進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1607201413475300
論文名稱(中文) 利用擴散製程摻雜碳與鐵對氧化鋅薄膜光電磁特性之影響
論文名稱(英文) Effects of Diffusion Process Fe/C Doped on Optoelectro-magnetic Properties of ZnO Thin Film
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 簡濤
研究生(英文) Tao Chien
學號 N56011124
學位類別 碩士
語文別 中文
論文頁數 110頁
口試委員 指導教授-洪飛義
口試委員-陳立暉
口試委員-呂傳盛
口試委員-林裕城
中文關鍵字 氧化鋅  通電結晶製程  稀磁性半導體     
英文關鍵字 ZnO  electrical induced crystallization (EIC)  diluted magnetic semiconductor (DMS)  doping 
學科別分類
中文摘要 近年來整合載子傳輸 (carrier)與載子自旋 (spin)的稀磁性半導體元件受到廣泛的研究,其中奈米結構之氧化鋅由於其良好的光電特性與應用潛力成為最具研究價值的材料之一。
本研究以傳統熱退火(Annealing)及電致結晶(Electrical Induced Crystallization, EIC)等擴散製程摻雜鐵及碳原子至氧化鋅薄膜結構中,藉以探討其光、電及磁特性。本實驗使用蒸鍍與濺鍍法於矽基板及玻璃基板上沉積ZnO(100nm)/Fe(30nm)及ZnO(100nm)/C(30nm)雙層膜結構,藉由熱擴散製程進行摻雜,並同時提升氧化鋅薄膜之結晶性,進而達到更高飽和磁化量值及光、電性質的改善。由於ZnO/C結構經熱擴散摻雜後具有相對穩定之相組成及物理特性,本研究利用該系統導入通電擴散製程,發現除了在較低耗能及溫度下顯著提升氧化鋅載子濃度並產生鐵磁性 (1.78×10-6emu)外,也同時減少碳層的消耗程度提高系統的穩定度。此外,本實驗以業界普遍使用之離子佈植製程探討ZnO佈植C後經退火熱處理其結晶性變化對氧化鋅薄膜物理特性之影響,熱處理後除了結晶性提升及壓應力消除 (-448.3MPa→34.4MPa),更多碳原子置換導入張應力也使載子濃度提升並產生鐵磁性 (1.27×10-6 emu)。由於碳摻雜及特定方向的外加磁場能夠改善氧化鋅稀磁性半導體之氣體感測能力,本實驗利用酒精氣體 (100~500ppm)比較上述擴散及離子佈植製程對於ZnO/C系統在常溫常壓下的敏感性及反應速度,結果發現通電擴散製程之ZnO與氣體間有較大的反應表面積,故擁有最佳之感測能力。
英文摘要 ZnO/Fe and ZnO/C multilayer structure were used to manufacture DMS by diffusion process including annealing and EIC (Electrical Induced Crystallization) process. To obtain higher saturation magnetization with increasing contents of dopants, diffusion process was imported to improve crystallinity of ZnO among the doping process. In this work, UV-visible, Hall measurement and SQUID were used to investigate physical properties, and diffusion mechanism was achieved by XPS, SIMS and TEM. The results showed that ZnO/C system was more stable than ZnO/Fe after annealing with increasing temperature, and saturation magnetization of ZnO/C was improved among the doping process. In addition, EIC process enhance the RT ferromagnetism of ZnO/C system significantly in relatively lower temperatures. Notably, EIC raised the gas sensitivity the most of ZnO system.
論文目次 中文摘要 I
英文延伸閱讀 II
誌謝 VII
目錄 VIII
表目錄 XI
圖目錄 XII
第一章 前言 1
第二章 理論基礎與文獻回顧 3
2-1 濺鍍原理 3
2-2 熱蒸鍍原理 3
2-3 稀磁性半導體 4
2-3-1 原理及發展 4
2-3-2 摻雜元素之影響 5
2-4 氧化鋅薄膜之結構與特性 6
2-4-1 晶體結構與特性 6
2-4-2 導電性質 6
2-4-3 光學性質 6
2-4-4 應用及未來發展 7
2-5 電致結晶製程原理及特性 7
2-6 離子佈植製程原理及特性 8
2-7 研究目的 8
第三章 樣品製備及試驗方法 17
3-1 實驗流程 17
3-2 實驗材料準備 17
3-3 薄膜製程參數 18
3-3-1 熱蒸鍍系統 18
3-3-2 濺鍍系統 18
3-4 擴散摻雜設備與條件 18
3-4-1 熱處理設備與條件 18
3-4-2 通電儀器與條件 19
3-5 離子佈植儀器與條件 19
3-6 微結構及元素組成分析儀器 19
3-6-1 掃描式電子顯微鏡 (SEM)分析 19
3-6-2 穿透式電子顯微鏡 (TEM)分析 20
3-6-3 X光光電子能譜儀 (XPS)鑑定 20
3-6-4 二次離子質譜儀 (SIMS)分析 21
3-7 多功能X光繞射分析儀 (XRD) 21
3-7-1 相組成分析 21
3-7-2 殘留應力分析 22
3-8 光電性質分析儀器 22
3-8-1 可見光紫外光分光光譜儀 (UV-Vis) 22
3-8-2 霍爾量測儀 23
3-8-3 平面電阻量測儀 23
3-9 超導量子干涉震動磁量儀 (SQUID) 24
3-10 氣體感測器 24
第四章 結果與討論 36
4-1 薄膜材料性質 36
4-1-1 鐵 (Fe)薄膜結構特性 36
4-1-2 碳 (C)薄膜結構特性 36
4-1-3 氧化鋅 (ZnO)結構特性 37
4-2 熱擴散摻雜鐵對氧化鋅薄膜之影響 38
4-2-1 氧化鋅/鐵多層膜結構之材料特性 38
4-2-2 熱擴散溫度對氧化鋅/鐵之物理性質影響 38
4-2-3 氧化鋅/鐵結構之熱擴散機制 40
4-3 熱擴散摻雜碳對氧化鋅薄膜之影響 42
4-3-1 氧化鋅/碳結構之材料特性 42
4-3-2 熱擴散溫度對氧化鋅/碳之物理性質影響 42
4-3-3 氧化鋅/碳結構之熱擴散機制 44
4-3-4 ZnO/Fe與ZnO/C結構熱擴散製程比較 45
4-4 固態通電摻雜碳對氧化鋅薄膜之影響 46
4-4-1 通電擴散氧化鋅/碳結構之物理性質影響 46
4-4-2 通電誘發氧化鋅/碳結構之擴散機制 48
4-5 離子佈植碳對氧化鋅薄膜之影響 48
4-5-1 佈植碳對氧化鋅之物理性質影響 48
4-5-2 氧化鋅佈植碳之擴散機制 51
4-6 不同製程摻雜碳對氧化鋅酒精感測能力之影響 52
第五章 結論 104
第六章 參考文獻 105
參考文獻 1.H. Ohno, F. Matsukura, Y. Ohno, "Semiconductor spin electronics", JSAP International No. 5, 2002.
2.B.V. Mistry, P. Bhatt, K. H. Bhavsar, S. J. Trivedi, U. N. Trivedi, B. U. S. Joshi, "Growth and properties of transparent p-NiO/n-ITO (In2O3:Sn) p–n junction thin film diode", Thin Solid Films, Vol.519, pp.3840-3843, 2011.
3.H. Zhu, J. Huepkes, E. Bunte, J. Owen, S. M. Huang, "Novel etching method on high rate ZnO:Al thin films reactively sputtered from dual tube metallic targets for silicon-based solar cells", Solar Energy Materials and Solar Cells, Vol.95, pp.964-968, 2011.
4.T. Dietl, H. Ohno, "Ferromagnetic III–V and II–VI Semiconductors", MRS Bulletin Oct., pp.714-719, 2003.
5.S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, D. M. Treger, "Spintronics: A spin-based electronics vision for the future", Science, Vol.294(5546), pp.1488-1495, 2001.
6.H. Akinaga, H. Ohno, "Semiconductor spintronics", IEEE Transactions on Nanotechnology, Vol.1(1), pp.19-31, 2002.
7.J. Mohapatra, D. K. Mishra, S. K. Kamilla, V. R. R. Medicherla, D. M. Phase, V. Berma, S. K. Singh, "Ni-doped ZnO: Studies on structural and magnetic properties", Physica Status Solidi (b), Vol.248(6), pp.1352-1359, 2011.
8.A. A. M. Farag, M. Cavas, F. Yakuphanoglu, F. M. Amanullah, "Photoluminescence and optical properties of nanostructure Ni doped ZnO thin films prepared by sol–gel spin coating technique", Journal of Alloys and Compounds, Vol.509(30), pp.7900-7908, 2011.
9.R. N. Aljawfi, S. Mollah, "Properties of Co/Ni codoped ZnO based nanocrystalline DMS", Journal of Magnetism and Magnetic Materials, Vol.323(23), pp.3126-3132, 2011.
10.C. Ton-That, M. Foley, M. R. Phillips, T. Tsuzuki, Z. Smith, "Correlation between the structural and optical properties of Mn-doped ZnO nanoparticles", Journal of Alloys and Compounds, Vol.522, pp.114-117, 2012.
11.N. H. Hong, E. Chikoidze, Y. Dumont, "Ferromagnetism in laser ablated ZnO and Mn-doped ZnO thin films: A comparative study from magnetization and Hall effect measurements", Physica B: Condensed Matter, Vol.404(21), pp.3978-3981, 2009.
12.H. Merzouk, A. Chelouche, S. Saoudi, D. Djouadi, A. Aksas, "Influence of Mn doping on structural and optical properties of ZnO nano thin films synthesized by sol–gel technique", Applied Physics A, Vol.109(4), pp.841-844, 2012.
13.P. Srivastava, S. Ghosh, B. Joshi, P. Satyarthi, P. Kumar, D. Kanjilal, D. Buerger, S. Zhou, H. Schmidt, A. Rogalev, F. Wilhelm, "Probing origin of room temperature ferromagnetism in Ni ion implanted ZnO films with x-ray absorption spectroscopy", Journal of Applied Physics, Vol.111(1),013715, 2012.
14.Q. Wang, J. Wang, X. Zhong, Q. Tan, Y. Zhou, "Role of oxygen vacancies in the origin of ferromagnetism in Mn-doped ZnO", Crystal Research and Technology, Vol.46(12), pp.1250-1256, 2011.
15.N. Fujimura, T. Nishihara, S. Goto, J. F. Xu, T. Ito, "Control of preferred orientation for znox films-control of self-texture", Journal of Crystal Growth, Vol.130(1-2), pp.269-279, 1993.
16.F. Y. Hung, J. D. Liao, T. S. Lui, L. H. Chen, "Electrical current induced mechanism in microstructure and nano-indention of Al-Zn-Mg-Cu (AZMC) Al alloy thin film", Current Applied Physics, Vol.11(6), pp.1269-1273, 2011.
17.D. M. Mattox, "Handbook of physical processing technology", Noyes Publications, Park Ridgs, New Jersey, pp.341-343, 1989.
18.A. Johari, "Synthesis and room-temperature ferromagnetism of pure and Cu-doped SnO2 nanowires grown by thermal evaporation." Journal of Magnetism and Magnetic Materials, 2014.
19.J. Qian, "FeWO4/FeS core/shell nanorods fabricated by thermal evaporation." Materials Letters 122: 86-89, 2014
20.S. Chikazumi, "Physics of ferromagnetism", Oxford University Press, USA, 2009.
21.H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, Y. Iye, "(Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs", Applied Physics Letters, Vol.69(3), pp.363-365, 1996.
22.F. Matsukura, H. Ohno, A. Shen, Y. Sugawara, "Transport properties and origin of ferromagnetism in (Ga,Mn)As", Physical Review B, Vol.57(4), pp.R2037-R2040, 1998.
23.G. A. Prinz, "Magnetoelectronics", Science, Vol.282(5394), pp.1660-1663, 1998.
24.H. Akai, "Ferromagnetism and its stability in the diluted magnetic semiconductor (In,Mn)As", Physical Review Letters, Vol.81(14), pp.3002-3005, 1998.
25.H. Ohno, H. Munekata, T. Penney, S. von Molnár, L. Chang, "Magnetotransport properties of p-type (In,Mn)As diluted magnetic III-V semiconductors", Physical Review Letters, Vol.68(17), pp.2664-2667, 1992.
26.H. Munekata, H. Ohno, S. von Molnar, A. Segmüller, L. Chang, L. Esaki, "Diluted magnetic III-V semiconductors", Physical Review Letters, Vol.63(17), pp.1849-1852, 1989.
27.T. Dietl, "Zener model description of ferromagnetism in Zinc-Blende magnetic semiconductors", Science, Vol.287(5455), pp.1019-1022, 2000.
28.K. L. Chen, "Crystalliztion and optoelectro-magnetic properties of ZnO thin film by doping(Mn; Ni) transition metals", Thesis for Master of Science of NCKU Institute of Materials Science and Engineering, 2013.
29.K. Sato, H. Katayama-Yoshida, "Stabilization of ferromagnetic states by electron doping in Fe-, Co- or Ni-doped ZnO", Japanese Journal of Applied Physics Part 2-Letters, Vol.40(4A), pp.L334-L336, 2001.
30.S. Zhou, "Ferromagnetic transition metal implanted ZnO: A diluted magnetic semiconductor" Vacuum 83: S13-S19, 2009.
31.S. Akbar, "Defect induced ferromagnetism in carbon-doped ZnO thin films." Solid State Communications 151(1): 17-20, 2011.
32.A. C. Mofor, A. S. Bakin, B. Postels, M. Suleiman, A. Elshaer, A. Waag, "Growth of ZnO layers for transparent and flexible electronics", Thin Solid Films, Vol.516(7), pp.1401-1404, 2008.
33.D. C. Agarwal, R. S. Chauhan, A. Kumar, D. Kabiraj, F. Singh, S. A. Khan, D. K. Avasthi, J. C. Pivin, M. Kumar, J. Ghatak, P. V. Satyam, "Synthesis and characterization of ZnO thin film grown by electron beam evaporation", Journal of Applied Physics, Vol.99(12),123105, 2006.
34.Y. F. Mei, G. G. Siu, R. K. Y. Fu, P. K. Chu, Z. M. Li, Z. K. Tang, "Room-temperature electrosynthesized ZnO thin film with strong (002) orientation and its optical properties", Applied Surface Science, Vol.252(8), pp.2973-2977, 2006.
35.A. P. Roth, J. B. Webb, D. F. Williams, "Absorption-edge shift in zno thin-film at high carrier densities", Solid State Communications, Vol.39(12), pp.1269-1271, 1981.
36.N. Kavasoglu, A. S. Kavasoglu, "Metal-semiconductor transition in undoped ZnO films deposited by spray pyrolysis", Physica B-Condensed Matter, Vol.403(17), pp.2807-2810, 2008.
37.Y. F. Zhu, G. H. Zhou, H. Y. Ding, A. H. Liu, Y. B. Lin, N. L. Li, "Synthesis of highly-ordered hierarchical ZnO nanostructures and their application in dye-sensitized solar cells", Crystal Research and Technology, Vol.45(10), pp.1075-1078, 2010.
38.W. L. Wang, "An investigation on microstructure and opto-electrical Characteristics of ZnO-In/Ag-ZnO Thin Films Using the Electrical Current Mechanism", Thesis for Master of Science of NCKU Institute of Nanotechnology and Microsystems Engineering, 2009.
39.Y. T. Chen, "Microstructure, interface crystallized mechanism and optoelectronic charasterize of InGaZnO Thin films", Thesis for Master of Science of NCKU Institute of Nanotechnology and Microsystems Engineering, 2010
40.E. A. Kosobrodova, "Free radical kinetics in a plasma immersion ion implanted polystyrene: Theory and experiment." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 280: 26-35, 2012
41.K. Matsumoto, "Electrical and photoluminescence properties of carbon implanted ZnO bulk single crystals." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 267(8-9): 1568-1570, 2009.
42.H. S. Hsu, "Defect engineering of room-temperature ferromagnetism of carbon-doped ZnO." physica status solidi (RRL) - Rapid Research Letters 5(12): 447-449, 2011.
43.S. Mandal, "Optical and structural characteristics of ZnO thin films grown by rf magnetron sputtering." Materials Research Bulletin 43(2): 244-250, 2008.
44.B. D. Cullity, S. R. Stock, "Elements of X-Ray diffraction", Prentice Hall, 3rd ed., pp4215-4210, 2001.
45.F. M. Smits, "Measurement of sheet resisitivities with the Four-Point Probe", Bell System Technical Journal, Vol.37, pp.711-718, 1958.
46.K. Tapily, "Mechanical and structural characterization of atomic layer deposition-based ZnO films." Semiconductor Science and Technology 26(11): 115005, 2011.
47.S. Akbar, "Defect induced ferromagnetism in carbon-doped ZnO thin films." Solid State Communications 151(1): 17-20, 2011.
48.Tian. H, "Solution-based synthesis of ZnO/carbon nanostructures by chemical coupling for high performance gas sensors." Sensors and Actuators B: Chemical 195: 132-139, 2014.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-07-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw