進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1606202012433000
論文名稱(中文) 國中跨域課程對學生運算思維與學習成效之影響
論文名稱(英文) Investigating the Impact of an Interdisciplinary Course on Junior High School Student’s Computational Thinking and Learning Effectiveness
校院名稱 成功大學
系所名稱(中) 教育研究所
系所名稱(英) Graduate Institute of Education
學年度 108
學期 2
出版年 109
研究生(中文) 黃柏軒
研究生(英文) Po-Hsuan Huang
學號 U36071029
學位類別 碩士
語文別 中文
論文頁數 195頁
口試委員 指導教授-郭旭展
口試委員-楊雅婷
口試委員-周保男
中文關鍵字 國中跨域課程  運算思維  學習成效  STEAM教育  專題導向學習(PBL) 
英文關鍵字 Computational Thinking (CT)  Learning Effectiveness  STEAM Education  Project-based Learning (PBL) 
學科別分類
中文摘要 本研究之主要目的在於探討國中跨域課程對學生運算思維與學習成效之影響。本研究藉由國中資訊科技課程之實施,以STEAM(Science, Technology, Engineering, Art, and Mathematics)跨領域整合學習及專題導向教學法(Project-based Learning, PBL)為基礎發展教材並進行教學,並融入閱讀(Reading)的元素,該課程引導學生學習,探究學生的運算思維、高層次思考意向(包括:創造力、問題解決、團隊合作、溝通協調、批判思考),以及學習動機。研究方法上,本研究以量化為主,質性為輔之方法分析資料,探討學生在接受該課程後運算思維、高層次思考意向,以及學習動機之差異,希冀研究結果可以提供未來相關政策,課程發展與實踐等之參考。
本研究採準實驗研究法之不等組前後測設計,國中跨域課程(STEAM PBL教學模式)為實驗處理,自變項為教學策略,實驗組實施國中跨域課程教學,而控制組實施傳統教學,依變項為運算思維、高層次思考意向,以及學習動機。本研究以臺南市某國中一年級4個班級(控制組52人與實驗組54人)為研究對象,探討不同教學策略對學生運算思維、高層次思考意向,以及學習動機之影響。在研究工具方面,量化部分採用多項測驗及量表,包含國際運算思維挑戰賽測驗題、新編創造思考測驗、高層次思考意向量表,以及國中小學習動機量表;在質性研究部分,研究者使用觀察日誌、訪談大綱,以及課程回饋問卷。資料處理與分析則採用描述性統計、共變數分析(Analysis of covariance, ANCOVA)、獨立樣本t檢定、相依樣本t檢定等方法進行比較分析。研究結果顯示:(一)國中跨域課程有助於提升學生的運算思維。(二)國中跨域課程有助於培養學生的高層次思考意向。(三)國中跨域課程有助於增進學生的學習動機。(四)教師及學生對國中跨域課程多持正向感受。本研究依據研究結果提出建議,對未來欲進行國中跨域課程的學校單位與教師作為教學與研究上之參考。


關鍵字:國中跨域課程、運算思維、學習成效、STEAM教育、專題導向學習(PBL)
英文摘要 The study aims to (1) develop an interdisciplinary course for 7th graders, and (2) investigate its impact on student’s computational thinking (CT), higher-order thinking disposition (creativity, problem-solving, communication, collaboration, and critical thinking), and learning motivation. A pretest and posttest quasi-experimental design is implemented over a full semester (20 weeks in total). Four 7th grade information technology classes, with a total of 106 students, were randomly assigned to one of two conditions: (1) two Experimental Groups (Exp: STEAM PBL teaching approach, N=54) and (2) two Control Groups (Ctrl: traditional teaching approach, N=52). By employing a mixed-methods approach, quantitative and qualitative data are systematically collected. For the quantitative study, the students’ CT, higher-order thinking disposition, and learning motivation are measured. For the qualitative study, teacher interview and student focus group interview, classroom observation, and questionnaire responses are used to evaluate the effectiveness of STEAM PBL in teaching and learning. Descriptive analysis, independent sample t-test, paired sample t-test, analysis of covariance (ANCOVA), and qualitative analysis are used for evaluating the obtained data. Evidence indicates that the STEAM PBL can be exploited as a useful and practical approach. Additional research is still needed to get more insights into the effects and consequences of PBL tasks in groups. With the promising results of this study, we strongly recommend integrating STEAM and PBL elements into an information technology course, which serves as a great platform bridging the gap between teaching and learning. The innovative education can also help make the students active learners, better-prepare them for the sweeping changes of the future.

Keywords: Computational Thinking (CT), Learning Effectiveness, STEAM Education, Project-based Learning (PBL)
論文目次 目 次

中文摘要 ii
目次 vi
表次 viii
圖次... x
第一章 緒論 1
第一節 研究背景與動機. 1
第二節 研究目的與待答問題 6
第三節 名詞釋義 7
第四節 研究範圍與限制 11
第五節 研究貢獻 12
第二章 文獻探討 13
第一節 運算思維 13
第二節 STEAM教育 30
第三節 專題導向學習 46
第四節 相關研究 56
第三章 研究方法 60
第一節 研究設計 60
第二節 研究假設 64
第三節 研究對象 66
第四節 課程歷程與內容 67
第五節 研究工具 74
第六節 研究流程 82
第七節 資料處理與分析 84
第八節 研究倫理 86
第四章 研究結果與討論 88
第一節 國中跨域課程教學法對國中一年級學生運算思維之差異分析 88
第二節 國中跨域課程教學法對國中一年級學生高層次思考意向之差異分析 100
第三節 國中跨域課程教學法對國中一年級學生學習動機之差異分析 120
第五章 結論與建議 128
第一節 結論 128
第二節 研究限制 131
第三節 建議 133
參考文獻 139
中文部分 139
英文部分 143
附錄 162
附錄一 閱讀學習單(一)為何女性容易得肺癌? 162
附錄二 閱讀學習單(二)汽機車所排廢氣PM 2.5影響占三成 164
附錄三 閱讀學習單(三)為什麼抽菸會上癮 正確解析抽菸上癮的原因 166
附錄四 閱讀學習單(四)空氣品質指標AQI是什麼?跟常聽見的PM 2.5又有什麼關係? 168
附錄五 閱讀學習單(五)創造思考的技巧與方法 心智圖 170
附錄六 研究者觀察日誌 172
附錄七 教師訪談大綱 173
附錄八 學生訪談大綱 174
附錄九 課程回饋問卷 175
附錄十 國中跨域課程教案 177
附錄十一 科技領域評量表 189
附錄十二 小組專題報告評量表 190
附錄十三 專題導向學習小組報告互評表 192
附錄十四 專題導向學習學生自我評鑑表 193
附錄十五 專題導向學習教師自我評鑑表 194
附錄十六 新編創造思考測驗使用同意書 195
參考文獻 中文部分
毛連塭、郭有遹、陳龍安、林幸台(2000)。創造力研究。臺北:心理。
王金國(2018)。以專題式學習法培養國民核心素養。臺灣教育評論月刊,7(2), 107-111。
王文科、王智弘(2016)。教育研究法。臺北:五南。
朱采翎(2008)。教師創造力教學信念與創造力內隱理論之發展及其關係。國立臺北教育大學國民教育系碩士班碩士學位論文,未出版,臺北。
呂金燮(2003)。創造力教學的本質與陷阱。資優教育季刊,86,1-9。
李乙明(2006)。陶倫斯創造思考測驗圖形與語文版指導手冊。臺北:心理。
李建億、黃瑋苹(2004)。網路專題學習活動中多元智慧對學習成果影響之研究。
師大學報:科學教育類,49(1),65-80。
宋東(2006)。微軟揮灑「未來學校」藍圖。取自http://mingren.topschool.com.tw/SC200609180001/DownLoadFile/200612220007.pdf
吳清山(2002)。創意教學的重要理念與實施策略。台灣教育,614,2-8。
吳清基(2010)。推動臺灣的閱讀教育—全民來閱讀。研考雙月刊,34(1),62-66。
吳靜吉(1998)。新編創造思考測驗研究。教育部輔導工作六年計劃研究報告。
吳靜吉(2002)。華人學生創造力的發掘與培育。應用心理研究,15,17-42。
吳靜吉、陳甫彥、郭俊賢、林偉文、劉士豪、陳玉樺(1998)。新編創造思考測驗研究─教育部六年計畫報告書。臺北:教育部。
吳靜吉、林偉文、林士郁、陳秋秀、曾敬梅、王涵儀、徐悅淇(2001)。教育部創造力教育政策白皮書子計劃(六):國際創造力教育發展趨勢專案。臺北:教育部。
林巧敏(2009)。動國中小學童數位閱讀計畫之探討。臺灣圖書館管理季刊,5(2),49-67。
林坤誼(2014)。STEM科際整合教育培養整合理論與實務的科技人才。科技與人力教育季刊,1(1),1。
林生傳(2015)。教育研究法:全方位的統整與分析。新北:心理。
林奇賢(2017)。新世代的創新學習模式:互聯網+PBL理論與實施。臺北:高等教育。
林偉文(2002)。國民中小學學校組織文化、教師創意教學潛能與創意教學之關係。
國立政治大學教育學系博士論文,未出版,臺北。
林偉文(2011)。創意教學與創造力的培育-以「設計思考」為例。教育資料與研究雙月刊,100,53-74。
林達森(1999)。論析統整性課程及其對九年一貫課程的啟示。教育研究資訊,
7(4), 97-116。
林幸台、王木榮(1994)。威廉斯創造力測驗。臺北:心理。
林育慈、吳正己(2016)。運算思維與中小學資訊科技課程。國家教育研究院教育脈動電子期刊,6。
林金定、嚴嘉楓、陳美花(2005)。質性研究方法:訪談模式與實施步驟分析。身心障礙研究,3(2),122-136。
柳棟、吳俊杰、謝作如、沈涓(2013)。STEM、STEAM課程與可能的實踐路線。中小學訊息技術雜誌,6,39-41。
徐宗國(譯)(1990)。質性研究概論(原作者:Strauss, A., & Corbin, J.)。臺北:巨流。
徐新逸(2001)。如何利用網路幫助孩子成為研究高手-網路專題式學習與教學創
新。台灣教育,607,25-34。
張世彗(2006)。行動與動作創造思考測驗指導手冊。臺北:心理。
張世彗(2011)。創造力教學、學習與評量之探究。教育資料與研究雙月刊,100,1-22。
張佳琳(2010)。美國閱讀教育政策發展之探究。教育資料與研究雙月刊,93,183-216。
張春興(2007)。張氏心理學辭典。臺北:東華。
張雨霖(2008)。國中教師創造力信念、創造力教學自我效能對創造力教學行為影響之研究。國立臺灣師範大學創造力發展碩士在職專班論文,未出版,臺北。
張玉山、楊雅茹(2014)。STEM教學設計之探討:以液壓手臂單元為例。科技與人力教育季刊,1(1),2-17。
張珍悅、徐勝一(2010)。永續發展教育脈絡探討:「聯合國永續發展教育十年計畫」之回顧。地理研究,52,1-26。
張雨霖、吳哲源、陳學志(2013)。創新教·學創意·想未來。教師天地,185,6-12。
郭生玉(2007)。教育心理與測量。臺北:東華。
郭奕龍、鄒小蘭、丁怡(2007)。Csikszentmihalyi創造力理論在資優教育之應用。資優教育季刊,103,19-28。
陳沅(2002)。國小數學專題學習活動發展與應用之研究。國立臺南師範學院數學所碩士論文,未出版,臺南。
陳長益(2006)。陶倫斯創造思考測驗成人版指導手冊。臺北:心理。
陳怡倩(2017)。從STEAM的A來看美國STEAM教育。香港美術教育期刊,1,4-9。
陳佩英(2018)。跨領域素養導向課程設計工作坊之構思與實踐。課程研究,13(2),21-42。
陳霞鄢(2003)。國小資優班教師創造力教學行為之研究。國立臺灣師範大學特殊
教育研究所碩士論文,未出版,臺北。
陳龍安(2005)。創造思考的策略與技法。教育資料集刊,30,201-266。
陳龍安(2006)。創造思考教學的理論與實際(第六版)。臺北:心理。
陳正昌、張慶勳(2007)。量化研究與統計分析。臺北:新學林。
陳木金、許瑋珊(2012)。從PISA閱讀評量的國際比較探討閱讀素養教育的方向。教師天地,181,4-15。
教育部(2003)。創造力教育白皮書。
教育部(2008)。2008數位學習白皮書e-Learning in Taiwan。
教育部(2012)。未來想像與創意人才培育計畫。取自http://hss.edu.tw/wSite/ct?xItem=3554&ctNode=275&mp=2
教育部(2014)。中小學數位輔助學科閱讀計畫。取自http://elfess.ee.ncku.edu.tw/planCase/AboutPlan.aspx
教育部(2016)。運算思維推動計畫-中小學運算思維教育到校推廣研習簡報。取自https://drive.google.com/file/d/0B9lO8tzMRLy7N091NXZWdEVKNzQ/view
教育部(2016)。2016-2020資訊教育總藍圖。
教育部(2018)。十二年國民基本教育課程綱要科技領域。
國家教育研究院(2018)。議題融入說明手冊。
國家教育研究院(2019)。十二年國民基本教育課程綱要科技領域課程手冊。
賈馥茗、簡茂發(1982)。我國國中學生科學才能之測量。國立臺灣師範大學教育研究所集刊,24,1-91。
詹志禹、陳玉樺(2011)。發揮想像力共創臺灣未來—教育系統能扮演的角色。教育資料與研究雙月刊,100,23-52。
詹雅婷、張基成(2001)。網路化專題導向學習於師資培育課程之應用。視聽教育雙月刊,42(6),26-39。
趙中建(2012)。為了創新而教育-科學、科技、工程和數學教育(STEM Education): 一個值得認識和重視的教育戰略。中國教育報,第07版。
潘怡吟(2002)。遊戲型態教學對國小學生「自然與生活科技」學習之研究。臺北市立師範學院科學教育研究所碩士論文,未出版,臺北。
葉玉珠(2000)。「創造力發展的生態系統模式」及其應用於科技與資訊領域之內涵分析。教育心理學報,32(1),95-122。
葉玉珠(2006)。創造力教學—過去、現在與未來。臺北:心理。
葉栢維(2017)。STEAM理論融入國小科技實作的活動設計:橡皮筋動力車向前衝。科技與人力教育季刊,4(1),63-75。DOI: 10.6587/JTHRE.2017.4(1).5
鄒慧英(2000)。另類的統整主題教學-專題學習。國教之友,52,3-11。
鄒慧英(2000)。專題學習的概念介紹與評量設計示例。載於教育部,發展小班
教學精神宣導專書(5)-新世紀優質學習的經營,頁35-52。
鄒慧英(2001)。課程、教學、評量三位一體的專題學習。台南師院學報,34,3-9。
鄒慧英(2001)。網路專題學習的現在與未來。載於師生與家長研習會學生學習成果發表手冊,頁45-52。
鄭英耀、莊雪華、顏嘉玲(2008)。揭開創意教材的神秘面紗。師大學報:科學教育類,53(1),61-85。
簡楚瑛(1994)。方案課程之理論與實務。臺北:文景。
蔣國英(譯)(2007)。創意心理學—探索創意的運作機制,掌握影響創造力的因素 (原作者:T. Lubart)。臺北:遠流。

英文部分
Aho, A. V. (2012). Computation and Computational Thinking. Computer Journal, 55(7), 832-835.
Allan, W., Coulter, B., Denner, J., Erickson, J., Lee, I., Malyn-Smith, J., & Martin, F. (2010). Computational Thinking for Youth. White Paper for the ITEST Small Working Group on Computational Thinking (CT).
Amabile, T. M. (1983). The Social Psychology of Creativity. New York: Springer-Verlag.
Amabile, T. M. (1988). A Model of Creativity and Innovation in Organizations. In B. M. Staw & L. L. Cummings (Eds.), Research in Organizational Behavior, 10, 123-167.
Amabile, T. M. (1993). Motivational Synergy: Toward New Conceptualizations of Intrinsic and Extrinsic Motivation in Workplace. Human Resource Management Review, 3, 185-201.
Amabile, T. M. (1996). Creativity in Context: Update to the Social Psychology of Creativity. Oxford: Westview Press.
Amabile, T. M. (1997). Entrepreneurial Creativity through Motivational Synergy. Journal of Creativity Behavior, 31(1), 18-26.
Amabile, T. M. (1997). Motivating Creativity in Organizations: On Doing What You Love and Loving What You Do. California Management Review, 40(1), 39-58.
Amabile, T. M. (2012). Componential Theory of Creativity. Encyclopedia of Management Theory (Eric H. Kessler, Ed.), Sage Publications, 2013.
Amabile, T. M., & Hennessey, B. A. (1992). The Motivation for Creativity in Children. In Achievement and Motivation: A Social-Developmental Perspective, edited by A. K. Boggiano and T. Pittman. Cambridge: Cambridge University Press, 1992.
Amabile, T. M., Barsade, S. G., Mueller, J. S., & Staw, B. M. (2005). Affect and Creativity at Work. Administrative Science Quarterly, 50(3), 367-403.
American National Research Council (2011). Report of a Workshop on the Pedagogical Aspects of Computational Thinking. Retrieved from http://www.nap.edu/catalog/13170/report-of-a-workshop-on-the-pedagogical- aspects-of-computational-thinking.
American Society for Engineering Education (ASEE). (2011). Preparing Future Engineers around the World. Prism, 21(5), 26-34.
Association for Computing Machinery (ACM) & Institute of Electrical and Electronics Engineers Computer Society (IEEE). (2005). Computing Curricula 2005 – The Overview Report.
Australian Curriculum, Assessment and Reporting Authority (ACARA). (2013). Draft Australian Curriculum: Technologies Consultation Report. Retrieved May 15, 2019, from http://docs.acara.edu.au/resources/Draft_Australian_Curriculum_Technologies_-_Consultation_Report_-_August_2013.pdf.
Barlex, D. (2009). The STEM Programme in England—Help or Hindrance for Design and Technology Education? Paper Presented at the PATT22 Conference, Delft, Netherlands. Retrieved from http://www.iteaconnect.org/Conference/PATT/PATT22/Barlex.pdf.
Barr, V., & Stephenson, C. (2011). Bringing Computational Thinking to K-12: What is Involved and What is the Role of the Computer Science Education Community? ACM Inroads, 2(1), 48-54.
Barron, B. J. S., Schwartz, D. L., Vye, N. L., Moore, A., Petrosino, A., Zech, L., & Bransford, J. D. (1998). Doing with Understanding: Lessons from Research on Problem- and Project-based Learning. Journal of the Learning Sciences, 7(3&4), 271-311.
Barry, N. (2014). The ITEEA 6E Learning byDeSIGNTM Model. The Technology and Engineering Teacher, March 2014, 14-19. Retrieved from http://www.oneidaboces.org/cms/lib05/NY01914080/Centricity/Domain/36/6E% 20Learning% 20by%20Design%20Model.pdf.
Basalyga, S. (2003). Student Interest in Engineering is on Decline. Daily Journal of Commerce.
Batey, M., Furnham, A., & Safiullina, X. (2010). Intelligence, General Knowledge and Personality as Predictors of Creativity. Learning and Individual Differences, 20(5), 532-535.
Basu, S., Kinnebrew, J. S., & Biswas, G. (2014). Assessing Student Performance in a Computational-thinking Based Science Learning Environment. In S. Trausan-Matu, K. E. Boyer, M. Crosby, & K. Panourgia (Eds.), Intelligent tutoring systems, its 2014 (Vol. 8474, pp. 476-481).
Becker, K., & Park, K. (2011). Effects of Integrative Approaches among Science, Technology, Engineering, and Mathematics (STEM) Subjects on Students’ Learning: A Preliminary Meta-analysis. Journal of STEM Education, 12, 23-36.
Beghetto, R. A. (2011). Toward Replacing Fear of Unknown Educational Futures with Creative Possibilities: A Review of Creativity and Education Futures.
Bell, T., Witten, I. H., & Fellows, M. (2016). CS Unplugged. An Enrichment and Extension Programme for Primary-aged Students. New Zealand: University of Canterbury. CS Education Research Group Version 3.2. 2..
Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational Thinking and Tinkering: Exploration of an Early Childhood Robotics Curriculum. Computers & Education, 72, 145-157.
Besemer, S. P., & Treffinger, D. (1981). Analysis of Creative Products: Review and Synthesis. Journal of Creative Behavior, 15, 158-178.
Besemer, S. P., & O’Quin, K. (1999). Confirming the Three-factor Creative Product Analysis Model in an American Sample. Creativity Research Journal, 12, 287-296.
Bicer, A., Boedeker, P., Capraro, R. M., & Capraro, M. M. (2015). The Effects of STEM PBL on Students’ Mathematical and Scientific Vocabulary Knowledge. International Journal of Contemporary Educational Research, 2, 69-75.
Bono, E. D. (1968). New Think: The Use of Lateral Thinking in the Generation of New Ideas. New York, NY: Basic Books.
Bono, E. D. (1970). Lateral Thinking. A Textbook of Creativity. London: Ward Lock Educational.
Brennan, K., & Resnick, M. (2012). New Frameworks for Studying and Assessing the Development of Computational Thinking. Annual American Educational Research Association Meeting, Vancouver, BC, Canada, 1-25.
Buck Institute for Education (BIE). (2019). What is PBL. Retrieved from https://www.pblworks.org/what-is-pbl.
Bybee, R. W. (2009). The BSCS 5E Instructional Model and 21st Century Skills: A Commissioned Paper Prepared for a Workshop on Exploring the Intersection of Science Education and the Development of 21st Century Skills. The National Academies Board on Science Education.
Bybee, R. W. (2010). Advancing STEM Education: A 2020 Vision. Technology and Engineering Teacher, 2010 September, 30-35.
Bybee, R. W. (2013). The Case for STEM Education: Challenges and Opportunities. Arlington: NSTA Press.
Bybee, R. W., Taylor, J. A., Gardner, A., Van Scotter, P., Carlson Powell, J., Westbrook, A., & Landes, N. (2006). The BSCS 5E Instructional Model: Origins, Effectiveness and Applications. Retrieved from http://www.bscs.org/bscs-5e-instructional-model.
Callahan, C. M. (1991). The Assessment of Creativity. In N. Colangelo & G. A. Davis (Eds.), Handbook of the Gifted Education (pp. 219-235). Boston, MA: Allyn & Bacon.
Capraro, R. M., & Corlu, M. S. (2013). Changing Views on Assessment for STEM Project-based Learning. In: Capraro R.M., Capraro M.M., Morgan J.R. (eds) STEM Project-based Learning. SensePublishers, Rotterdam. DOI: https://doi.org/10.1007/978-94-6209-143-6_12
Clapham, M. M. (2004). The Convergent Validity of the Torrance Tests of Creative Thinking and Creativity Interest Inventories. Educational and Psychological Measurement, 64(5), 828-841.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, N.J.: L. Erlbaum.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. NJ:, Lawrence Erlbaum Associates.
College Board. (2014). AP Computer Science Principles Curriculum Framework. Retrieved from http://secure-media.collegeboard.org/digitalServices/pdf/ap/ap- computer-science-principles-curriculum-framework.pdf.
Computing at School (CAS). (2015). CAS Computational Thinking-A Guide for Teachers. Retrieved May 15, 2019, from https://community.computingatschool.org.uk/resources/2324/single.
Computer Science Teachers Association (CSTA). (2011). CSTA K-12 Computer Science Standards-CSTA Standards Task Force. Retrieved May 15, 2019, from http://ioi.te.lv/conf/c5_CSTA.pdf.
Connor, K., A., Ferri, B., & Meehan, K. (2013). Models of Mobile Hands-on STEM Education Models of Mobile Hands-on STEM Education. 120th ASEE Annual Conference & Exposition.
Craft, A., Cremin, T., Burnard, P., & Chappell, K. (2007). Developing Creative Learning through Possibility Thinking with Children Aged 3-7. In: Craft, A.; Cremin, T. and Burnard, P. eds. Creative Learning 3-11 and How We Document It. London, UK: Trentham.
Cropley, A. J. (2001). Creativity in Education and Learning. Sterling, VA: Stylus.
Csikszentmihalyi, M. (1988). Society, Culture, and Person: A Systems View of Creativity. In R. J. Sternberg (Ed.), The Nature of Creativity (pp. 325-339). New York: Cambridge University Press.
Csikszentmihalyi, M. (1994a). Memes versus Genes: Notes from the Culture War. In D. H. Feldman, M. Csikszentmihalyi & H. Gardner (Eds.), Changing the World: A Framework for the Study of Creativity (pp. 159-172). Westport, CT: Greenwood Publishing Group.
Csikszentmihalyi, M. (1994b). The Domain of Creativity. In D. H. Feldman, M. Csikszentmihalyi, & H. Gardner (Eds.), Changing the World: A Framework for the Study of Creativity (pp. 135-158). Westport, CT: Greenwood Publishing Group.
Csikszentmihalyi, M. (1996). Creativity: Flow and the Psychology of Discovery and Invention. New York: Harper Collins.
Csikszentmihalyi, M. (1999). Implications of a Systems Perspective for the Study of Creativity. In R. J. Sternberg (Ed.), The Handbook of Creativity (pp. 313-335). New York: Cambridge University Press.
Csikszentmihalyi, M., & Wolfe, R. (2000). New Conceptions and Research Approaches to Creativity: Implications of Systems Perspective for Creativity in Education. In K. A. Heller, F. J. Monks, R. J. Sternberg, & R. F. Subotnik (Eds.), International Handbook of Giftedness and Talent (2nd ed). (pp. 81-93). New York: Pergamon.
Cuny, J., Snyder, L., & Wing, J.M. (2010). Demystifying Computational Thinking for Non-Computer Scientists. Work in Progress, 2010.
Curzon, P., Dorling, M., Ng, T., Selby, C., & Woollard, J. (2014). Developing Computational Thinking in the Classroom: A Framework.
DeBoer, G., Carman, E., & Lazzaro, C. (2010). The Role of Language Arts in a Successful STEM Education Program. College Board Project 2061. Retrieved from http://files.eric.ed.gov/fulltext/ED563458.pdf.
Debra, K. M., Julianne, C. T., & Cynthia, A. S. (1997). Challenge in a Mathematics Classroom: Students’ Motivation and Strategies in Project-based Learning. The Elementary School Journal, 97(5), 501-521.
Delisle, R. (1997). How to Use Problem-based Learning in the Classroom. Alexandria, VA: Association for Supervision and Curriculum Development.
Denning, P. J. (2009). The Profession of IT beyond Computational Thinking. Communications of the ACM, 52(6), 28-30.
Department for Education in England (DOEE). (2013). (Published 11 September 2013). National Curriculum in England: Computing Programmes of Study. Retrieved May 15, 2019, from https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study.
Department for Education (2014). The National Curriculum in England, Framework Document. Retrieved from https://www.gov.uk/government/uploads/system/uploads/attachment_data/ file/335116/Master_final_national_curriculum_220714.pdf.
Diehl, W., Grodon, T., Lopez, H., & Cabral, C. (1999). Project-based Learning: A Strategy for Teaching and Learning. Boston, MA: Center for Youth Development and Education, Corporation for Business, Work, and Learning.
Digital Technologies Hub (2014). COMPUTATIONAL THINKING. Retrieved May 15, 2019, from https://www.digitaltechnologieshub.edu.au/teachers/topics/computational-thinking.
Drake, S. M., & Burns, R. (2004). Meeting Standards through Integrated Curriculum. Alexandria, VA: Association for Supervision and Curriculum Development.
Durak, H. Y., & Saritepeci, M. (2018). Analysis of the Relation between Computational Thinking Skills and Various Variables with the Structural Equation Model. Computers & Education, 116, 191-202.
Duran, R. L. (1983). Communicative Adaptability: A Measure of Social Communicative Competence. Communication Quarterly, 31, 320-326.
Duran, R. L. (1992). Communicative Adaptability: A Review of Conceptualization and Measurement. Communication Quarterly, 40(3), 253-268.
Eason, R., Giannangelo, D. M., & Franceschini, L. A. (2009). A Look at Creativity in Public and Private Schools. Thinking Skills and Creativity, 4(2), 130-137.
Einhorn, S. (2012). Microworlds, Computational Thinking, and 21st Century Learning. LCSI White Paper. Retrieved from http://www.microworlds.com.
Egan, T. M. (2005). Creativity in the Context of Team Diversity: Team Leader Perspectives. Advances in Developing Human Resources, 7(2), 207-225.
English, L. D. (2015). STEM: Challenges and Opportunities for Mathematics Education. In Beswick, Kim, Muir, Tracey, & Wells, Jill (Eds.), Proceedings of the 39th Conference of the International Group for the Psychology of Mathematics Education, PME, Hobart, Tas, pp. 4-18.
English, L. D. (2016). STEM Education K-12: Perspectives on Integration. International Journal of STEM Education, 3(1), 3. DOI: 10.1186/s40594-016- 0036-1
Ericsson, K., & Simon, H.A. (1993). Protocol Analysis: Verbal Reports as Data, Revised Edition. Cambridge: MIT Press.
Espeso, P. (2015). Cómo iniciar a un niño en la programación desde cero. [2016, October 2] Retrieved from http://www.xataka.com/otros/como-iniciar-a-un-nino-en-la- programacion-desde-cero.
Feldman, D. H., Csikszentmihalyi, M., & Gardner, H. (1994). A Framework for the Study of Creativity. In D. H. Feldman, M. Csikszentmihalyi, & H. Gardner (Eds.), Changing the World: A Framework for the Study of Creativity (pp. 1-45). Westport, CT: Greenwood Publishing Group.
Fensham, P. (2009). Real World Contexts in PISA Science: Implications for Context-based Science Education. Journal of Research in Science Teaching, 46(8), 884-896.
Fiona, G., & Sjoerd, V. (1998). Design of a Project-based Study Environment on the World Wide Web. ED-MEDIA/ED-TELECOM98 World Conference on Educational Multimedia and Hypermedia & World Conference on Educational Telecommunications. June 20-25.
Florida, R. (2002). The Rise of the Creative Class. New York: Basic Books.
Florida, R. (2005a). The Flight of the Creative Class: The New Global Competition for Talent. New York: Harper Collins.
Florida, R. (2005b). Cities and The Creative Class. London: Routledge.
Fogarty, R. (1997). Problem-based Learning & Other Curriculum Models for the Multiple Intelligences Classroom. Arlington Heights, IL: Skylight Professional Development.
France: Troubled Economic Outlook Heightens the Need for Multi-stakeholder Collaboration in STEM Education. (2013). Retrieved from http://www.ingenious-science.eu/web/guest/france.
Fraser, B. J., Tobin, K., & McRobbie, C. J. (Eds.). (2012). Second International Handbook on Science Education. New York: Springer.
Freudenthal, E. A., Duval, A. Hug, S., Ogrey, A. N., & Lim, K. H. (2011). Planting the Seeds of Computational Thinking: An Introduction to Programming Suitable for Inclusion in STEM Curricula. USA: ASEE.
García-Peñalvo, F. J. (2016a). A Brief Introduction to TACCLE 3-coding European Project. In F. J. García-Peñalvo, & J. A. Mendes (Eds.). 2016 International Symposium on Computers in Education (SIIE 16). USA: IEEE.
García-Peñalvo, F. J. (2016b). What Computational Thinking is. Journal of Information Technology Research, 9(3), v-viii.
García-Peñalvo, F. J., & Mendes, A. J. (2018). Exploring the Computational Thinking Effects in Pre-university Education. Computers in Human Behavior, 80, 407-411.
García-Peñalvo, F. J., Reimann, D., Tuul, M., Rees, A., & Jormanainen, I. (2015). TACCLE 3, O5: An Overview of the Most Relevant Literature on Coding and Computational Thinking with Emphasis on the Relevant Issues for Teachers. KA2 Project “TACCLE 3 – Coding” (2015-1-BE02-KA201-012307).
García-Peñalvo, F. J., Rees, A.M., Hughes, J., Jormanainen, I., Toivonen, T., & Vermeersch, J. (2016a). A Survey of Resources for Introducing Coding into Schools. In F. J. García-Peñalvo (Ed.). Proceedings of the Fourth International Conference on Technological Ecosystems for Enhancing Multiculturality (TEEM'16) (Salamanca, Spain, November 2-4, 2016) (pp. 19-26). New York, NY, USA: ACM.
Gardner, H. (1983). Frames of Minds: The Theory of Multiple Intelligence. New York: Basic Books.
Gardner, H. (1993). Creating Minds. New York: Basic Books.
Gardner, H. (1999). Intelligence Reframed: Multiple Intelligences for 21st Century. NY: Basic Book. [李欣瑩譯(2000)。再建多元智慧。臺北:遠流。]
Ghanbari, S. (2015). Learning across Disciplines: A Collective Case Study of Two University Programs that Integrate the Arts with STEM. International Journal of Education & the Arts, 16(7). Retrieved from http://www.ijea.org/v16n7/.
Google for Education (2015). CT Overview. Retrieved May 13, 2019, from https://edu.google.com/resources/programs/exploring-computational-thinking/#!ct-overview.
Gouws, L. A., Bradshaw, K., & Wentworth, P. (2013). Computational Thinking in Educational Activities: An Evaluation of the Educational Game Light-bot. Proceedings of the 18th ACM Conference on Innovation and Technology in Computer Science Education, ITiCSE '13 (pp. 10-15). New York, NY, USA: ACM.
Grover, S., & Pea, R. (2013). Computational Thinking in K-12: A Review of the State of the Field. Educational Researcher, 42(1), 38-43.
Gruber, H. E., & Davis, S. N. (1988). Inching Our Way up Mount Olympus: The Evolving-Systems Approach to Creative Thinking. In R. J. Sternberg (Eds.). The Nature of Creativity. 240-273. New York: Cambridge University Press.
Guilford, J. P. (1950). Creativity. American Psychologist, 5, 444-454.
Guilford, J. P. (1988). Some Changes in the Structure of Intellect Model. Educational and Psychological Measurement, 48, 1-4.
Gunawan, Sahidu, H., Harjono A., & Suranti, N.M.Y. (2017). The Effect of Project Based Learning with Virtual Media Assistance on Student’s Creativity in Physics. Cakrawala Pendidikan, 2, 167-179.
Gunnell, B., & Bright, M. (2011). Make a Job, Don’t Take a Job: Building the Creative Society. London, England: NDotM.
Guzdial, M. (1994). Software-realized Scaffolding to Facilitate Programming for Science Learning. Interactive Learning Environments, 4(1), 001-044. DOI:10.1080/1049482940040101
Han, S., Rosli, R., Caprano, M. M., & Caprano, R. M. (2016). The Effect of Science, Technology, Engineering and Mathematics (STEM) Project Based Learning (PBL) on Students’ Achievement in Four Mathematics Topics. Journal of Turkish Science Education, 13, 3-29.
Hemmendinger, D. (2010). A Plea for Modesty. ACM Inroads, 1(2), 4-7.
Herschbach, D. R. (2011). The STEM Initiative: Constraints and Challenges. Journal of sTEm Teacher Education, 48(1), 96-122.
Hocevar, D., & Bachelor, P. (1989). A Taoconomy and Critique of Measurement Used in the Study of Creativity. In J. A. Glouer, R. R. Ronning, & C. R. Reynolds (Eds.),
Handbook of Creativity (pp. 367-389). New York, NY: Plenum Press.
Howland, K., Good, J., & Nicholson, K. (2009). Language-based Support for Computational Thinking. In Visual Languages and Human-Centric Computing, 2009. VL/HCC 2009. IEEE Symposium on (pp. 147-150).
Hsu, T. C., Chang, S. C., & Hung, Y. T. (2018). How to Learn and How to Teach Computational Thinking: Suggestions Based on a Review of the Literature. Computers & Education, 126, 296-310.
Huang, G. Q., Shen, B., & Mak, K. L. (2002). Participatory and Collaborative Learning with TELD Courseware Engine. Journal of Professional Issues in Engineering Education and Practice,128(1), 36-43.
Hutamarn, S., Chookaew, S., Wongwatkit, C., Howimanporn, S., Tonggeod, T., & Panjan, S. (2017). A STEM Robotics Workshop to Promote Computational Thinking Process of Pre-Engineering Students in Thailand: STEMRobot. In Chen, W. et al. (Eds.) Proceedings of the 25th International Conference on Computers in Education. New Zealand: Asia-Pacific Society for Computers in Education.
Hynes, M., Portsmore, M., Dare, E., Milto, E., Rogers, C., Hammer, D., & Carberry, A. (2011). Infusing Engineering Design into High School STEM Courses. National Center for Engineering and Technology Education.
International Association for the Evaluation for the Evaluation of Educational Achievement (IEA). (2011). TIMSS 2011. Boston: Boston College.
International Society for Technology in Education (ISTE). (2013). ISTE’s NETS for Students. Retrieved from https://www.iste.org/standards.
International Society for Technology in Education (ISTE). (2019). The ISTE Standards for Students. Retrieved May 12, 2019, from https://www.iste.org/standards/for-students.
International Society for Technology in Education (ISTE) & Computer Science Teachers Association (CSTA). (2011). Operational Definition of Computational Thinking for K-12 Education.
Isbell, C., Stein, A., Cutler, R., Forber, J., Fraser, L., Impagliazzo, J., Proulx, V., Russ, S., Thomas, R., & Xu, Y. (2009). (Re)Defining Computing Curricula by (Re)Defining Computing. ACM SIGCSE Bulletin, 41(4), 195-207.
Jeng, J. H., & Tang, T. I. (2004). A Model of Knowledge Integration Capability. Journal of Information, Technology and Society, 4(1), 13-45.
Jonas, M., & Sabin, M. (2015). Computational Thinking in Greenfoot: AI Game Strategies for CS1: Conference Workshop. Journal of Computing Sciences in Colleges, 30(6), 8-10.
Jona, K., Wilensky, U., Trouille, L., Horn, M., Orton, K., Weintrop, D., & Beheshti, E. (2014). Embedding Computational Thinking in Science, Technology, Engineering, and Math (CT-STEM).
Kalelioğlu, F. (2015). A New Way of Teaching Programming Skills to K-12 Students. Code. Org. Computers in Human Behavior, 52, 200-210.
Kalelioğlu, F., Gülbahar Y., & Kukul, V. (2016). A Framework for Computational Thinking Based on a Systematic Research Review. Baltic J. Modern Computing, Vol. 4 (2016), No. 3, 583-596.
Katz, L. G., & Chard, S. C. (1985). Engaging Children’s Minds: The Project Approach.
Connecticut: Ablex Publishing Corporation.
Kaufman, J. C., Baer, J., & Cole, J. C. (2009). Expertise, Domains, and the Consensual
Assessment Technique. Journal of Creative Behavior, 43(4), 223-233.
Keefe, B. (2010). The Perception of STEM: Analysis, Issues, and Future Directions. Survey. Entertainment and Media Communication Institute.
Kim, J. S. (2011). New National Curriculum of Technology Education in Korea. Paper Presented at the 2011 International Conference on Technology Education in the Pacific-Rim Countries, Nagoya, Japan.
Koh, K. H., Basawapatna, A., Bennett, V., & Repenning, A. (2010). Towards the Automatic Recognition of Computational Thinking for Adaptive Visual Language Learning. In 2010 IEEE Symposium on Visual Languages and Human-centric Computing (pp. 59-66). IEEE.
Krajcik, J. S., Blumenfeld, P. C., Marx, R. W., & Soloway, E. (1994). A Collaborative Model for Helping Middle Grade Teachers Learn Project Based Instruction. The Elementary School Journal, 94(5), 483-497.
Krajcik, J. S., Czemiak, C., & Berger C. (1999). Teaching Children Science: A Project-based Approach. Boston: McGraw-Hill College.
Kuo, H. C., Tseng Y. C., & Yang Y. T. Carolyn. (2019). Promoting College Student’s Learning Motivation and Creativity through a STEM Interdisciplinary PBL Human-Computer Interaction System Design and Development Course. Thinking Skills and Creativity, 31, 1-10.
Leonard, D., & Straus, S. (1997). Putting Your Company’s Whole Brain to Work. Harvard Business Review, 75(4), 110-123.
Lewis, M. (2010). Problem Solving through Programming with Greenfoot. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.186.959&rep=rep1&type=pdf.
Lieberman, J. N. (1965). Playfulness and Divergent Thinking: An Investigation of Their Relationship at the Kindergarten Level. The Journal of Genetic Psychology: Research and Theory on Human Development, 107(2), 219-224. DOI:10.1080/00221325.1965.10533661
Long, C. (2005). Maths Concepts in Teaching: Procedural and Conceptual Knowledge. Pythagoras, 62, 59-65.
Maeda, J. (2011). STEM to STEAM. Core77.com. Retrieved from http://www.core77.com/posts/20692/getting-steamy-in-rhode-island-20692.
Maeda, J. (2013). STEM + Art = STEAM. The STEAM Journal, 1(1), 1-3. DOI: 10.5642/steam.201301.34
Mannila, L., Dagiene, V., Demo, B., Grgurina, N., Mirolo, C., Rolandsson, L., & Settle, A. (2014). Computational Thinking in K-9 Education. Proceedings of the Working Group Reports of the 2014 on Innovation & Technology in Computer Science Education Conference (pp. 1-29). New York, USA: ACM.
Marasco, E., & Behjat, L. (2013). Integrating Creativity into Elementary Electrical Engineering Education Using CDIO and Project-based Learning. 2013 IEEE International Conference on Microelectronic Systems Education (MSE), pp.44-47.
Marcelino, M. J., Pessoa, T., Vieira, C., Salvador, T., & Mendes, A. J. (2018). Learning Computational Thinking and Scratch at Distance. Computers in Human Behavior, 80, 470-477.
Marginson, S., Tytler, R., Freeman, B., & Roberts, K. (2013). STEM: Country Comparisons: Final Report. Melbourne: Australian Council of Learned Academies.
Mataric, M., Koenig, N., & Feil-Seifer, D. (2007). Materials for Enabling Hands-on Robotics and STEM Education. AAAI Spring Symposium on Robots and Robot. Venues: Resources for AI Education, Stanford, CA.
Mayasari1, T., Kadarohman, A., Rusdiana, D., & Kaniawati, I. (2016). Exploration of Student’s Creativity by Integrating STEM Knowledge into Creative Products. Proceedings of International Seminar on Mathematics, Science, and Computer Science Education (MSCEIS 2015) AIP Conf. Proc. 1708, 080005-1–080005-5; DOI: 10.1063/1.4941191
McLellan, R., Galton, M., Steward, S., & Page, C. (2012). The Impact of Creative Partnerships on the Wellbeing of Children and Young People. Newcastle: Creativity, Culture & Education.
Miller (2017). PBL and STEAM Education: A Natural Fit. Retrieved from https://www.edutopia.org/blog/pbl-and-steam-natural-fit-andrew-miller.
Mishra, P., & Yadav, A. (2013). Of Art and Algorithms: Rethinking Technology & Creativity in the 21st Century. TechTrends, 57(3), 11.
Mohaghegh, M., & McCauley, M. (2016). Computational Thinking: The Skill Set of the 21st Century. (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3), 2016, 1524-1530.
Moreno-León, J., & Robles, G. (2015a). Analyze Your Scratch Projects with Dr. Scratch and Assess Your Computational Thinking Skills. In Paper Presented at the Scratch Conference, Amsterdam, The Netherlands. Retrieved from http://jemole.me/replication/2015scratch/InferCT.pdf.
Moreno-León, J., & Robles, G. (2015b). Dr. Scratch: A Web Tool to Automatically Evaluate Scratch Projects. In Proceedings of the Workshop in Primary and Secondary Computing Education, WiPSCE '15 (London, United Kingdom, November 9-11, 2015) (pp. 132-133). New York, NY, USA: ACM.
Moreno-León, J., Robles, G., & Román-González, M. (2016). Code to Learn: Where Does It belong in the K-12 Curriculum? Journal of Information Technology Education: Research, 15, 283-303.
Murphy, K. L., & Yakut, G.D. (2001). Role Plays, Panel Discussions, and Case Studies: Project-based Learning in a Web-based Course. Paper Presented at the Annual Meeting of the American Educational Research Association. (Seattle, W.A., April 10-14, 2001). (ERIC Document Reproducation Service No. ED 454 809).
National Academies of Science (2010). Report of a Workshop on the Scope and Nature of Computational Thinking. Washington DC: National Academies Press.
National Governors Association (2011). Building a Science, Technology, Engineering and Math Agenda. Washington, D. C.: Author.
National Research Council (NRC). (2010). Exploring the Intersection of Science Education and 2lst Century Skills: A Workshop Summary. Washington, DC: National Academies Press.
National Research Council (NRC). (2011). Report of a Workshop of Pedagogical Aspects of Computational Thinking. Washington, D.C.: The National Academies Press.
National STEM Centre (2010). STEM Case Studies. Retrieved from http://www.nationalstemcentre.org.uk/stem-in-context/stem-case-studies.
Nickerson, R. S. (1999). Enhancing Creativity. In R. J. Sternberg (Ed.), Handbook of Creativity (pp. 392-430). Cambridge, UK: Cambridge University Press.
Office of the Chief Scientist (2013). Science, Technology, Engineering and Mathematics in the National Interest: A Strategic Approach. Retrieved from http://www.chiefscientist.gov.au/wp-content/uploads/ STEMstrategy290713FINALweb.pdf.
Organisation for Economic Co-operation and Development (OECD). (2006). Assessing Scientific, Reading and Mathematical Literacy: A Framework for PISA 2006. Paris: OECD.
Ostler, E. (2012). 21st Century STEM Education: A Tactical Model for Long-Range
Success. International Journal of Applied Science and Technology, Vol. 2, No. 1;
January 2012.
O’Tuel, F. S., & Bullard, R. K. (1993). Developing Higher Order Thinking in the Content Areas K-12. Pacific Grove, CA: Critical Thinking Press and Software.
Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. New York: Basic Books.
Papert, S. (1991). Situating Constructionism. In I. Harel, & S. Papert (Eds.). Constructionism (pp. 1-11). Norwood: Ablex.
Piro, J. (2010). Going from STEM to STEAM: The Arts Have a Role in America’s Future too. Education Week.
Pitt, J. (2009). Blurring the Boundaries-STEM Education and Education for Sustainable Development. Design and Technology Education: An International Journal, 14(1), 37-48.
Polman, J. L. (1998). Activity Structures for Project Based Teaching and Learning: Design and Adaptation of Cultural Tools. San Diego, CA: Annual Meeting of AERA.
Pólya, G. (1957). How to Solve It. A New Aspect of Mathematical Method (2nd ed.). Priceton, New Jersey: Princeton University Press.
Portz, S. (2015). The Challenges of STEM Education. (April 28, 2015). The Space Congress® Proceedings. Paper 3.
Project Lead the Way (PLTW). (2014). Today’s STEM Realities. Retrieved from http://www.pltw.org/.
Psycharis, S., & Kotzampasaki, E. (2019). The Impact of a STEM Inquiry Game Learning Scenario on Computational Thinking and Computer Self-confidence. EURASIA Journal of Mathematics, Science and Technology Education, 15(4), em1689.
Psycharis, S., Kalovrektis, K., Sakellaridi, E., Korres, K., & Mastorodimos, D. (2017). Unfolding the Curriculum: Physical Computing, Computational Thinking and Computational Experiment in STEM’s Transdisciplinary Approach. EJERS, European Journal of Engineering Research and Science Special Issue: CIE 2017.
Reitenbach, G. (2015). From STEM to STEAM Education. Power. 159 (1), 6.
Repenning, A., Webb, D., & Ioannidou, A. (2010). Scalable Game Design and the Development of a Checklist for Getting Computational Thinking into Public Schools. In Proceedings of the 41st ACM Technical Symposium on Computer Science Education (pp. 265-269).
Riley, D. D., & Hunt, K. A. (2014). Computational Thinking for the Modern Problem Solver. Boca Raton, FL, USA: CRC Press.
Ritz, J. M., & Fan, S. C. (2015). STEM and Technology Education: International State-of-the-art. Int J Technol Des Educ, 25, 429-451. DOI: 10.1007/s10798-014-9290-z
Román-González, M. (2015). Computational Thinking Test: Design Guidelines and
Content Validation. In Proceedings of EDULEARN15 Conference, 6th-8th July
2015, Barcelona, Spain (pp. 2436-2444).
Román-González, M., Pérez-González, J.-C., & Jiménez-Fernández, C. (2017). Which Cognitive Abilities Underlie Computational Thinking? Criterion Validity of the Computational Thinking Test. Computers in Human Behavior, 72, 678-691. DOI: 10.1016/j.chb.2016.08.047
Runco, M. (2007). Creativity: Theories and Themes: Research, Development and Practice. Burlington, MA: Elsevier Academy Press.
Salinger, G., & Zuga, K. (2009). Background and History of the STEM Movement. In International Technology Engineering Educators Association (ITEEA) (Ed.), The Overlooked STEM Imperatives: Technology and Engineering (pp. 4-9). Reston, VA: ITEEA.
Scott, G., Leritz, L. E., & Mumford, M. D. (2004). The Effectiveness of Creativity Training: A Quantitative Review. Creativity Research Journal, 16(4), 361-388.
ScratchED (n.d.). WHAT IS COMPUTATIONAL THINKING? Retrieved May 15, 2019, from http://scratched.gse.harvard.edu/ct/defining.html.
School Curriculum and Standards Authority, Government of Western Australia (2014). Computational Thinking. Retrieved May 15, 2019, from https://k10outline.scsa.wa.edu.au/home/p-10-curriculum/curriculum-browser/syllabus/technologies-overview/glossary/computational-thinking.
Schraw, G., & Dennison, R.S. (1994). Assessing Metacognitive Awareness. Contemporary Educational Psychology, 19(4), 460‐475.
Seiter, L., & Foreman, B. (2013). Modeling the Learning Progressions of Computational Thinking of Primary Grade Students. In Proceedings of the Ninth Annual International ACM Conference on International Computing Education Research (pp. 59-66). ACM.
Selby, C., & Woollard, J. (2013). Computational Thinking: The Developing Definition.
Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating Computational Thinking with K-12 Science Education Using Agent-based Computation: A Theoretical Framework. Education and Information Technologies, 1-30.
Shepherd, A., & Cosgriff, B. (1998). Problem Based Learning: A Bridge between Planning Education and Planning Practice. Journal of Planning Education and Research, 17, 348-357.
Starko, A. J. (2000). Creativity in the Classroom: School in the Curious Delight. New York, NY: LEA.
Stariha, W. E., & Walberg, H. J. (1995). Childhood Precursors of Women’s Artistic Eminence. Journal of Creative Behavior, 29(4), 269-282.
Steinberg, A. (1997). Real Learning, Real Work. New York: Routledge.
Sternberg, R. J. (1999). Handbook of Creativity. NY: Cambridge.
Sternberg, R. J., & Lubart, T. I. (1995). Defying the Crowd: Cultivating Creativity in a Culture of Conformity. New York, NY: Free Press.
Sternberg, R. J., & Lubart, T. L. (1996). Investing in Creativity. American Psychologist, 51(7), 677-688.
Sternberg, R. J., & Williams, W. M. (1996). How to Develop Student Creativity. Virginia: ASCD. [郭俊賢、陳淑惠譯(2003)。如何培育學生的創造力。臺北:心理。]
Swaid, S. I. (2015). Bringing Computational Thinking to STEM Education. Procedia Manufacturing, 3, 3657-3662.
Sysło, M. M., & Kwiatkowska, A. B. (2013). Informatics for All High School Students: A Computational Thinking Approach. In I. Diethelm, & R. T. Mittermeir, (Eds.). Informatics in Schools. Sustainable Informatics Education for Pupils of All Ages. 6th International Conference on Informatics in Schools: Situation, Evolution, and Perspectives, ISSEP 2013, Oldenburg, Germany, February 26-March 2, 2013. Proceedings (pp. 43-56). Heidelberg: Springer.
TACCLE 3 Consortium (2017). TACCLE 3: Coding Erasmus + Project Website.
Te Kete Ipurangi (TKI) (2017). The New Zealand Curriculum- Technology. Retrieved May 15, 2019, from http://elearning.tki.org.nz/Teaching/Curriculum-areas/Digital-Technologies-in-the-curriculum.
The College Board (2012). Computational Thinking Practices and Big Ideas, Key Concepts, and Supporting Concepts. Retrieved from http://www.csprinciples.org/home/about-the-project.
The White House (2012). President Obama Announces Plans for a New, National Corps to Recognize and Reward Leading Educators in Science, Technology, Engineering, and Math. Retrieved from http://www.whitehouse.gov/the-press-office/2012/07/17/ president-obama-announces-plans-new-national-corps- recognize-and-reward-.
The White House (2013). Preparing a 21st Century Workforce-Science, Technology, Engineering, and Mathematics (STEM) Education in the 2014 Budget. Retrieved from http://www.whitehouse.gov/sites/default/files/microsites/ostp/2014_R&Dbudget _STEM.pdf.
Thomas, J. W. (2000). A Review of Research on Project-based Learning. Retrieved from https://www.asec.purdue.edu/lct/HBCU/documents/AReviewofResearchofProject-BasedLearning.pdf.
Thomas, J. W., Mergendoller, J. R., & Michaelson, A. (1999). Project-based Learning: A Handbook for Middle and High School Teachers. Novato, CA: The Buck Institute for Education.
Thorne, K. (2007). Essential Creativity in the Classroom: Inspiring Kids. New York: Routledge.
Thuneberga, H. M., Salmia, H. S., & Bognerb, F. X. (2018). How Creativity, Autonomy and Visual Reasoning Contribute to Cognitive Learning in a STEAM Hands-on Inquiry-based Math Module. Thinking Skills and Creativity, 29, 153-160.
Torrance, E. P. (1975). Creativity Research in Education: Still Alive. In I. A. Tayor & J. W. Getzels (Eds.), Perspectives in Creativity (pp. 278-296). Chicago, CHI: Aldine.
Torrance, E. P. (1993). The Beyonders in a Thirty Year Longitudinal Study of Creative Achievement. Roeper Review, 15, 131-135.
Torrance, E. P., Weiner, D., Presbury, J. H., & Henderson, M. (1987). Save Tomorrow for the Children. Buffalo, NY: Bearly Limited.
Treffinger, D. J. (1980). The Progress and Peril of Identifying Creative Talent among Gifted and Talented Students. Journal of Creative Behavior, 14, 20-34.
UNESCO (2006). Teaching and Learning for Sustainable Future. Retrieved from http://www.unesco.org/education/tlsf/.
U. S. Department of Education (2013). Science, Technology, Engineering and Math: Education for Global Leadership. U. S. Department of Education. Retrieved from http://www.ed.gov/sites/default/files/stem-overview.pdf.
Vasquez, J.A., Comer, M., & Sneider, C. (2013). STEM Lesson Essentials, Grades 3-8: Integrating Science, Technology, Engineering, and Mathematics. Portsmouth, NH: Heinemann.
Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015). Computational Thinking in Compulsory Education: Towards an Agenda for Research and Practice. Educ Inf Technol, 20, 715-728.
Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012). The Fairy Performance Assessment: Measuring Computational Thinking in Middle School. In Proceedings of the 43rd ACM Technical Symposium on Computer Science Education (pp. 215-220). ACM.
Weintrop, D., Beheshti, E., Horn, M. S., Orton, K., Trouille, L., Jona, K., & Wilensky, U. (2014). Interactive Assessment Tools for Computational Thinking in High School STEM Classrooms.
Wilensky, U., & Reisman, K. (2006). Thinking like a Wolf, a Sheep, or a Firefly: Learning Biology through Constructing and Testing Computational Theories— an Embodied Modeling Approach. Cognition and Instruction, 24(2), 171-209.
Williams, F. E. (1972). Encouraging Creative Potential. New Jersey, NJ: Educational Technology Publications.
Wing, J. M. (2006). Computational Thinking. Communications of the ACM, 49(3), 33-35.
Wolk, S. (1994). Project-based Learning: Pursuits with a Purpose. Educational Leadership, 52(3), 42-45.
Yakman, G. (2008). ST∑@M Education: An Overview of Creating a Model of Integrative Education.
Yarnall, L., & Kafai, Y. (1996). Issues in Project-based Science Activities: Children’s Constructions of Ocean Software Games. (ERIC Document Reproduction Service No. ED 395 819)
Yasin, R. M., Mustapha, R., & Zaharim, A. (2009). Promoting Creativity through Problem Oriented Project Based Learning in Engineering Education at Malaysian Polytechnics: Issues and Challenges. Proceedings of the 8th WSEAS International Conference on EDUCATION and EDUCATIONAL TECHNOLOGY, 253-258.
Yılmaz, İ., & Yalçın N. (2011). Probability and Possibility Calculation Statistics for Data Variables (VDOIHI); Statistical Methods for Combined Stage Percentage Calculation. International Online Journal of Educational Sciences, 3(3), 957-979.
Yılmaz, İ., & Yalçın, N. (2012). The Relationship of Procedural and Declarative Knowledge of Science Teacher Candidates in Newton’s Laws of Motion to Understanding. American International Journal of Contemporary, 2(3), 50-56.
Zapata-Ros, M. (2015). Pensamiento Computacional: Una Nueva Alfabetización Digital. RED, Revista de Educación a distancia, 46.
Zhou, C. (2012). Integrating Creativity Training into Problem and Project-based Learning Curriculum in Engineering Education. European Journal of Engineering Education, 37, Issue 5, 488-499.
Zhou, C., Holgaard, J. E., Kolmos, A., & Nielsen, J. D. (2010). Creativity Development for Engineering Students: Cases of Problem and Project Based Learning. Joint International IGIP-SEFI Annual Conference 2010, 19th-22nd September 2010, Trnava, Slovakia.
Zhou, C., Kolmos, A., & Nielsen, J. D. (2012). A Problem and Project-based Learning (PBL) Approach to Motivate Group Creativity in Engineering Education. International Journal of Engineering Education, 28, Issue 1, 3-16.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-06-18起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-06-18起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw