進階搜尋


下載電子全文  
系統識別號 U0026-1607201316193600
論文名稱(中文) 年齡對覓隨練習後手眼適應性行為改變的影響
論文名稱(英文) Age Effect on Adaptive Changes in Oculomanual Behaviors after Tracking Practices
校院名稱 成功大學
系所名稱(中) 物理治療研究所
系所名稱(英) Department of Physical Therapy
學年度 101
學期 2
出版年 102
研究生(中文) 黃佩安
研究生(英文) Pei-An Huang
學號 T66004035
學位類別 碩士
語文別 英文
論文頁數 63頁
口試委員 指導教授-黃英修
口試委員-成戎珠
口試委員-卓瓊鈺
口試委員-楊政峯
中文關鍵字 老年人  覓隨練習  動作學習  動作間歇性 
英文關鍵字 older adults  visuomotor tracking  motor learning  movement intermittency 
學科別分類
中文摘要 研究目的: 在覓隨過程眼球和手部均出現間歇性修正動作,而成熟的覓隨行為包含了眼球和手部動作之間的精細協調。由於老化造成感覺訊息處理降低、視覺追蹤能力下降和手部動作緩慢,使得覓隨功能與動作修正能力衰退;過去研究顯示老年人的眼手經過練習後功能也能有相當程度的改善。本研究的目的在於探討老年人經過短時間的覓隨練習之後,手眼追蹤吻合度、手眼交互作用、與間歇性行為的適應性改變。

研究方法: 14位健康年輕人(年齡:23.7 ± 1.1歲)和14位健康老年人(年齡:71.0 ± 5.0歲)參與本實驗。所有受測者執行相同的覓隨練習任務,藉由控制手指施力大小吻合由0.3和0.5赫茲正弦波組合成的複合波,移動範圍6.5公分(或6.2度視角)。覓隨練習任務包含前測和十四次的練習,每次練習的時間為二十秒且每兩次的練習間隔有一分鐘的休息時間,於最後一次練習結束後三十分鐘執行後測,藉以評估兩組受試者在前測與後測時間眼手行為的改變。主要眼手動作參數包含:追蹤吻合度、眼球活動特性和手指活動特徵。追蹤吻合度是眼球活動/手指動作和目標訊號間的最大交互相關係數(CM眼-目標,CM手-目標),手眼吻合度則是眼球活動和手指動作的最大交互相關係數(CM眼-手)。眼球活動特性包含眼球間歇活動特性(跳視最大速度與跳視發生率)與平滑眼球活動振幅(追視增益)。手指活動特徵特別考量手指間歇活動特性(施力小波振幅、施力小波時間、次動作平均頻率、動作模版除以次動作的比值和次動作的強度)。以使用二因子混合設計變異分析和事後檢定來檢驗年齡(年輕人和老年人)和練習(前測和後測)對所有結果參數的影響。

研究結果: 年輕人和老年人的CM眼-目標、CM手-目標和CM眼-手在練習過後都有較好的表現。年輕人在練習過後手和眼的追蹤吻合度相當,而老年人手的追蹤吻合度則明顯低於眼的追蹤吻合度。年輕人的跳視速度和跳視發生率在練習後呈現下降的趨勢,而老年人的跳視速度在練習後無顯著差異,並且年輕人的跳視速度在後測顯著低於老年人。另外,兩組受試者追視增益雖因練習有些微下降趨勢,但未出現顯著統計差異,而年輕人的追視增益無論是前測或後測都明顯低於老年人。兩組在手指間歇活動特性有明顯不同的練習效果,年輕人施力小波振幅、施力小波時間、次動作強度因練習而減少,且次動作平均頻率有增加的趨勢,而老年人無因練習而導致手指間歇活動特性的改變。此外,年輕人在後測的施力小波振幅和次動作強度都明顯低於老年人。令人感興趣的是年輕人在動作模版除以次動作的比值於練習後有增加的趨勢,且在後測遠大於老年人的比值。

結論: 在短期練習過後,年輕人和老年人均出現明顯的覓隨吻合度增加與覓隨活動的進步,但是兩組受試者的間歇性修正動作有相當不同的適應表現,顯示覓隨活動的學習策略深受年齡的影響;覓隨學習過程中,老年人可能因感覺訊息處理能力的限制而減少對錯誤修正的適應性改變。
英文摘要 Objective: Intermittent behaviors present for error correction during sophisticate oculo-manual tracking, which entails intricate coordinative control over the ocular and manual effectors. Age-related differences include declines in processing of sensory information, ocular tracking, and slowing of manual responses; however, previous studies have shown that considerable improvements in oculo-manual performance is possible after practicing. The purpose of this study was to examine age differences in oculomanual behaviors after short-term visuomotor tracking practices, with specific focus on adaptive changes in tracking congruency, reciprocity, and intermittent behaviors of the ocular and manual systems.

Methods: Fourteen young adults (age: 23.7 ± 1.1 years) and fourteen older adults (age: 71.0 ± 5.0 years) were recruited in this study. All participants practiced the same oculo-manual tracking task by isometrically pressing a force gauge to match the target signal, which was a combined sinusoidal waveform of 0.3 Hz and 0.5 Hz in a range of 6.5 cm (or 6.2o visual angle). The task was composed of pre-tests and 14 individual practice sessions of 20 seconds with an inter-trial interval of 1 minute. Thirty minutes after the last practice session, post-tests were performed to assess the performance changes. Outcome variables include tracking congruency, eye movement properties and manual action characteristics. Tracking congruency was the cross-correlation maxima between eye movement/finger action and the target signal (CMeye-target, CMfinger-target) and eye-finger coupling was determined between eye movement and finger action (CMeye-finger). Eye movement intermittency was characterized by saccade peak velocity and saccade incidences. Pursuit gain was used to represent the amplitude of smooth ocular movement. Manual intermittent behaviors were featured by force pulse amplitude, force pulse duration, mean frequency of submovement, RMS ratio of movement template to submovement and power of submovement. Two-way mixed-design ANOVA and post-hoc comparisons were used to examine the effects of age (young vs. older) and practice (pre-test vs. post-test) on all outcome variables.

Results: Both young and older adults showed better CMfinger-target, CMeye-target and CMeye-finger after practice. Young adults exhibited a similar tracking congruency for the finger and eye after practice, whereas the older group presented a manual tracking congruency apparently inferior to ocular tracking congruency. Young adults presented decreased saccade peak velocity and saccade incidences after practice, but older adults did not show significant differences in saccade peak velocity; moreover, young adults revealed much lower saccade peak velocity compared to older adults in the post-test. Furthermore, both groups displayed decreased pursuit gain without significant differences; however, young adults showed apparently lower pursuit gain compared to older adults no matter pre-test or post-test. Manual action characteristics were distinctive between young and older adults. Young adults demonstrated decreased force pulse amplitude, force pulse duration and power of submovement, and increasing mean frequency of submovement after practice. However, older adults did not present differences in variables of manual action result from practice. Besides, young adults revealed lower force pulse amplitude and power of submovement compared to older adults in the post-test. It is interesting that young adults exhibited increasing RMS ratio of template to submovement after practice and was much larger than older adults in the post-test.

Conclusion: After short-term practice, young and older adults demonstrated marked improvements in visuomotor tracking underlying distinctive adaptive changes in intermittent behaviors of ocular and manual effectors. The scenarios strongly indicate age-dependent learning strategies for visuomotor tracking. The lacking in adaptive changes in error correction of the older adults during visuomotor tracking may confine to degradation of sensory information processing.
論文目次 Abstract...I
摘要...IV
致謝...VI
Contents...VII
List of Tables...X
List of Figures...XI

Chapter 1. Introduction...1
1.1 Eye-hand coordination for visuomotor tracking...1
1.1.1 Kinematic properties and interaction between manual action and ocular movements...1
1.2 Age-related differences in ocular and manual systems...2
1.2.1 Functional degradation in aged ocular movements...3
1.2.2 Visuo-manual tracking in the elderly...4
1.3 Age effect on motor learning...6
1.4 Movement intermittency in visuomotor tracking...7
1.4.1 Saccade and submovement...7
1.5 Rationales, research questions, and hypotheses...8

Chapter 2. Methods...10
2.1 Subjects...10
2.2 Experimental setup and procedures...10
2.3 Data analysis...12
2.4 Statistical analysis...15

Chapter 3. Results...16
3.1 Tracking congruency...16
3.1.1 Finger tracking congruencies (CMfinger-target)...16
3.1.2 Eye tracking congruencies (CMeye-target)...17
3.1.3 Eye-finger coupling (CMeye-finger)...18
3.2 Eye movement properties...18
3.2.1 Saccade peak velocity...18
3.2.2 Saccade incidences...19
3.2.3 Pursuit gain...20
3.3 Manual action characteristics...20
3.3.1 Pulse amplitude...20
3.3.2 Pulse duration...21
3.3.3 Mean frequency...22
3.3.4 RMS ratio of template to submovement...22
3.3.5 Power of submovement...23

Chapter 4. Discussion...24
4.1 Geriatric influences...24
4.1.1 Inferior ocular and manual tracking performance of the elderly...24
4.1.2 Altered ocular and manual intermittent behaviors for the elderly...26
4.2 Strategic differences in visuomotor learning with age...28
4.2.1. Age-dependent improvements of tracking congruency for ocular and manual effectors...29
4.2.2. Age-dependent visuomotor learning in view of intermittent behaviors...30

Chapter 5. Conclusion...33

References...34

自述...63
參考文獻 1. Abrams RA, Pratt J, Chasteen AL. Aging and movement: Variability of force pulses for saccadic eye movements. Psychology and Aging. 13(3): 387-395, 1998.
2. Baugh LA, Marotta JJ. When what's left is right: visuomotor transformations in an aged population. PLoS One. 4(5): e5484, 2009.
3. Beurskens R, Bock O. Age-related decline of peripheral visual processing: the role of eye movements. Exp Brain Res. 217(1): 117-124, 2012.
4. Briand KA, Strallow D, Hening W, Poizner H, Sereno AB. Control of voluntary and reflexive saccades in Parkinson’s disease. Exp Brain Res. 129(1): 38-48, 1999.
5. Christou EA. Aging and variability of voluntary contractions. Exerc Sport Sci Rev. 39(2): 77-84, 2011.
6. Clark BC, Taylor JL. Age-related changes in motor cortical properties and voluntary activation of skeletal muscle. Curr Aging Sci. 4(3): 192-199, 2011.
7. Coats RO, Wann JP. The reliance on visual feedback control by older adults is highlighted in tasks requiring precise endpoint placement and precision grip. Exp Brain Res. 214(1): 139-150, 2011.
8. de Brouwer S, Missal M, Barnes G, Lefèvre P. Quantitative analysis of catch-up saccades during sustained pursuit. J Neurophysiol. 87(4): 1772-1780, 2002.
9. Degardin A, Devos D, Cassim F, Bourriez JL, Defebvre L, Derambure P, Devanne H. Deficit of sensorimotor integration in normal aging. Neurosci Lett. 498(3): 208-212, 2011.
10. Engel KC, Soechting JF. Interactions between ocular motor and manual responses during two-dimensional tracking. Prog Brain Res. 142: 141-153, 2003.
11. Epelboim J, Steinman RM, Kowler E, Pizlo Z, Erkelens CJ, Collewijn H. Gaze-shift dynamics in two kinds of sequential looking tasks. Vision Res. 37(18): 2597-2607, 1997.
12. Fox EJ, Baweja HS, Kim C, Kennedy DM, Vaillancourt DE, Christou EA. Modulation of force below 1 Hz: age-associated differences and the effect of magnified visual feedback. PLoS One. 8(2): e55970, 2013.
13. Fradet L, Lee G, Dounskaia N. Origins of submovements in movements of elderly adults. J Neuroeng Rehabil. 5: 28, 2008.
14. Francis KL, MacRae PG, Spirduso WW, Eakin T. The effects of age on precision pinch force control across five days of practice. Curr Aging Sci. 5(1): 2-12, 2012.
15. Fujiyama H, Hinder MR, Schmidt MW, Tandonnet C, Garry MI, Summers JJ. Age-related differences in corticomotor excitability and inhibitory processes during a visuomotor RT task. J Cogn Neurosci. 24(5): 1253-1263, 2012.
16. Gauthier GM, Vercher JL, Mussa Ivaldi M, Marchetti E. Oculo-manual tracking of visual targets: control learning, coordination control and coordination model. Exp Brain Res. 73(1): 127-137, 1988.
17. Gowen E, Maill RC. Eye-hand interactions in tracing and drawing tasks. Hum Mov Sci. 25(4-5): 568-585, 2006.
18. Guan J, Wade MG. The effect of aging on adaptive eye-hand coordination. J Gerontol B Psychol Sci Soc Sci. 55(3): P151-P162, 2000.
19. Haywood KM. Eye movement pattern and accuracy during perceptual-motor performance in young and old adults. Exp Aging Res. 8(3): 153-157, 1982.
20. Helsen WF, Elliott D, Starkes JL, Ricker KL. Coupling of eye, finger, elbow, and shoulder movements during manual aiming. J Mot Behav. 32(3): 241-248, 2000.
21. Heuer H, Hegele M, Sülzenbrück S. Implicit and explicit adjustments to extrinsic visuo-motor transformations and their age-related changes. Hum Mov Sci. 30(5): 916-930, 2011.
22. Heuer H, Hegele M. Adaptation to visuomotor rotations in younger and older adults. Psychol Aging. 23(1): 190-202, 2008.
23. Hopp JJ, Fuchs AF. The characteristics and neuronal substrate of saccadic eye movement plasticity. Prog Neurobiol. 72(1): 27-53, 2004.
24. Huang CT, Hwang IS. Eye-hand synergy and intermittent behaviors during target-directed tracking with visual and non-visual information. Plos One. 7(12): e51417, 2012.
25. Iwamoto Y, Kaku Y. Saccade adaption as a model of learning in voluntary movements. Exp Brain Res. 204(2): 145-162, 2010.
26. Kanayama R, Nakamura T, Sano R, Ohki M, Okuyama T, Kimura Y, Koike Y. Effect of aging on smooth pursuit eye movement. Acta Otolaryngol Suppl. 511: 131-134, 1994.
27. Kapur S, Zatsiorsky VM, Latash ML. Age-related changes in the control of finger force vectors. J Appl Physiol. 109(6): 1827-1841, 2010.
28. Kennedy GJ, Tripathy SP, Barrett BT. Early age-related decline in the effective number of trajectories tracked in adult human vision. J Vis. 9(2): 21, 1-10, 2009.
29. Ketcham CJ, Seidler RD, Van Gemmert AWA, Stelmach GE. Age-related kinematic differences as influenced by task difficulty, target size, and movement amplitude. J Gerontol B Psychol Sci Soc Sci. 57(1): 54-64, 2002.
30. Khan MA, Franks IM. The effect of practice on component submovements is dependent on the availability of visual feedback. J Mot Behav. 32(3): 227-240, 2000.
31. Klein C, Fischer B, Hartnegg K, Heiss WH. Optomotor and neuropsychological performance in old age. Exp Brain Res. 135(2): 141-154, 2000.
32. Koken PW, Erkelens CJ. Influences of hand movements on eye movements in tracking tasks in man. Exp Brain Res. 88(3): 657-664, 1992.
33. Kolarik AJ, Margrain TH, Freeman TC. Precision and accuracy of ocular following: influence of age and type of eye movement. Exp Brain Res. 201(2): 271-282, 2010.
34. Krauzlis RJ. The control of voluntary eye movements: new perspectives. Neuroscientist. 11(2): 124-137, 2005.
35. Langan J, Seidler RD. Age differences in spatial working memory contributions to visuomotor adaptation and transfer. Behav Brain Res. 225(1): 160-168, 2011.
36. Latash ML, Shim JK, Shinohara M, Zatsiorsky VM. Motor control and learning. Changes in finger coordination and hand function with advanced age. New York, NY: Springer, c2006.
37. Leigh RJ, Zee DS. The neurology of eye movements. 4th ed. Oxford University Press: New York, 2006.
38. Liu Y, Cao C, Yan JH. Functional aging impairs the role of feedback in motor learning. Geriatr Gerontol Int. doi: 10.1111/ggi.12013, 2013.
39. McGibbon CA, Palmer T, Goldvasser D, Krebs DE. Kalman filter detection of blinks in video-oculography: applications for VVOR measurement during locomotion. J Neurosci Methods. 106(2): 171-178, 2001.
40. McNay EC, Willingham DB. Deficit in learning of a motor skill requiring strategy, but not of perceptuomotor recalibration, with aging. Learn Mem. 4(5): 411-420, 1998.
41. Moschner C, Baloh RW. Age-related changes in visual tracking. J Gerontol. 49(5): M235-8, 1994.
42. Nunes M, Santos S. Frequency of knowledge of performance in motor learning in the elderly: an analysis of the process through which an elderly individual learns a motor skill. Saarbrücken: VDM Verlag Dr. Müller, 2011.
43. Ofori E, Samson JM, Sosnoff JJ. Age-related differences in force variability and visual display. Exp Brain Res. 203(2): 299-306, 2010.
44. Pasalar S, Roitman AV, Ebner TJ. Effects of speeds and force fields on submovements during circular manual tracking in humans. Exp Brain Res. 163(2): 214-225, 2005.
45. Pohl PS, Winstein CJ, Fisher BE. The locus of age-related movement slowing: sensory processing in continuous goal-directed aiming. J Gerontol B Psychol Sci Soc Sci. 51(2): 94-102, 1996.
46. Pratt J, Welsh T, Dodd M. Growing older does not always mean moving slower: examining aging and the saccadic motor system. J Mot Behav. 38(5): 373-382, 2006.
47. Rand MK, Stelmach GE. Effect of aging on coordinated eye and hand movements with two-segment sequence. Motor control. 16(4): 447-465, 2012.
48. Rand MK, Stelmach GE. Effects of hand termination and accuracy requirements on eye-hand coordination in older adults. Behav Brain Res. 219(1): 39-46. 2011.
49. Rodrigue KM, Kennedy KM, Raz N. Aging and longitudinal change in perceptual-motor skill acquisition in healthy adults. J Gerontol B Psychol Sci Soc Sci. 60(4): 174-181, 2005.
50. Roitman AV, Massaquoi SG, Takahashi K, Ebner TJ. Kinematics analysis of manual tracking in monkeys: characterization of movement intermittencies during a circular tracking task. J Neurophysiol. 91(2): 901-911, 2004.
51. Sailer U, Eggert T, Ditterich J, Straube. Spatial and temporal aspects of eye-hand coordination across different tasks. Exp Brain Res. 134(2): 163-173, 2000.
52. Sailer U, Flanagan JR, Johansson RS. Eye-hand coordination during learning of a novel visuomotor task. J Neurosci. 25(39): 8833-8842, 2005.
53. Seidler RD, Bernard JA, Burutolu TB, Fling BW, Gordon MT, Gwin JT, Kwak Y, Lipps DB. Motor control and aging: Links to age-related brain structural functional, and biochemical effects. Neurosci Biobehav Rev. 34(5): 721-733, 2010.
54. Seidler RD. Differential effects of age on sequence learning and sensorimotor adaptation. Brain Res Bull. 70(4-6): 337-346, 2006.
55. Seidler-Dobrin RD, Stelmach GE. Persistence in visual feedback control by the elderly. Exp Brain Res. 119(4): 467-474, 1998.
56. Selen LP, van Dieën JH, Beek PJ. Impedance modulation and feedback corrections in tracking targets of variable size and frequency. J Neurophysiol. 96(5): 2750-2759, 2006.
57. Smith AE, Ridding MC, Higgins RD, Wittert GA, Pitcher JB. Cutaneous afferent input does not modulate motor intracortical inhibition in ageing men. Eur J Neurosci. 34(9): 1461-1469, 2011.
58. Sosnoff JJ, Newell KM. Age-related loss of adaptability to fast time scales in motor variability. J Gerontol B Psychol Sci Soc Sci. 63(6): 344-352, 2008.
59. Sosnoff JJ, Newell KM. Aging, visual intermittency, and variability in isometric force output. J Gerontol B Psychol Sci Soc Sci. 61(2): 117-124, 2006.
60. Sosnoff JJ, Newell KM. Are age-related increases in force variability due to decrements in strength? Exp Brain Res. 174(1): 86-94, 2006.
61. Sprenger A, Trillenberg P, Pohlmann J, Herold K, Lencer R, Helmchen C. The role of prediction and anticipation on age-related effects on smooth pursuit eye movements. Ann N Y Acad Sci. 1233: 168-176, 2011.
62. Tekes A, Mohamed MA, Browner NM, Calhoun VD, Yousem DM. Effect of age on visuomotor functional MR imaging. Acad Radiol. 12(6): 739-745, 2005.
63. Touron D,Hertzog C, Frank D. Eye movements and strategy shift in skill acquisition: adult age differences. J Gerontol B Psychol Sci Soc Sci. 66(2): 151-159, 2011.
64. Vaillancourt DE, Newell KM. Aging and the time and frequency structure of force output variability. J Appl Physiol. 94(3): 903-912, 2003.
65. Van Donkelaar P. Eye-hand interactions during goal-directed pointing movements. Neuroreport. 8(9-10): 2139-2142, 1997.
66. Vidoni ED, McCarley JS, Edwards JD, Boyd LA. Manual and oculomotor performance develop contemporaneously but independently during continuous tracking. Exp. Brain Res. 195(4): 611-620, 2009.
67. Vieluf S, Godde B, Reuter EM, Voelcker-Rehage C. Age-related differences in finger force control are characterized by reduced force production. Exp Brain Res. 224(1): 107-117, 2013.
68. Voelcker-Rehage C. Motor-skill learning in older adults – a review of studies on age-related differences. Eur Rev Aging Phys Act. 5(1): 5-16, 2008.
69. Wild-Wall N, Willemssen R, Falkenstein M. Feedback-related processes during a time-production task in young and older adults. Clin Neurophysiol. 120(2): 407-413, 2009.
70. Williamson EM, Marshall PH. Effects of age and task characteristics on continuous motor tracking performance. Exp Aging Res. 38(4): 442-457, 2012.
71. Wisleder D, Dounskaia N. The role of different submovement types during pointing to a target. Exp Brain Res. 176(1): 132-149, 2007.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-07-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-07-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw