進階搜尋


 
系統識別號 U0026-1607201414384700
論文名稱(中文) 泛素特異性胜肽酶二十四在DNA受損時所扮演角色之探討
論文名稱(英文) To address the role of ubiquitin-specific peptidase 24 in DNA damage
校院名稱 成功大學
系所名稱(中) 藥理學研究所
系所名稱(英) Department of Pharmacology
學年度 102
學期 2
出版年 103
研究生(中文) 洪偉哲
研究生(英文) Wei-Che Hung
學號 S26014073
學位類別 碩士
語文別 中文
論文頁數 64頁
口試委員 指導教授-洪建中
口試委員-張文昌
口試委員-呂增宏
中文關鍵字 泛素特異性胜肽酶24  轉錄因子E2F  RAD51  DNA 修復  抗藥性 
英文關鍵字 USP24  E2F  RAD51  DNA repair  drug resistance 
學科別分類
中文摘要 在一般的狀況下,細胞可能會遭遇到許多來自環境的壓力,包含放射線或是氧化壓力,導致DNA產生受損。DNA的受損可能導致細胞凋亡或是癌化的產生,因此細胞內部有許多種類的DNA修復蛋白以及訊息傳遞路徑在進行DNA的修復。然而,許多重要的DNA修復蛋白,例如RAD51也被發現與癌細胞的抗藥性產生有著重要的關聯性。所以研究細胞如何調控DNA修復蛋白的基因表達對於維持基因體穩定性以及避免癌症抗藥性的產生是一個重要的議題。我們實驗室先前的研究發現在肺腺癌細胞株A549當中抑制泛素特異性胜肽酶USP24的基因表達會顯著增加RAD51這個在同源重組修復(homologous recombination repair; HR)當中扮演重要角色的蛋白質的表現。因此本篇研究想要釐清USP24是否可以藉由影響RAD51基因表達進而影響同源重組修復。我們發現在A549細胞當中抑制USP24的表達會促進RAD51的基因表達,然而在H1299細胞當中則無。經過文獻搜尋這兩細胞株的基因背景差異,我們懷疑抑癌基因p53有可能參與在USP24調控RAD51的訊息傳遞路徑當中。但是實驗結果顯示p53並沒有參與在USP24調控RAD51的訊息傳遞路徑當中。所以我們使用不同片段的RAD51啟動子透過報導基因測試(reporter assay)想要藉此找出USP24所影響的轉錄因子(transcription factor)可能結合在RAD51的啟動子上的位點。我們發現RAD51的啟動子上有一E2F轉錄因子家族結合的位點對於USP24調控RAD51基因表達扮演重要的角色。接著我們探討USP24是否可以透過調控RAD51的基因表達進而影響同源重組修復的能力與影響癌細胞抗藥性的產生。我們發現USP24會降低RAD51在DNA斷裂處形成foci的能力。同源重組修復試驗也發現USP24可以透過影響RAD51的表達進而降低同源重組修復的能力。最終,我們探討USP24是否可以藉由影響RAD51基因表達而影響癌細胞的抗藥性產生。透過細胞週期及細胞凋亡比例的分析與群落形成能力試驗(colony formation assay),我們證實USP24可以藉由調控RAD51基因而增加癌細胞的抗藥性。總結我們的實驗結果發現,USP24可以藉由E2F家族的轉錄因子去調控RAD51的基因表達,更進一步影響同源重組修復的能力以及癌細胞抗藥性的產生,希望這個新發現能對於癌症治療產生新的策略。
英文摘要 SUMMARY
Recent studies have found many deubiquitinating enzymes play an important role in
cancer progression. Previously, we found mRNA expression of RAD51, an important
homologous recombination factor, is dramatically increased in ubiquitin-specific peptidase
24 (USP24) knockdown A549 cells. DNA damage may cause nucleotide exchange and
result in genetic mutation or genomic instability. In addition, DNA repair ability is also
important for cancer cell drug resistance; therefore, understanding the molecular
mechanism by which DNA repair is regulated may provide us an insightful view of cellular
response to DNA damage. We found RAD51 gene expression is upregulated in USP24
knockdown A549 cells but not H1299 cells. Previous study demonstrated that p53 acts as a
repressor of RAD51 gene; interestingly, genotype of p53 in A549 and H1299 are wild-type
and null, respectively. Thus we confirmed the role of p53 in USP24 and RAD51 pathway
using overexpression and knockdown strategy in H1299 and A549 cells. However, the
result indicated p53 is not involved in the regulation of RAD51 by USP24. Next, we used
different truncated RAD51 promoter to confirm the transcription factors which are
regulated by USP24. Our data suggested E2F4 may be a critical regulator of
USP24-RAD51 pathway. We also examined the homologous recombination repair activity
and cell survival in USP24 knockdown cells treated with DNA damage drug camptothecin
(CPT). Our data indicated homologous recombination repair activity and drug resistance
are both increased in USP24 knockdown cells. In conclusion, we found USP24 inhibits
RAD51 gene expression via E2F4 to affect the homologous recombination repair activity
and cancer cell drug resistance.
INTRODUCTION
When cells suffered from environmental stresses, such as UV irradiation and some chemical reagents, or from internal stress such as faults in DNA replication, DNA damage occurs. DNA damage may cause nucleotide exchange and result in genetic mutation or genomic instability. DNA damage may lead to apoptosis or tumorigenesis; therefore, understanding the underlying mechanism by which DNA repair is regulated may provide us an insightful view of cellular response to DNA damage.
Ubiquitin-Specific Peptidase 24 (USP24), a novel and less studied ubiquitin specific peptidase, can regulate protein stability by modifying protein ubiquitination. Recently, we found that RAD51 mRNA and protein level were elevated in USP24 knockdown lung adenocarcinoma A549 cell line.
RAD51 is an important protein for homologous recombination that accumulates at damage site of DNA and helps strand invasion during DNA repair. However, RAD51 also plays an important role in the development of drug resistance in a number of cancer types like colorectal cancer and non-small cell lung cancer. As described above, how RAD51 gene expression is controlled appropriately is an important issue in cancer biology.
In this study, we found RAD51 gene expression is upregulated in USP24 knockdown A549 cells but not H1299 cells. Previous study demonstrated that p53 acts as a repressor of RAD51 gene; interestingly, genotype of p53 in A549 and H1299 are wild-type and null, respectively. Thus, we investigated the role of p53 in this process. We found ubiqutinated p53 protein is increased in USP24 knockdown A549 cells and RAD51 protein level is similar in both USP24 and p53 knockdown cells. Also, we confirmed p53 overexpression could not rescue RAD51 protein level in USP24 knockdown H1299 cells. These data indicated that p53 is not involved in USP24-regulated RAD51 gene expression. Next, we used different truncated RAD51 promoter to search the transcription factors regulated by USP24. Our data suggested that E2F4 may be a critical regulator in the USP24-RAD51 pathway. We also examined the homologous recombination repair activity and cell survival in USP24 knockdown cells treated with DNA damage drug camptothecin (CPT). These data indicated homologous recombination repair activity and drug resistance are both increased in USP24 knockdown cells. In conclusion, we suggested that USP24 inhibits RAD51 gene expression via E2F4 to affect the homologous recombination repair activity and cancer cell drug resistance.

MATERIALS AND METHODS
All experiments about USP24 knockdown cells were done by infection of cells by lentivirus containing USP24 shRNA plasmid for 24 h and the medium were changed to fresh medium, and cells were harvested after 72 h. RAD51 gene expression was analyzed by reporter assay, RT-PCR, and Western blot analysis. RAD51 foci formation was stained by immunofluorescent staining and pictured by fluorescence microscopy. Cell cycle and annexin V- propidium iodide staining were analyzed by flow cytometry. Cell survival-related functional assays were carried out after treatment with CPT for 24 h.

RESULTS AND DISCUSSION
Rad51 gene expression was increased in USP24 knockdown A549 cells. Previous study revealed that p53 represses Rad51 gene expression in breast cancer, so p53 may play a role in USP24-mediated down-regulation of RAD51 expression. However, our results revealed that overexpression GFP-p53 in H1299 cells did not change the USP24-regulated RAD51 gene expression. Also, p53 protein level was not changed in USP24-knockdown A549 cells. In addition, we found that knockdown of p53 can reduce Rad51 gene expression, but cannot abolish the up-regulation of Rad51 by USP24 knockdown, suggesting that p53 positively regulates Rad51 expression, but is not involved in USP24-regulated Rad51 expression. Next, we used different truncated RAD51 promoter to search the transcription factors regulated by USP24. Our data indicated E2F may be a critical regulator in USP24-RAD51 pathway. Rad51 foci formation was increased in USP24 knockdown U2OS cells under CPT treatment when compared to that of control cells. The effect of USP24 in homologous recombination (HR) activity was studied by HR assay and our result indicated that USP24 knockdown can increase DNA damage repair activity through increasing Rad51 expression. We also checked apoptotic cell death in control and USP24 knockdown cells treated with CPT. We were found USP24 knockdown cells were more resistant to DNA damage drug. Finally, cell survival was increased in USP24 knockdown U2OS cells treated with CPT. These data indicated that USP24 regulates HR activity through modulating RAD51 gene expression. We also interested in how USP24 regulates RAD51 gene expression. So, we investigated Rad51 promoter activity by using different truncated forms of RAD51 promoter and identified several potential transcription factor binding sites within human RAD51 promoter. The involvement of USP24-regulated transcription factors such as E2F4 will be clarified by gene knockdown via shRNA.

CONCLUSION
In conclusion, in this study we found USP24 regulates RAD51 gene expression by affecting E2F, and this signaling pathway is important for homologous recombination activity and cancer cell drug resistance. This study uncovers the role of USP24 in DNA damage repair activity via modulation of RAD51 expression, which might be important for the regulation of genomic stability and tumorigenesis.
論文目次 中文摘要..........I
英文摘要..........III
目錄.........Vll l
圖目錄.........X
簡寫表......... . .Xl
第一章 序論.........1
第一節 泛素修飾. . ..1
第二節 去泛素酶...... . . . 2
第三節DNA 修補途徑.........3
第四節RAD51 在生理中的重要性.......6
第五節 研究動機....... .. . . . . . . . . . . 8
第二章 實驗材料.......9
第三章 實驗方法.......12
第四章 實驗結果.......27
第一節 在肺癌細胞株A549 細胞中抑制USP24 會促進RAD51 基因
表達,然而在H1299 細胞當中則無作用.. . . . . . . . . . . . . .27
第二節 抑癌基因p53 並沒有參與在USP24 調控RAD51 基因表達的
訊息傳遞路徑. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8
第三節 利用RAD51 啟動子來尋找USP24 所調控之轉錄因子結合位進而找出USP24 可能調控之轉錄因子...30
第四節USP24 藉由影響RAD51 基因表達進而影響同源重組修復........ . . . . 3 1
第五節USP24 藉由影響同源重組修復進而影響癌細胞抗藥性產生.......32
第五章 結果討論........34
第一節USP24 對於抑癌基因p53 在肺癌當中的影響 ...34
第二節 USP24 可能藉由影響其他轉錄因子進而影響同源重組修復中的重要蛋白或是直接與同源重組修復中的重要蛋白有交互作用而影響同源重組修復之能力. . . . 3 5
第三節USP24 可能藉由影響E2F4 進而影響RAD51 基因表達與肺癌發展...... .36
第六章 參考文獻........38
參考文獻 Abe, H., Wada, M., Kohno, K., and Kuwano, M. (1994). Altered drug sensitivities to anticancer agents in radiation-sensitive DNA repair deficient yeast mutants. Anticancer research 14, 1807-1810.
Arias-Lopez, C., Lazaro-Trueba, I., Kerr, P., Lord, C.J., Dexter, T., Iravani, M., Ashworth, A., and Silva, A. (2006). p53 modulates homologous recombination by transcriptional regulation of the RAD51 gene. EMBO reports 7, 219-224.
Bindra, R.S., and Glazer, P.M. (2007). Repression of RAD51 gene expression by E2F4/p130 complexes in hypoxia. Oncogene 26, 2048-2057.
Bindra, R.S., Schaffer, P.J., Meng, A., Woo, J., Maseide, K., Roth, M.E., Lizardi, P., Hedley, D.W., Bristow, R.G., and Glazer, P.M. (2004). Down-regulation of Rad51 and decreased homologous recombination in hypoxic cancer cells. Molecular and cellular biology 24, 8504-8518.
Brown, K.C., Witte, T.R., Hardman, W.E., Luo, H., Chen, Y.C., Carpenter, A.B., Lau, J.K., and Dasgupta, P. (2010). Capsaicin displays anti-proliferative activity against human small cell lung cancer in cell culture and nude mice models via the E2F pathway. PloS one 5, e10243.
Caldecott, K.W. (2008). Single-strand break repair and genetic disease. Nature reviews Genetics 9, 619-631.
Caldecott, K.W., Aoufouchi, S., Johnson, P., and Shall, S. (1996). XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly (ADP-ribose) polymerase, and DNA ligase III is a novel molecular 'nick-sensor' in vitro. Nucleic acids research 24, 4387-4394.
Canman, C.E., Chen, C.Y., Lee, M.H., and Kastan, M.B. (1994). DNA damage responses: p53 induction, cell cycle perturbations, and apoptosis. Cold Spring Harbor symposia on quantitative biology 59, 277-286.
Cui, X., Zhang, J., Du, R., Wang, L., Archacki, S., Zhang, Y., Yuan, M., Ke, T., Li, H., Li, D., et al. (2012). HSF4 is involved in DNA damage repair through regulation of Rad51. Biochimica et biophysica acta 1822, 1308-1315.
D'Amours, D., Desnoyers, S., D'Silva, I., and Poirier, G.G. (1999). Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. The Biochemical journal 342 ( Pt 2), 249-268.
Daviet, L., and Colland, F. (2008). Targeting ubiquitin specific proteases for drug discovery. Biochimie 90, 270-283.
Du, L.Q., Wang, Y., Wang, H., Cao, J., Liu, Q., and Fan, F.Y. (2011). Knockdown of Rad51 expression induces radiation- and chemo-sensitivity in osteosarcoma cells. Medical oncology 28, 1481-1487.
Durkacz, B.W., Omidiji, O., Gray, D.A., and Shall, S. (1980). (ADP-ribose)n participates in DNA excision repair. Nature 283, 593-596.
Fang, S., Jensen, J.P., Ludwig, R.L., Vousden, K.H., and Weissman, A.M. (2000). Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem 275, 8945-8951.
Fang, Z.H., and Han, Z.C. (2006). The transcription factor E2F: a crucial switch in the control of homeostasis and tumorigenesis. Histology and histopathology 21, 403-413.
Gorgoulis, V.G., Vassiliou, L.V., Karakaidos, P., Zacharatos, P., Kotsinas, A., Liloglou, T., Venere, M., Ditullio, R.A., Jr., Kastrinakis, N.G., Levy, B., et al. (2005). Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434, 907-913.
Hannay, J.A., Liu, J., Zhu, Q.S., Bolshakov, S.V., Li, L., Pisters, P.W., Lazar, A.J., Yu, D., Pollock, R.E., and Lev, D. (2007). Rad51 overexpression contributes to chemoresistance in human soft tissue sarcoma cells: a role for p53/activator protein 2 transcriptional regulation. Molecular cancer therapeutics 6, 1650-1660.
Hochstrasser, M. (2000). Evolution and function of ubiquitin-like protein-conjugation systems. Nat Cell Biol 2, E153-E157.
Hochstrasser, M. (2009). Origin and function of ubiquitin-like proteins. Nature 458, 422-429.
Hu, J., Wang, N., and Wang, Y.J. (2013). XRCC3 and RAD51 expression are associated with clinical factors in breast cancer. PloS one 8, e72104.
Kass, E.M., and Jasin, M. (2010). Collaboration and competition between DNA double-strand break repair pathways. FEBS letters 584, 3703-3708.
Kerscher, O., Felberbaum, R., and Hochstrasser, M. (2006). Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Bi 22, 159-180.
Komander, D., Clague, M.J., and Urbe, S. (2009). Breaking the chains: structure and function of the deubiquitinases. Nature reviews Molecular cell biology 10, 550-563.
Laine, A., Topisirovic, I., Zhai, D., Reed, J.C., Borden, K.L., and Ronai, Z. (2006). Regulation of p53 localization and activity by Ubc13. Molecular and cellular biology 26, 8901-8913.
Lee, J.T., and Gu, W. (2010). The multiple levels of regulation by p53 ubiquitination. Cell death and differentiation 17, 86-92.
Li, M., Brooks, C.L., Kon, N., and Gu, W. (2004). A dynamic role of HAUSP in the p53-Mdm2 pathway. Molecular cell 13, 879-886.
Li, M., Chen, D., Shiloh, A., Luo, J., Nikolaev, A.Y., Qin, J., and Gu, W. (2002). Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 416, 648-653.
Li, Y., Schrodi, S., Rowland, C., Tacey, K., Catanese, J., and Grupe, A. (2006). Genetic evidence for ubiquitin-specific proteases USP24 and USP40 as candidate genes for late-onset Parkinson disease. Human mutation 27, 1017-1023.
Lim, D.S., and Hasty, P. (1996). A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Molecular and cellular biology 16, 7133-7143.
Matsuoka, M., Igisu, H., and Morimoto, Y. (2003). Phosphorylation of p53 protein in A549 human pulmonary epithelial cells exposed to asbestos fibers. Environmental health perspectives 111, 509-512.
Mills, K.D., Ferguson, D.O., and Alt, F.W. (2003). The role of DNA breaks in genomic instability and tumorigenesis. Immunological reviews 194, 77-95.
Moll, U.M., and Petrenko, O. (2003). The MDM2-p53 interaction. Molecular cancer research : MCR 1, 1001-1008.
Murai, J., Yang, K., Dejsuphong, D., Hirota, K., Takeda, S., and D'Andrea, A.D. (2011). The USP1/UAF1 complex promotes double-strand break repair through homologous recombination. Molecular and cellular biology 31, 2462-2469.
Nakamura, K., Kato, A., Kobayashi, J., Yanagihara, H., Sakamoto, S., Oliveira, D.V., Shimada, M., Tauchi, H., Suzuki, H., Tashiro, S., et al. (2011). Regulation of homologous recombination by RNF20-dependent H2B ubiquitination. Molecular cell 41, 515-528.
Nogueira, A., Assis, J., Catarino, R., and Medeiros, R. (2013). DNA repair and cytotoxic drugs: the potential role of RAD51 in clinical outcome of non-small-cell lung cancer patients. Pharmacogenomics 14, 689-700.
Ogiwara, H., and Kohno, T. (2012). CBP and p300 histone acetyltransferases contribute to homologous recombination by transcriptionally activating the BRCA1 and RAD51 genes. PloS one 7, e52810.
Ohta, T., Sato, K., and Wu, W. (2011). The BRCA1 ubiquitin ligase and homologous recombination repair. FEBS letters 585, 2836-2844.
Raderschall, E., Bazarov, A., Cao, J., Lurz, R., Smith, A., Mann, W., Ropers, H.H., Sedivy, J.M., Golub, E.I., Fritz, E., et al. (2002). Formation of higher-order nuclear Rad51 structures is functionally linked to p21 expression and protection from DNA damage-induced apoptosis. Journal of cell science 115, 153-164.
Sharan, S.K., Morimatsu, M., Albrecht, U., Lim, D.S., Regel, E., Dinh, C., Sands, A., Eichele, G., Hasty, P., and Bradley, A. (1997). Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature 386, 804-810.
Shigi, N. (2012). Posttranslational Modification of Cellular Proteins by a Ubiquitin-like Protein in Bacteria. J Biol Chem 287, 17568-17577.
Smolarz, B., Makowska, M., Samulak, D., Michalska, M.M., Mojs, E., Romanowicz, H., and Wilczak, M. (2013). Association between polymorphisms of the DNA repair gene RAD51 and ovarian cancer. Polish journal of pathology : official journal of the Polish Society of Pathologists 64, 290-295.
Sonoda, E., Sasaki, M.S., Buerstedde, J.M., Bezzubova, O., Shinohara, A., Ogawa, H., Takata, M., Yamaguchi-Iwai, Y., and Takeda, S. (1998). Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. The EMBO journal 17, 598-608.
Sosinska-Mielcarek, K., Duchnowska, R., Winczura, P., Badzio, A., Majewska, H., Lakomy, J., Peksa, R., Pieczynska, B., Radecka, B., Debska, S., et al. (2013). Immunohistochemical prediction of brain metastases in patients with advanced breast cancer: the role of Rad51. Breast 22, 1178-1183.
Stevenson, L.F., Sparks, A., Allende-Vega, N., Xirodimas, D.P., Lane, D.P., and Saville, M.K. (2007). The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting Mdm2. The EMBO journal 26, 976-986.
Stone, H.R., and Morris, J.R. (2014). DNA damage emergency: cellular garbage disposal to the rescue? Oncogene 33, 805-813.
Takahashi, T., Carbone, D., Takahashi, T., Nau, M.M., Hida, T., Linnoila, I., Ueda, R., and Minna, J.D. (1992). Wild-type but not mutant p53 suppresses the growth of human lung cancer cells bearing multiple genetic lesions. Cancer research 52, 2340-2343.
Tennstedt, P., Fresow, R., Simon, R., Marx, A., Terracciano, L., Petersen, C., Sauter, G., Dikomey, E., and Borgmann, K. (2013). RAD51 overexpression is a negative prognostic marker for colorectal adenocarcinoma. International journal of cancer Journal international du cancer 132, 2118-2126.
Thompson, L.H. (2012). Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutation research 751, 158-246.
Thompson, L.H., and Schild, D. (2002). Recombinational DNA repair and human disease. Mutation research 509, 49-78.
Tsai, M.S., Kuo, Y.H., Chiu, Y.F., Su, Y.C., and Lin, Y.W. (2010). Down-regulation of Rad51 expression overcomes drug resistance to gemcitabine in human non-small-cell lung cancer cells. The Journal of pharmacology and experimental therapeutics 335, 830-840.
Vousden, K.H., and Prives, C. (2009). Blinded by the Light: The Growing Complexity of p53. Cell 137, 413-431.
Wang, K., Liu, S., Wang, J., Wu, Y., Cai, F., and Song, W. (2013). Transcriptional regulation of human USP24 gene expression by NF-kappa B. Journal of neurochemistry.
Wu, Y.R., Chen, C.M., Chen, Y.C., Chao, C.Y., Ro, L.S., Fung, H.C., Hsiao, Y.C., Hu, F.J., and Lee-Chen, G.J. (2010). Ubiquitin specific proteases USP24 and USP40 and ubiquitin thiolesterase UCHL1 polymorphisms have synergic effect on the risk of Parkinson's disease among Taiwanese. Clinica chimica acta; international journal of clinical chemistry 411, 955-958.
Xanthoulis, A., and Tiniakos, D.G. (2013). E2F transcription factors and digestive system malignancies: how much do we know? World journal of gastroenterology : WJG 19, 3189-3198.
Zhang, L., Lubin, A., Chen, H., Sun, Z., and Gong, F. (2012a). The deubiquitinating protein USP24 interacts with DDB2 and regulates DDB2 stability. Cell cycle 11, 4378-4384.
Zhang, N., Wu, X., Yang, L., Xiao, F., Zhang, H., Zhou, A., Huang, Z., and Huang, S. (2012b). FoxM1 inhibition sensitizes resistant glioblastoma cells to temozolomide by downregulating the expression of DNA-repair gene Rad51. Clinical cancer research : an official journal of the American Association for Cancer Research 18, 5961-5971.
Zhao, B., Song, W., Chen, Y.P., Huang, R., Chen, K., Cao, B., Yang, Y., and Shang, H.F. (2012). Association analysis of single-nucleotide polymorphisms of USP24 and USP40 with Parkinson's disease in the Han Chinese population. European neurology 68, 181-184.
Zilfou, J.T., and Lowe, S.W. (2009). Tumor suppressive functions of p53. Cold Spring Harbor perspectives in biology 1, a001883.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-08-04起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-08-04起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw