進階搜尋


 
系統識別號 U0026-1607201414300500
論文名稱(中文) 泛素特異性胜肽酶二十四在肺癌轉移所扮演的角色之探討
論文名稱(英文) To Characterize the Role of Ubiquitin-Specific Peptidase 24 in Lung Cancer Metastasis
校院名稱 成功大學
系所名稱(中) 藥理學研究所
系所名稱(英) Department of Pharmacology
學年度 102
學期 2
出版年 103
研究生(中文) 陳秉鑫
研究生(英文) Ping-Hsin Chen
學號 S26011067
學位類別 碩士
語文別 中文
論文頁數 93頁
口試委員 指導教授-洪建中
共同指導教授-張文昌
口試委員-呂增宏
中文關鍵字 USP24  肺癌  遠端轉移  單核苷酸多型性  RNA編輯 
英文關鍵字 USP24  Lung cancer  Metastasis  SNPs  RNA editing 
學科別分類
中文摘要 肺癌是目前全球發病率與致死率最高的癌症。肺癌的發生被認為是由於複雜的遺傳及表基因遺傳的改變所導致的一種異質性腫瘤。單核苷酸多型性 (Single nucleotide polymorphisms, SNPs) 是人類最常見的遺傳變異類型。在此項研究中,我們在肺癌中探討泛素特異性胜肽酶 24 (ubiquitin specific peptidase 24, USP24) 基因上的兩個SNPs位點,分別為rs1165222 與rs487230;而這兩個位點坐落在基因編碼區中,並且會造成蛋白質胺基酸的改變。我們在100例肺癌患者和97例正常人群中進行病例對照研究,結果顯示rs487230的SNPs可能與肺癌的惡化有關。此外,我們發現到類似RNA編輯 (RNA-Editing) 的現象。有趣的是,在肺癌的病患中,則更優於表現RNA-Editing型式的USP24。與野生型的USP24相比,RNA-Editing型式的USP24不僅能增加其蛋白質的表現量同時也提高了其對下游的影響。USP24的大量表現會降低組蛋白H3第9個離胺酸 (H3K9) 的甲基化,也能抑制H3K9甲基轉移酶Suv39H1的蛋白表現;而相應地,當抑制USP24則能大幅增加H3K9甲基化及Suv39H1的表現。而H3K9的甲基化會造成下游基因的靜默及其重要性是眾所周知的。進一步的,我們發現與腫瘤轉移相關基因, CCL5和ADAM10,其表現量在USP24靜默下皆顯著性的下降,其中是透過其啟動子區域H3K9高度甲基化所導致。我們也發現USP24的靜默也會造成Vimentin這個內皮細胞-間質細胞轉換的指標蛋白表現量下降。而在體內和體外的實驗中皆指出, USP24的靜默能夠抑制肺癌細胞的轉移活性。並且,USP24的過度表現與病人的預後情形呈現正向相關性。綜合上述,我們認為USP24可能是透過Suv39H1來降低H3K9甲基化,進而促進轉移基因的表現,促使肺癌的轉移。
英文摘要 Lung cancer, the most common cause of cancer-related death worldwide, is a heterogeneous tumor displaying a complex variety of genetic and epigenetic alterations. Single nucleotide polymorphisms (SNPs) are the most common type of human genetic variation. Herein, we have characterized two of the SNPs in Ubiquitin-Specific Peptidases 24 (USP24) gene, rs1165222 and rs487230 variants in lung cancer. Both of them are located on protein coding sequence and resulted in an amino acid change. We conducted a case-control study in a cohort of 100 lung cancer patients and 97 normal populations. The results showed that the rs487230 of SNPs might be associated with lung cancer malignancy. Moreover, the RNA editing-like phenomenon was observed. Interesting, it is preferred to express the USP24Thr226 and Val2468 protein in lung cancer patients. Compared with wild-type USP24 protein, the edited form has not only increased in its protein level but also enhanced its downstream effect. Overexpression of USP24 decreased histone H3 lysine 9 (H3K9) methylation. The protein expression of H3K9 methyltransferase, Suv39H1, was also significantly decreased. It is well known that H3K9 methylation is important for silencing gene expression. Further, we found that metastasis-related genes, CCL5 and ADAM10, were downregulated upon USP24 depletion via H3K9 hypermethylation on the promoters. Both in vivo and in vitro experiments point out that USP24 depletion inhibits cancer metastatic activity. Taken together, USP24 might facilitate lung cancer metastasis via Suv39H1-mediated decrease in H3K9 methylation and subsequent increase in metastasis-promoting genes expression.
論文目次 摘要 I
Extended Abstract II
誌謝 VII
縮寫檢索表 1
第一章 序論 4
第二章 實驗材料 13
第三章 實驗方法 20
第四章 實驗結果 45
第一節、探討在肺癌病患和對照組之間USP24單核苷酸多型性之基因型頻率分佈 45
第二節、受到高度編輯的USP24 RNA 與肺癌晚期的進展具有高度正相關 45
第三節、癌症相關之USP24編輯形式的高度表現與肺癌的高風險相關聯 46
第四節、USP24正向調控肺癌轉移活性 48
第五節、USP24透過降低Suv39H1的表現進而抑制H3K9的甲基化而增加肺癌的轉移能力 49
第六節、癌症轉移相關基因,CCL5和ADAM10,在USP24減少的情形之下其啟動子區域的組蛋白H3K9會受到高度甲基化 51
第五章 討論 53
第六章 參考文獻 59
附圖 64
附錄 90
參考文獻 Abdi, F., E. M. Bradbury, et al. (2001). Rapid characterization of DNA oligomers and genotyping of single nucleotide polymorphism using nucleotide-specific mass tags. Nucleic Acids Res 29(13): E61-61.
Araujo, A., R. Ribeiro, et al. (2007). Genetic polymorphisms of the epidermal growth factor and related receptor in non-small cell lung cancer--a review of the literature. Oncologist 12(2): 201-210.
Avesson, L. and G. Barry (2014). The emerging role of RNA and DNA editing in cancer. Biochim Biophys Acta 1845(2): 308-316.
Bannister, A. J. and T. Kouzarides (2011). Regulation of chromatin by histone modifications. Cell Res 21(3): 381-395.
Benne, R., J. Van den Burg, et al. (1986). Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 46(6): 819-826.
Bosch-Presegue, L., H. Raurell-Vila, et al. (2011). Stabilization of Suv39H1 by SirT1 is part of oxidative stress response and ensures genome protection. Mol Cell 42(2): 210-223.
Brito, J. L., B. Walker, et al. (2009). MMSET deregulation affects cell cycle progression and adhesion regulons in t(4;14) myeloma plasma cells. Haematologica 94(1): 78-86.
Burns, M. B., L. Lackey, et al. (2013). APOBEC3B is an enzymatic source of mutation in breast cancer. Nature 494(7437): 366-370.
Chaffer, C. L. and R. A. Weinberg (2011). A perspective on cancer cell metastasis. Science 331(6024): 1559-1564.
Chen, L., Y. Li, et al. (2013). Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma. Nat Med 19(2): 209-216.
Chen, Z., L. Xu, et al. (2013). Polymorphisms of microRNA sequences or binding sites and lung cancer: a meta-analysis and systematic review. PLoS One 8(4): e61008.
Chiba, T., T. Saito, et al. (2014). Histone lysine methyltransferase SUV39H1 is a potent target for epigenetic therapy of hepatocellular carcinoma. Int J Cancer.
Choi, J. E., S. H. Park, et al. (2007). Polymorphisms in the epidermal growth factor receptor gene and the risk of primary lung cancer: a case-control study. BMC Cancer 7: 199.
Dewey, F. E., S. Pan, et al. (2012). DNA sequencing: clinical applications of new DNA sequencing technologies. Circulation 125(7): 931-944.
Duffy, M. J., P. M. McGowan, et al. (2008). Cancer invasion and metastasis: changing views. J Pathol 214(3): 283-293.
Eisenberg, E., K. Adamsky, et al. (2005). Identification of RNA editing sites in the SNP database. Nucleic Acids Res 33(14): 4612-4617.
Gao, D., L. T. Vahdat, et al. (2012). Microenvironmental regulation of epithelial-mesenchymal transitions in cancer. Cancer Res 72(19): 4883-4889.
Gerber, A. P. and W. Keller (2001). RNA editing by base deamination: more enzymes, more targets, new mysteries. Trends Biochem Sci 26(6): 376-384.
Haugarvoll, K., M. Toft, et al. (2009). Fine-mapping and candidate gene investigation within the PARK10 locus. Eur J Hum Genet 17(3): 336-343.
Iizasa, H. and K. Nishikura (2009). A new function for the RNA-editing enzyme ADAR1. Nat Immunol 10(1): 16-18.
Karnoub, A. E., A. B. Dash, et al. (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162): 557-563.
Khanal, P., G. Kim, et al. (2013). Prolyl isomerase Pin1 negatively regulates the stability of SUV39H1 to promote tumorigenesis in breast cancer. FASEB J 27(11): 4606-4618.
Kirschmann, D. A., R. A. Lininger, et al. (2000). Down-regulation of HP1Hsalpha expression is associated with the metastatic phenotype in breast cancer. Cancer Res 60(13): 3359-3363.
Lee, D. Y., C. Teyssier, et al. (2005). Role of protein methylation in regulation of transcription. Endocr Rev 26(2): 147-170.
Lee, P. C., R. J. Korst, et al. (2006). Long-term survival and recurrence in patients with resected non-small cell lung cancer 1 cm or less in size. J Thorac Cardiovasc Surg 132(6): 1382-1389.
Li, Q., J. Yang, et al. (2013). Associations between single-nucleotide polymorphisms in the PI3K-PTEN-AKT-mTOR pathway and increased risk of brain metastasis in patients with non-small cell lung cancer. Clin Cancer Res 19(22): 6252-6260.
Li, Y., L. Chen, et al. (2013). Hepatocellular carcinoma: transcriptome diversity regulated by RNA editing. Int J Biochem Cell Biol 45(8): 1843-1848.
Li, Y., S. Schrodi, et al. (2006). Genetic evidence for ubiquitin-specific proteases USP24 and USP40 as candidate genes for late-onset Parkinson disease. Hum Mutat 27(10): 1017-1023.
Li, Z., L. Chen, et al. (2009). Inhibition of SUV39H1 methyltransferase activity by DBC1. J Biol Chem 284(16): 10361-10366.
Liu, Y., P. Zheng, et al. (2013). An epigenetic role for PRL-3 as a regulator of H3K9 methylation in colorectal cancer. Gut 62(4): 571-581.
Lund, A. H. and M. van Lohuizen (2004). Epigenetics and cancer. Genes Dev 18(19): 2315-2335.
Maretzky, T., K. Reiss, et al. (2005). ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and beta-catenin translocation. Proc Natl Acad Sci U S A 102(26): 9182-9187.
Molina, J. R., P. Yang, et al. (2008). Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 83(5): 584-594.
Morse, D. P., P. J. Aruscavage, et al. (2002). RNA hairpins in noncoding regions of human brain and Caenorhabditis elegans mRNA are edited by adenosine deaminases that act on RNA. Proc Natl Acad Sci U S A 99(12): 7906-7911.
Nakanishi, Y., S. Kondo, et al. (2013). Role of activation-induced cytidine deaminase in the development of oral squamous cell carcinoma. PLoS One 8(4): e62066.
Nguyen, D. X., P. D. Bos, et al. (2009). Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9(4): 274-284.
Nijman, S. M., M. P. Luna-Vargas, et al. (2005). A genomic and functional inventory of deubiquitinating enzymes. Cell 123(5): 773-786.
Oliveira, S. A., Y. J. Li, et al. (2005). Identification of risk and age-at-onset genes on chromosome 1p in Parkinson disease. Am J Hum Genet 77(2): 252-264.
Pei, H., L. Zhang, et al. (2011). MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites. Nature 470(7332): 124-128.
Qiao, Q. and W. Hu (2013). The association between TP53 Arg72Pro polymorphism and lung cancer susceptibility: evidence from 30,038 subjects. Lung 191(4): 369-377.
Qin, Y. R., J. J. Qiao, et al. (2014). Adenosine-to-inosine RNA editing mediated by ADARs in esophageal squamous cell carcinoma. Cancer Res 74(3): 840-851.
Reyes-Turcu, F. E., K. H. Ventii, et al. (2009). Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 78: 363-397.
Roberts, S. A., M. S. Lawrence, et al. (2013). An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat Genet 45(9): 970-976.
Satija, Y. K., A. Bhardwaj, et al. (2013). A portrayal of E3 ubiquitin ligases and deubiquitylases in cancer. Int J Cancer 133(12): 2759-2768.
Sen, N. and S. H. Snyder (2011). Neurotrophin-mediated degradation of histone methyltransferase by S-nitrosylation cascade regulates neuronal differentiation. Proc Natl Acad Sci U S A 108(50): 20178-20183.
Sharma, S., T. K. Kelly, et al. (2010). Epigenetics in cancer. Carcinogenesis 31(1): 27-36.
Shintani, Y., S. Higashiyama, et al. (2004). Overexpression of ADAM9 in non-small cell lung cancer correlates with brain metastasis. Cancer Res 64(12): 4190-4196.
Siegel, R., D. Naishadham, et al. (2013). Cancer statistics, 2013. CA Cancer J Clin 63(1): 11-30.
Skarda, J., N. Amariglio, et al. (2009). RNA editing in human cancer: review. APMIS 117(8): 551-557.
Sun, M., X. H. Liu, et al. (2014). Downregulation of BRAF activated non-coding RNA is associated with poor prognosis for non-small cell lung cancer and promotes metastasis by affecting epithelial-mesenchymal transition. Mol Cancer 13: 68.
Tao, H., H. Li, et al. (2014). Histone methyltransferase G9a and H3K9 dimethylation inhibit the self-renewal of glioma cancer stem cells. Mol Cell Biochem.
Thiery, J. P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2(6): 442-454.
Voulgari, A. and A. Pintzas (2009). Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim Biophys Acta 1796(2): 75-90.
Wang, B., M. Xie, et al. (2014). Role of Ku70 in deubiquitination of Mcl-1 and suppression of apoptosis. Cell Death Differ 21(7): 1160-1169.
Wang, I. X., E. So, et al. (2013). ADAR regulates RNA editing, transcript stability, and gene expression. Cell Rep 5(3): 849-860.
Wang, K., S. Liu, et al. (2014). Transcriptional regulation of human USP24 gene expression by NF-kappa B. J Neurochem 128(6): 818-828.
Wing, S. S. (2003). Deubiquitinating enzymes--the importance of driving in reverse along the ubiquitin-proteasome pathway. Int J Biochem Cell Biol 35(5): 590-605.
Wu, Y. R., C. M. Chen, et al. (2010). Ubiquitin specific proteases USP24 and USP40 and ubiquitin thiolesterase UCHL1 polymorphisms have synergic effect on the risk of Parkinson's disease among Taiwanese. Clin Chim Acta 411(13-14): 955-958.
Xie, C., L. Yang, et al. (2013). Sipa1 promoter polymorphism predicts risk and metastasis of lung cancer in Chinese. Mol Carcinog 52 Suppl 1: E110-117.
Yilmaz, M. and G. Christofori (2009). EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev 28(1-2): 15-33.
Yuan, Z., X. Zeng, et al. (2013). Effects of common polymorphism rs11614913 in Hsa-miR-196a2 on lung cancer risk. PLoS One 8(4): e61047.
Yuzhalin, A. E. and A. G. Kutikhin (2012). Common genetic variants in the myeloperoxidase and paraoxonase genes and the related cancer risk: a review. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 30(4): 287-322.
Zhang, L., A. Lubin, et al. (2012). The deubiquitinating protein USP24 interacts with DDB2 and regulates DDB2 stability. Cell Cycle 11(23): 4378-4384.
Zhang, X., X. Miao, et al. (2006). Genetic polymorphisms in cell cycle regulatory genes MDM2 and TP53 are associated with susceptibility to lung cancer. Hum Mutat 27(1): 110-117.
Zhang, Y. and D. Reinberg (2001). Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15(18): 2343-2360.
Zhao, B., W. Song, et al. (2012). Association analysis of single-nucleotide polymorphisms of USP24 and USP40 with Parkinson's disease in the Han Chinese population. Eur Neurol 68(3): 181-184.
Zhou, H., A. Wu, et al. (2014). Significance of semaphorin-3A and MMP-14 protein expression in non-small cell lung cancer. Oncol Lett 7(5): 1395-1400.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-04起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-08-04起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw