進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1607201316334000
論文名稱(中文) 新型雙斜盤柱塞幫浦之設計
論文名稱(英文) Design of a Double Inline Piston Pump
校院名稱 成功大學
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Department of Engineering Science
學年度 101
學期 2
出版年 102
研究生(中文) 吳采亮
研究生(英文) Tsai-Liang Wu
學號 N96004248
學位類別 碩士
語文別 中文
論文頁數 81頁
口試委員 指導教授-李輝煌
口試委員-黃聖杰
口試委員-黃登淵
中文關鍵字 斜盤柱塞幫浦  有限元素分析  雙向對稱結構  無活塞環設計 
英文關鍵字 Inline Piston Pump  Finite Element Analysis  Symmetrical Structure  Piston Design Without Ring 
學科別分類
中文摘要 液壓系統具有輸出力量大、出力調整容易、耐久性高……等優點,被業界廣泛使用;液壓幫浦猶如液壓系統的心臟,為能量轉換裝置,將輸入的機械能轉成液體的液壓能,為液壓裝置的動力來源。液壓幫浦種類繁多,由於軸向柱塞幫浦(活塞幫浦)的高輸出壓力、高效率與高控制性,故自動化機械、工具機、特殊車輛的液壓源,都是採用軸向柱塞幫浦。然而市面上的軸向柱塞幫浦大多存在流量脈動過大、高噪音的問題,且使用效率仍有改善空間。
本論文主要研究為新型雙斜盤柱塞幫浦之設計與開發,首先透過文獻搜索與資料瀏覽進行初步的幫浦設計,使用Plunger與Pot搭配自製夾具,放置於MTS材料拉伸試驗機進行公差實驗,量測其密封效果與液壓油的溢漏情況;利用有限元素分析軟體ANSYS進行模擬,針對柱塞幫浦的關鍵零件—Piston與Cylinder的幾何結構進行改善,並使用Cavity Design進行無活塞環的Piston設計,並將上述的實驗與模擬結果作為設計柱塞幫浦之參考,進行新型雙斜盤柱塞幫浦之開發,並設計雙邊流量調整控制機構。
公差實驗的結果顯示,當Plunger與Pot的間隙為5~6 microns,在25 MPa的負載下其溢漏量為1.064 cm3/min。Cylinder之模擬結果顯示由於Uni-body的結構關係,其孔洞受壓變形後不為真圓,易導致球形柱塞的變形與破壞,故採用Single Cylinder結構進行改良。Cavity Design之模擬結果顯示,Piston材料選用SCM440,Single Cylinder材料選用鋁青銅,當Piston的孔洞尺寸為半徑5 mm、深度7 mm,Single Cylinder的厚度為3 mm,兩者的徑向變形趨勢幾近吻合,可作為無活塞環的Piston設計與加工依據。
新型雙斜盤柱塞幫浦透過雙向對稱結構來平衡雙邊結構,降低流量的脈動,並降低幫浦的噪音,且轉子結構的輕量化設計,降低了幫浦的轉動慣量,透過無活塞環設計降低摩擦力,進而提升幫浦的使用效率。
英文摘要 Hydraulic system which is widely used by industry has plenty of advantages, including output with large power, high durability, and easy to adjust force…etc. Automated machinery, machine tools, special vehicles equip axial piston pump as a hydraulic source, because the axial piston pump’s properties offer high output pressure, high efficiency and high controlling. However, most of the axial piston pumps in the market have some problems of high flow pulsations and serious noise. There is still room for improving efficiency.
The research focuses on the design of a double inline piston pump. First of all, search the literatures to design the original pump. Secondly, use Material Testing System (MTS) and self-made fixtures to conduct the tolerance test, measuring leakage via the sealing of plunger and pot. Third, Improve the piston and cylinder by using finite element analysis software ANSYS, and then design the piston without ring by means of cavity. Both the results of experiment and simulation can be referred to design the axial piston pump.Finally, develop the double inline piston pump and design adjustment mechanism of double structure.
The results of tolerance test showed when the clearance was 5~6 microns and the leakage was 1.064 cm3/min under a load of 25 MPa. The simulation result of cylinder displayed that owing to the structure of uni-body cylinder, the cylindricity of the hole is not accurately round when it was under pressure. Use single cylinder design could avoid elliptic deviation, and it also achieves the goal of lightweight design. The optimum design of cavity is that choosing SCM440 to manufacture piston with cavity of radius of 5 mm and depth of 7 mm, and that choosing aluminum bronze for single cylinder which thickness of 3 mm. The results of cavity design could be useful criteria to manufacture the piston without ring.
Double inline piston pump balances the bilateral construction, reduces the flow pulsations and decreases the pump noise by means of symmetrical structure. Lightweight design of rotary parts reduce the moment of inertia of the pump. Piston without ring decreases the friction and increases efficiency of the pump.
論文目次 摘要 Abstract I
Abstract II
致謝 Acknowledgments III
目錄 Table of Contents V
表目錄 Table Captions VII
圖目錄 Figure Captions VIII
第一章 緒論 Chapter 1: Introduction 1
1.1 研究背景與動機 Background and Motivation 1
1.2 研究目的與方法 Objectives and Approaches 2
1.3 論文架構 Thesis Architecture 3
第二章 液壓幫浦與文獻回顧 Chapter 2: Introduction and Literatures 4
2.1 液壓幫浦簡介 Introduction of Hydraulic System 4
2.1-1 背景 Background 4
2.1-2 液壓幫浦簡介 Introduction of Hydraulic Pump 8
2.1-3 液壓幫浦性能參數 Performance of Hydraulic Pump 16
2.2 文獻回顧 Literatures Review 19
2.2-1 浮動杯式柱塞幫浦 Floating Cup 19
2.2-2 液壓幫浦設計 Design of Hydraulic Pump 23
2.3 結構分析數值理論 Numerical Analysis Theory of Structures 25
2.3-1 控制方程式 Governing Equations 25
2.3-2 力平衡方程式 Equilibrium Equations 25
2.3-3 應力與應變關係 Strain-Stress Relations 26
第三章 研究方法與實驗設備 Chapter 3: Approaches and Equipments 27
3.1 研究流程與規劃 Flowchart and Procedure 27
3.2 實驗設備與裝置 Experimant Equipments and Devices 29
3.2-1 MTS材料拉伸試驗機 Material Testing System 29
3.2-2 自製夾具 Fixture Devices 30
3.2-3 電子天平 Electronic Balance 33
3.3 有限元素軟體介紹 Introduction of ANSYS 34
3.3-1 軟體選用 Applied Software 34
3.3-2 主要分析流程 Flowchart of Analysis 36
3.4 Cylinder之模擬分析 Simulation of Cylinder 37
3.4-1 材料參數 Material Properties 37
3.4-2 幾何模型 Geometry Model 39
3.4-3 網格 Mesh 43
3.4-4 邊界條件與參數設定 Environment Conditions 48
3.5 Piston與Cylinder之模擬分析 Simulation of Piston & Cylinder 50
3.5-1 材料參數 Material Properties 50
3.5-2 幾何模型 Geometry Model 50
3.5-3 網格 Mesh 52
3.5-4 邊界條件與參數設定 Environment Conditions 53
第四章 結果與討論 Chapter 4: Results and Discussions 54
4.1 公差實驗結果 Results of Tolerance Test 54
4.2 Cylinder之模擬結果 Simulation Results of Cylinder 55
4.3 Piston與Cylinder之模擬結果 Simulation Results of Piston & Cylinder 63
4.4 模擬結果比較與討論 Results and Comparisons 67
4.4-1 Cylinder之結果比較 Comparisons of Cylinder 67
4.4-2 Cavity Design之結果比較 Comparisons of Cavity Design 68
4.5 新型雙斜盤柱塞幫浦之設計 Design of Double Inline Piston Pump 71
第五章 結論與未來展望 Chapter 5: Conclusions and Future Work 77
5.1 結論 Conclusions 77
5.2 未來展望 Future Work 79
參考文獻 References 80
參考文獻 [1] 歐陽渭城,油壓基礎技術,全華科技圖書股份有限公司,2004年。
[2] 徐景福,油壓的機械,復文書局,1984年。
[3] 佐藤俊雄著,楊德輝譯,油壓迴路設計與對策,全華科技圖書股份有限公司,1986年。
[4] 蘇金盛,油壓控制要訣,建興圖書企業有限公司,1988年。
[5] 呂淮熏、黃勝銘,氣液壓學,高立圖書有限公司,1998年。
[6] 李武鉦、曾賢壎,氣液壓學,全威圖書有限公司,1998年。
[7] 周溫成、曾賢壎,氣液壓學,高立圖書有限公司,1997年。
[8] Herbert E. Merritt, Hydraulic Control System, John Wiley & Sons, Inc., 1967.
[9] 市川常雄著,賴耿陽譯,實用油壓技術機器篇,復漢出版社,1977年。
[10] 蔡堃輝編著,油壓技術要點,南台圖書公司,1988年。
[11] 陳傳正、黃盈仁,氣油壓概論,科友圖書有限公司,1986年。
[12] Peter Achten, et al, “Dedicated Design of the Hydraulic Transformer,” Proc. IFK.3, Vol.2, IFAS Aachen, ISBN 3-8265-9901-2 (2002), pp.233-248.
[13] Peter Achten, et al, “Designing the Impossible Pump,” Proc. Hydraulikdagarna 2003, June 3-4, 2003.
[14] Peter Achten, et al, “Design and Testing of an Axial Piston Pump Based on the Floating Cup Principle,” The Eighth Scandinavian International Conference on Fluid Power, SICFP'03, May 7-9, 2003.
[15] Peter Achten, et al, “Movement of the Cups on the Barrel Plate of a Floating Cup, Axial Piston Machine,” International Journal of Fluid Power, 2004.
[16] Peter Achten, et al, “Volumetric Losses of a Multi Piston Floating Cup Pump,” Scandinavian International Conference on Fluid Power, 2005.
[17] Peter Achten, et al, “Design of a Variable Displacement Floating Cup Pump,” The Ninth Scandinavian International Conference on Fluid Power, SICFP'05, June 1-3, 2005.
[18] G.E.M. Vanel, et al, “Reducing Flow Pulsations with the Floating Cup Pump: Theoretical Analysis,” Proc. PTMC 2004, 2004.
[19] Peter Achten, et al, “Efficiency Measurements of the Hydrid Motor/Pump,” The Twelfth Scandinavian International Conference on Fluid Power, May 18-20, 2011.
[20] M. Deeken, “Simulation of the Reversing Effects of Axial Piston Pumps Using Conventional CAE Tools,” Ölhydraulik und Pneumatik, pp. 315–322, 2002.
[21] Noah D. Manring, “The Discharge Flow Ripple of an Axial-Piston Swash-Plate Type Hydrostatic Pump,” Journal of Dynamic Systems, Measurement, and Control, Vol.122, No.2, pp.263-268, 2000.
[22] Noah D. Manring, “Valve-Plate Design for an Axial Piston Pump Operating at Low Displacements,” ASME Journal of Mechanical Design,Technical Brief. 125:200-05, 2003.
[23] James M. Gere, Mechanics of Materials, Fifth SI Edition, Nelson Thornes Ltd, 2002.
[24] H. H. Lee, Finite Element Simulations with ANSYS Workbench 13, GOTOP Information Inc., 2011.
[25] MTS 2.0 Manual:Operation’s Guide, TestWaee-SXTM, Application Manual, Reference Manual, 1993.
[26] Material Database, http://www.pragtic.com/vmat.php
[27] MatWeb, http://www.matweb.com
[28] ASM Aerospace Specification Metals Inc, http://asm.matweb.com
[29] Vegas Fastener Manufacturing, http://www.vegasfastener.com
[30] Minchali Metal Industry Co, Ltd., http://www.minchali.com.tw
[31] ANSYS Engineering Data Help for Workbench, Release 14.0, ANSYS Inc., 2011.
[32] MiSUMi Corporation, http://tw.misumi-ec.com
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw