進階搜尋


下載電子全文  
系統識別號 U0026-1607201412095600
論文名稱(中文) 目標位置機率會影響知覺決策歷程
論文名稱(英文) Target location probability affects the perceptual decision process
校院名稱 成功大學
系所名稱(中) 心理學系認知科學碩士班
系所名稱(英) MS in Cognitive Science
學年度 102
學期 2
出版年 103
研究生(中文) 張婷昀
研究生(英文) Ting-Yun Chang
學號 U76024012
學位類別 碩士
語文別 英文
論文頁數 41頁
口試委員 口試委員-葉怡玉
口試委員-汪曼穎
指導教授-楊政達
中文關鍵字 目標位置機率  決策  系統多因子設計  選擇注意力 
英文關鍵字 decision-making  selective attention  systems factorial technology  target location probability 
學科別分類
中文摘要 本研究旨在探討目標位置機率如何影響知覺決策歷程。在三個實驗中,參與者依照目標的出現與否進行反應,而目標可能出現在兩個固定的位置。在三個實驗中,我分別操弄了目標位置機率與影響參與者注意力分配的指導語。當目標出現在兩個位置的機率相同時(實驗一),擁有有限容量系統(limited capacity)的參與者採用了平行自我終止式(parallel self-terminating)的策略來處理資訊,而擁有超級容量系統(supercapacity)的參與者則採用共同激發式(coactive)的策略來處理資訊。當其中一個位置出現目標的機率高於另一個位置而參與者未被告知此操弄時(實驗二),所有參與者皆採用平行自我終止式的策略來處理資訊,處理容量皆為有限容量;然而當參與者知道兩位置出現目標的機率有所不同(實驗三),在實驗一擁有有限容量系統的參與者改採用了序列自我終止式(serial self-terminating)的策略來處理資訊,但在實驗一擁有超級容量系統的參與者則依舊採用平行自我終止式的策略來處理資訊。實驗三所有參與者的處理容量均為非常有限容量(extremely limited capacity)。綜合而論,本研究結果顯示目標位置機率會對決策歷程的的處理架構與處理容量造成影響,且處理容量的個別差異會調控目標位置機率對決策歷程的影響。同時,本研究也顯現出注意力控制在決策策略的選擇上所扮演的角色。
英文摘要 The current study investigated how target location probability affects decision processes. In three experiments, participants detected the presence of a target dot at two locations. Target location probability and attentional instruction were manipulated. When the target appeared at the two locations with equal frequency (Experiment 1), the participants who had a system of limited capacity adopted parallel self-terminating strategy to process information while the participants who had a system of supercapacity coactively processed information. When the target appeared at one location with higher frequency than at another location (Experiments 2 and 3), two of the participants adopted a parallel self-terminating strategy to process information whether they were informed the target location probability or not, whereas the others adopted a parallel self-terminating strategy when not informed the uneven target location probability (Experiment 2) and changed to adopt a serial self-terminating strategy when informed the uneven target location probability (Experiment 3). From Experiment 1 to Experiment 3, processing capacity shifted from supercapacity or limited-capacity to extremely limited-capacity. Overall, these results suggest that target location probability affects the selection of a decision strategy differentially due to individual differences in processing capacity, and highlight the role of controlled attention in selecting a decision strategy.
論文目次 摘要....................I
Abstract...............II
Table of Contents.....III
List of Tables.........IV
List of Figures.........V
Introduction............1
Experiment 1............4
METHOD..................5
RESULTS................12
DISCUSSION.............17
Experiment 2...........18
METHOD.................19
RESULTS................20
DISCUSSION.............25
Experiment 3...........26
METHOD.................27
RESULTS................27
DISCUSSION.............32
General Discussion.....33
Conclusion.............36
References.............38
參考文獻 Baker, C. I., Olson, C. R., & Behrmann, M. (2004). Role of attention and perceptual grouping in visual statistical learning. Psychological Science, 15(7), 460–466.
Chun, M. M., Golomb, J. D., & Turk-Browne, N. B. (2011). A taxonomy of external and internal attention. Annual Review of Psychology, 62, 73–101. doi:10.1146/annurev.psych.093008.100427
Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36(1), 28–71.
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci, 3(3), 201–215.
Donkin, C., Little, D. R., & Houpt, J. W. (2013). Assessing the speed-accuracy trade-off effect on the capacity of information processing. Journal of Experimental Psychology: Human Perception and Performance.
Dzhafarov, E. N. (1999). Conditionally selective dependence of random variables on external factors. Journal of Mathematical Psychology, 43(1), 123–157.
Eidels, A., Houpt, J. W., Altieri, N., Pei, L., & Townsend, J. T. (2011). Nice guys finish fast and bad Guys finish last: facilitatory vs. inhibitory interaction in parallel systems. Journal of Mathematical Psychology, 55(2), 176–190. doi:10.1016/j.jmp.2010.11.003.Nice
Eidels, A., Townsend, J. T., & Algom, D. (2010). Comparing perception of Stroop stimuli in focused versus divided attention paradigms: Evidence for dramatic processing differences. Cognition, 114(2), 129–150.
Fiedler, A., Schröter, H., & Ulrich, R. (2011). Coactive processing of dimensionally redundant targets within the auditory modality? Experimental Psychology (formerly Zeitschrift Für Experimentelle Psychologie), 58(1), 50–54.
Fiser, J., & Aslin, R. N. (2001). Unsupervised statistical learning of higher-order spatial structures from visual scenes. Psychological Science, 12(6), 499–504.
Geng, J. J., & Behrmann, M. (2002). Probability cuing of target location facilitates visual search implicitly in normal participants and patients with hemispatial neglect. Psychological Science, 13(6), 520–525.
Geng, J. J., & Behrmann, M. (2005). Spatial probability as an attentional cue in visual search. Perception & Psychophysics, 67(7), 1252–1268.
Grice, G. R., Canham, L., & Boroughs, J. M. (1984). Combination rule for redundant information in reaction time tasks with divided attention. Perception & Psychophysics, 35(5), 451–463.
Grice, G. R., Canham, L., & Gwynne, J. W. (1984). Absence of a redundant-signals effect in a reaction time task with divided attention. Perception & Psychophysics, 36(6), 565–570.
Hoffmann, J., & Kunde, W. (1999). Location-specific target expectancies in visual search. Journal of Experimental Psychology: Human Perception and Performance, 25(4), 1127.
Hopfinger, J. B., Buonocore, M. H., & Mangun, G. R. (2000). The neural mechanisms of top-down attentional control. Nature Neuroscience, 3(3), 284–291.
Hughes, H. C., & Zimba, L. D. (1985). Spatial maps of directed visual attention. Journal of Experimental Psychology: Human Perception and Performance, 11(4), 409.
Jones, J. L., & Kaschak, M. P. (2012). Global statistical learning in a visual search task. Journal of Experimental Psychology: Human Perception and Performance, 38(1), 152.
Jonides, J. (1981). Voluntary versus automatic control over the mind’s eye’s movement. Attention and Performance IX, 9, 187–203.
Kinchla, R. A. (1977). The role of structural redundancy in the perception of visual targets. Perception & Psychophysics, 22(1), 19–30.
Kingstone, A., & Klein, R. (1991). Combining shape and position expectancies: Hierarchical processing and selective inhibition. Journal of Experimental Psychology: Human Perception and Performance, 17(2), 512.
Kujala, J. V, & Dzhafarov, E. N. (2008). Testing for selectivity in the dependence of random variables on external factors. Journal of Mathematical Psychology, 52(2), 128–144.
Lambert, A. J., & Hockey, R. (1986). Selective attention and performance with a multidimensional visual display. Journal of Experimental Psychology: Human Perception and Performance, 12(4), 484.
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24(1), 167–202.
Miller, J. (1982). Divided attention: Evidence for coactivation with redundant signals. Cognitive Psychology, 14(2), 247–279.
Miller, J. (1988). Components of the location probability effect in visual search tasks. Journal of Experimental Psychology: Human Perception and Performance, 14(3), 453.
Mordkoff, J. T., & Yantis, S. (1991). An interactive race model of divided attention. Journal of Experimental Psychology: Human Perception and Performance, 17(2), 520.
Pashler, H., Johnston, J. C., & Ruthruff, E. (2001). Attention and performance. Annual Review of Psychology, 52(1), 629–651.
Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3–25.
Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology: General, 109(2), 160.
Reder, L. M., Weber, K., Shang, J., & Vanyukov, P. M. (2003). The adaptive character of the attentional system: statistical sensitivity in a target localization task. Journal of Experimental Psychology: Human Perception and Performance, 29(3), 631.
Saffran, J. R. (2002). Constraints on statistical language learning. Journal of Memory and Language, 47(1), 172–196.
Shaw, M. L., & Shaw, P. (1977). Optimal allocation of cognitive resources to spatial locations. Journal of Experimental Psychology: Human Perception and Performance, 3(2), 201.
Shomstein, S., & Yantis, S. (2004). Configural and contextual prioritization in object-based attention. Psychonomic Bulletin & Review, 11(2), 247–253.
Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders’ method. Acta Psychologica, 30, 276–315.
Summerfield, J. J., Lepsien, J., Gitelman, D. R., Mesulam, M., & Nobre, A. C. (2006). Orienting attention based on long-term memory experience. Neuron, 49(6), 905–916.
Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & Psychophysics, 51(6), 599–606.
Townsend, J. T., & Eidels, A. (2011). Workload capacity spaces: a unified methodology for response time measures of efficiency as workload is varied. Psychonomic Bulletin & Review, 18, 659–681. doi:10.3758/s13423-011-0106-9
Townsend, J. T., Fific, M., & Neufeld, R. W. J. (2007). Assessment of mental architecture in clinical/cognitive research. Psychological Clinical Science: Papers in Honor of Richard M. McFall. Mahwah, NJ: Lawrence Erlbaum Associates, 223–258.
Townsend, J. T., & Nozawa, G. (1995). Spatio-temporal Properties of Elementary Perception: An Investigation of Parallel, Serial, and Coactive Theories. Journal of Mathematical Psychology, 39(4), 321–359. doi:10.1006/jmps.1995.1033
Townsend, J. T., & Thomas, R. D. (1994). Stochastic dependencies in parallel and serial models: Effects on systems factorial interactions. Journal of Mathematical Psychology, 38(1), 1–34.
Van Zandt, T. (2000). How to fit a response time distribution. Psychonomic Bulletin & Review, 7(3), 424–465.
Walthew, C., & Gilchrist, I. D. (2006). Target location probability effects in visual search: an effect of sequential dependencies. Journal of Experimental Psychology: Human Perception and Performance, 32(5), 1294.
Yang, C.-T. (2011). Relative saliency in change signals affects perceptual comparison and decision processes in change detection. Journal of Experimental Psychology: Human Perception and Performance, 37(6), 1708.
Yang, C.-T., Chang, T.-Y., & Wu, C.-J. (2013). Relative change probability affects the decision process of detecting multiple feature changes. Journal of Experimental Psychology. Human Perception and Performance, 39(5), 1365–1385. doi:10.1037/a0030693
Yang, C.-T., Hsu, Y.-F., Huang, H.-Y., & Yeh, Y.-Y. (2011). Relative salience affects the process of detecting changes in orientation and luminance. Acta Psychologica, 138(3), 377–389.
Yang, C.-T., Little, D. R., & Hsu, C.-C. (2014). The influence of cueing on attentional focus in perceptual decision making. Attention, Perception, & Psychophysics.
Yantis, S. (2000). Goal-directed and stimulus-driven determinants of attentional control. Attention and Performance, 18, 73–103.
Yantis, S., & Egeth, H. E. (1999). On the distinction between visual salience and stimulus-driven attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 25(3), 661.
Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention: evidence from visual search. Journal of Experimental Psychology. Human Perception and Performance, 601–21.
Zhao, J., Al-Aidroos, N., & Turk-Browne, N. B. (2013). Attention is spontaneously biased toward regularities. Psychological Science, 24(5), 667–677.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-07-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-07-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw