pulsed electrochemically deposited SnS and photochemically deposited CdS and Cd1− xZnxS," Sol. Energy Mater. Sol. Cells, vol. 91, pp. 774-778, 2007.
[49] B. Ghosh, M. Das, P. Banerjee, and S. Das, "Fabrication of the SnS/ZnO heterojunction for PV applications using electrodeposited ZnO films," Semicond. Sci. Technol., vol. 24, 025024-1-7, 2009.
[50] J. B. Johnson, H. Jones, B. S. Latham, J. D. Parker, R. D. Engelken, C. Barber, "Optimization of photoconductivity in vacuum-evaporated tin sulfide thin films, " Semicond. Sci. Technol., vol. 14, pp. 501-507, 1999.
[51] T. Jiang, G. A. Ozin, A. Verma, R. L. Bedard, "Adsorption and sensing properties of microporous layered tin sulfide materials," J. Mater. Chem., vol. 8, pp. 1649-1656, 1998.
[52] A. J. Biacchi, D. D. Vaughn, and R. E. Schaak, "Synthesis and Crystallographic Analysis of Shape-Controlled SnS Nanocrystal Photocatalysts: Evidence for a Pseudotetragonal Structural Modification," J. Am. Chem. Soc., vol. 135, pp. 11634-11644, 2013.
[53] N. K. Reddy, K. Ramesh, R. Ganesan, K. T. R. Reddy, K. R. Gunasekhar, E. S. R. Gopal, "Synthesis and characterisation of co-evaporated tin sulphide thin films," Appl. Phys. A, vol. 83, pp. 133-138, 2006.
[54] M. Parenteau, C. Carlone, “Influence of temperature and pressure on the electronic transitions in SnS and SnSe semiconductors,” Phys. Rev. B, vol. 41, pp. 5227-5234, 1990.
[55] A. R. H. F. Ettema, R. A. de Groot, C. Hass, and T. S. Turner, "Electronic structure of SnS deduced from photoelectron spectra and band-structure calculations," Phys. Rev. B, vol. 46, pp. 7363-7373, 1992.
[56] J. Ning, K. Men, G. Xiao, L. Wang, Q. Dai, B. Zou, B. Liu, G. Zou, "Facile synthesis of IV–VI SnS nanocrystals with shape and size control: Nanoparticles, nanoflowers and amorphous nanosheets," Nanoscale, vol. 2, pp. 1699-1703, 2010.
[57] P. Jain, P. Arun, "Influence of grain size on the band-gap of annealed SnS thin films," Thin Solid Films, vol. 548, pp. 241-246, 2013.
[58] P. D. Antunez, J. J. Buckley, R. L. Brutchey, "Tin and germanium monochalcogenide IV–VI semiconductor nanocrystals for use in solar cells," Nanoscale, vol. 3, pp. 2399-2411, 2011.
[59] Y. Zhang, J. Lu, S. Shen, H. Xu, and Q. Wang, "Ultralarge single crystal SnS rectangular nanosheets," Chem. Commun., vol. 47, pp. 5226-5228, 2011.
[60] M. Sugiyama, K. T. R. Reddy, N. Revathi, Y. Shimamoto, Y. Murata, "Band offset of SnS solar cell structure measured by X-ray photoelectron spectroscopy," Thin Solid Films, vol. 519, pp. 7429-7431, 2011.
[61] Y. H. Ge, Y. Y. Guo, W. M. Shi, Y. H. Qiu, G. P. Wei, "Influence of In-doping on resistivity of chemical bath deposited SnS films," J. Shanghai Univ., vol. 11, pp. 403-406, 2007.
[62] Y. Y. Guo, W. M. Shi, G. P. Wei, Y. H. Qiu, Y. B. Xia, "Electrical properties of doped SnS thin films prepared by vacuum evaporation," J. Funct. Mater. Devic., vol. 13, pp. 651-654, 2007.
[63] G. Gordillo, M. Botero, J. S. Oyola, "Synthesis and study of optical and structural properties of thin films based on new photovoltaic materials," Microelectron. J., vol. 39, pp. 1351-1353, 2008.
[64] A. Akkari, M. Reghima, C. Guasch, N. Kamoun-Turki, "Effect of copper doping on physical properties of nanocrystallized SnS zinc blend thin films grown by chemical bath deposition," J. Mater. Sci., vol. 47, pp. 1365-1371, 2012.
[65] Y. Yongli, C. Shuying, "Preparation of SnS:Ag thin films by pulse electrodeposition," J. Semicond., vol. 29, pp.2322-2325, 2008.
[66] A. Dussan, F. Mesa, G. Gordillo, "Effect of substitution of Sn for Bi on structural and electrical transport properties of SnS thin films," J. Mater. Sci., vol. 45, pp. 2403-2407, 2010.
[67] 汪建民等人, "材料分析," 中國材料科學學會, 1998.
[68] 趙傑, "材料科學基礎," 大連理工大學出版社, 2010.
[69] 朱琳, "掃描電子顯微鏡及其在材料科學中的應用," 吉林化工學院學報, vol. 24, pp. 81-84, 2007.
[70] R. L. Weiher, and R. P. Ley, "Optical Properties of Indium Oxide," J. Appl. Phys., vol. 37, pp. 299-302, 1966.
[71] D. D. Vaughn, R. J. Patel, M. A. Hickner, and R. E. Schaak, "Single-Crystal Colloidal Nanosheets of GeS and GeSe," J. Am. Chem. Soc., vol. 132, pp. 15170-15172, 2010.
[72] F. Ye, A. Ohmori, "The photocatalytic activity and photo-absorption of plasma sprayed TiO2–Fe3O4 binary oxide coatings," Surf. Coa. Technol., vol. 160, pp. 62-67, 2002.
[73] Y. S. Liu, W. Q. Luo, R. F. Li, G. K. Liu, M. R. Antonio, and X. Y. Chen, "Optical spectroscopy of Eu3+ doped ZnO nanocrystals," J. Phys. Chem. C, vol. 112, pp. 686-694, 2008.
[74] D. G. Barton, M. Shtein, R. D. Wilson, S. L. Soled, and E. Iglesia, "Structure and Electronic Properties of Solid Acids Based on Tungsten Oxide Nanostructures," J. Phys. Chem. B, vol. 103, pp. 630-640, 1999.
[75] J. C. Vickerman, and I. S. Gilmore, "Surface analysis: the principal techniques," Wiley Online Library, 2009.
[76] L. J. van der Pauw, "A method of measuring specific resistivity and Hall effect of discs of arbitrary shape," Philips Res. Rep., vol. 13, pp. 1-9, 1958.
[77] E. H. Hall, "On a New Action of the Magnet on Electric Currents," Am. J. Math., vol. 2, pp. 287-292, 1879.
[78] Y. Liu, D. Hou, G. Wang, "Synthesis and characterization of SnS nanowires in cetyltrimethylammoniumbromide (CTAB) aqueous solution," Chem. Phys. Lett., vol. 379, pp. 67-73, 2003.
[79] D. W. Zeng, C. S. Xie, B. L. Zhu, W. L. Song, "Characteristics of Sb2O3 nanoparticles synthesized from antimony by vapor condensation method," Mater. Lett., vol. 58, pp. 312-315, 2004.
[80] D. W. Zeng, C. S. Xie, B. L. Zhu, W. L. Song, A. H. Wang, "Synthesis and characteristics of Sb-doped ZnO nanoparticles," Mater. Sci. Eng. B, vol. 104, pp. 68-72, 2003.
[81] V. P. Zakaznova-Herzog, S. L. Harmer, H. W. Nesbitt, G. M. Bancroft, R. Flemming, A. R. Pratt, "High resolution XPS study of the large-band-gap semiconductor stibnite (Sb2S3): Structural contributions and surface reconstruction, " Surf. Sci., vol. 600, pp. 348-356, 2006.
[82] J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, "Handbook of X-ray photoelectron spectroscopy," Perkin-Elmer Corp., 1992
[83] L. H. Ahrens, "The use of ionization potentials Part 1. Ionic radii of the elements," Geochim. Cosmochim. Ac., vol. 2, pp. 155-169, 1952.
[84] W. T. Lin, C. Y. Ho, Y. M. Wang, K. H. Wu, and W. Y. Chou, "Tunable growth of (GaxIn1-x)2O3 nanowires by water vapor," J. Phys. Chem. Solids, vol. 73, pp. 948-952, 2012.
[85] V. I. Vasyltsiv, Y. I. Rym, and Y. M. Zakharko, "Optical Absorption and Photoconductivity at the Band Edge of β-Ga2-xInxO3," Phys. Stat. Sol. (b), vol. 195, pp. 653-658, 1996.
[86] A. Kudo, I. Mikami, "Photocatalytic activities and photophysical properties of Ga2-xInxO3 solid solution," J. Chem. Soc., Faraday Trans., vol. 94, pp. 2929-2932, 1998.
[87] L. Binet, G. Gauthier, C. Vigreux, and D. Gourier, "Electron magnetic resonance and optical properties of Ga2-2xIn2xO3 solid solutions," J. Phys. Chem. Solids, vol. 60, pp. 1755-1762, 1999.
[88] I. Lj. Validžić, N. D. Abazović, M. Mitrić, "Growth of Sb2S3 nanowires synthesized by colloidal process and self-assembly of amorphous spherical Sb2S3 nanoparticles in wires formation," Met. Mater. Int., vol. 18, pp. 989-995, 2012.
[89] J. Vidal, S. Lany, M. d’Avezac, A. Zunger, A. Zakutayev, J. Francis, and J. Tate, "Band-structure, optical properties, and defect physics of the photovoltaic semiconductor SnS," Appl. Phys. Lett., vol. 100, pp. 032104-1-4, 2012.
[90] K. T. R. Reddy, N. K. Reddy, R. W. Miles, "Photovoltaic properties of SnS based solar cells," Sol. Energy Mater. Sol. Cells, vol. 90, pp. 3041-3046, 2006.
[91] W. Albers, C. Haas, H. J. Vink, and J. D. Wasscher, "Investigations on SnS," J. Appl. Phys., vol. 32, pp. 2220-2225, 1961.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-07-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-07-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw