進階搜尋


 
系統識別號 U0026-1604201217142100
論文名稱(中文) 防砂壩於洪水事件中潰壩導致河床變動之研究
論文名稱(英文) Study on the Flooding-Driven Erosion and Sedimentation Following a Check-Dam Failure
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系碩博士班
系所名稱(英) Department of Hydraulics & Ocean Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 曾文孝
研究生(英文) Wen-Hsiao Tseng
學號 N88941020
學位類別 博士
語文別 中文
論文頁數 179頁
口試委員 指導教授-謝正倫
共同指導教授-羅偉誠
口試委員-詹錢登
口試委員-卡艾瑋
口試委員-蔡元芳
口試委員-曾志民
中文關鍵字 防砂壩  潰壩  土石流  本構關係 
英文關鍵字 check-dam  check-dam failure  debris flow  constitutive equation 
學科別分類
中文摘要 防砂壩在蓄滿泥砂的情形下,因洪水事件發生潰壩時,壩後大量的泥砂隨洪水沖刷至下游,對於上下游的河床皆會造成顯著的影響,如2007年石門水庫上游的巴陵防砂壩潰壩事件。為評估防砂壩潰壩的河床變動特性,本文分別以室內渠道實驗及數值模擬等方式進行分析,並以巴陵壩潰壩案例為現場調查分析的對象。在室內實驗部分,本研究以長直渠道進行3種不同渠道坡度、2種流量及2種不同防砂壩壩高等12組實驗條件的潰壩實驗,分析潰壩過程中的泥砂運動型態,發現即使主河道的坡度平緩,流體的砂礫層與全流動層的仍然比值可達0.7左右,顯示防砂壩的潰壩過程形成接近土石流的高含砂濃度水流;另選取溯源沖刷距離、泥砂輸送距離、渠床坡度變化等物理量,與床砂擴散理論解析成果兩者進行比較,並將物理量無因次化後分析潰壩過程的渠床變化特性。最後分析潰壩過程的輸砂量變化,並選取數種較為適用的輸砂公式進行輸砂率比較。
在數值模式部分,為了建立一具有物理理論基礎的潰壩渠床變動評估數值模式,本文利用Egashira et al.(1997)提出之適用於土石流及高含砂水流的本構關係理論,配合淺水波方程式、泥砂連續方程式、地形變動方程式,以有限差分之蛙跳法建立一二維數值模式進行潰壩後沖刷與淤積之模擬。模式建立後,進行安定性分析以及流體和泥砂的連續性分析,並進行網格及計算時距的敏感度分析。最後以實驗資料進行模式的驗證,結果顯示本文所提出之模式在模擬防砂壩潰壩的地形沖淤特性上具有相當的準確性。
在現場調查部分,本文以巴陵壩為探討對象。本文蒐集1980~2010年共7次地形資料,利用潰壩前的地形實測資料、河床質粒徑調查成果,將本文建立的土石流及高含砂水流沖淤模式應用於石門水庫上游的巴陵防砂壩潰壩事件案例分析,模擬潰壩後經歷2次洪水事件的地形變動情形。受限於潰壩前的地形資料精度,本文以一維的方式進行模擬,由模擬成果顯示,在潰壩後1小時內為最主要的河床縱向調整階段,並且在第一場洪水事件中河床已達穩定平衡。依據本研究的設定條件進行模擬後,潰壩後的河床沖淤變化與實測資料成果非常接近。
英文摘要 In order to study the sedimentation and erosion due to the check-dam failure, a 10 m long, 0.2 m wide, 0.5 m depth flume was employed to simulate the channel bed evolution of check-dam failure. Twelve dam failure conditions were experimented, including three channel slopes, two water discharges and two different check-dam heights. According to the experiment results, we found that the ratio of sediment moving layer thickness to total flow depth ( ) was around 0.7 in the initial stage of check-dam failure, indicating that the flow regime was approaching high concentration sediment laden flow such as debris flow. The experiment longitudinal profiles, the gradient of channel bed, head-cutting propagation distance and deposition length were compared with the theoretical solution derived from sediment transport diffusion equation (Wang, 2010). Several sediment transportation rate equations were also compared, and we found that Smart equation (Smart, 1984) predicts well with the experiment results.
The sediment concentration and the gradient variation were not considered in the derivation of diffusion equation, therefore, it may be not so appropriate for applying the theoretical solution to a complicated geomorphology case study. In order to fix this problem, a numerical model was proposed, which was using the constitutive equation proposed by Egashira, Miyamoto and Itoh (2000), and preferable in debris flows and sediment laden flows. The governing equations were discretized by the staggered grid and solved numerically by leap-frog explicit finite difference method. After analyzing the stability, continuity and sensitivity of the model, the simulation results were verified with the experiment data. Through the comparison, it was found that the non-dimensional parameters were comparable to the experiment results. It means that the numerical model could predict well in the sedimentation and erosion of the check-dam failure case.
Finally, the numerical model was applied to Baling dam failure event in Shihmen Reservoir watershed, and two typhoon floods were considered. According to the simulation results, it is found that the significant adjustment of longitudinal profile was taken place in the first one hour, and the river bed was almost achieved equilibrium state in the first flood. Following the scenario, the simulation predicted similar longitudinal profile with the survey data.
論文目次 中摘 I
Abstract III
誌謝 V
目錄 VI
表目錄 VIII
圖目錄 IX
符號說明 XII
第一章 緒論 1
1-1 研究動機及目的 1
1-2 文獻回顧 3
1-2-1 理論及室內實驗相關研究 3
1-2-2 土砂運動過程之本構關係相關研究 4
1-2-3 土砂運動數值模擬相關研究 5
1-3 研究方法與組織架構 7
第二章 實驗研究 10
2-1 實驗設備 10
2-2 實驗條件 13
2-2-1 實驗配置 13
2-2-2 實驗條件設定 15
2-3 實驗方法與流程 16
2-4 成果與分析 19
2-4-1 防砂壩潰壩實驗過程 19
2-4-2 泥砂運動形態分析 27
2-4-3 溯源沖刷及泥砂輸送距離分析 30
2-4-4 渠床坡度變化分析 32
2-4-5 渠床旋轉停止條件 34
2-4-6 輸砂量分析 35
第三章 數值模擬 39
3-1 本構關係式 39
3-1-1 顆粒間因摩擦所造成之能量散逸率 40
3-1-2 顆粒間之非彈性碰撞所造成之能量散逸率 41
3-1-3 顆粒間孔隙水亂流所造成之能量散逸率 42
3-2 基本方程式 45
3-2-1 流體運動方程式 46
3-2-2 泥砂連續方程式 48
3-2-3 底床高程變動方程式 49
3-2-4 土石流與不成熟土石流流況判別式 50
3-3 數值模式之建立 51
3-3-1 數值方法 51
3-3-2 數值模擬條件與計算流程 53
3-4 模式之檢驗 55
3-4-1 安定性分析 55
3-4-2 連續性分析 56
3-4-3 網格與時距敏感度分析 58
3-5 模式驗證 60
3-6 實驗與數模結果之比較 65
3-7 流場之模擬成果 69
3-7-1 流速 69
3-7-2 流動深度 74
3-7-3 福祿數(Froude number) 79
3-7-4 輸砂量 84
第四章 巴陵防砂壩潰壩案例分析 89
4-1 巴陵防砂壩潰壩事件概述 89
4-2 地形條件 95
4-3 河床堆積材料特性 98
4-4 邊界條件與計算方法 102
4-5 巴陵壩潰壩事件模擬計算流程 105
4-6 模擬成果 106
4-7 巴陵壩潰壩對支流造成的影響 111
第五章 結論與建議 118
5-1 結論 118
5-2 建議 120
參考文獻 121
附錄(A):床砂擴散理論 131
附錄(B):實驗縱斷面成果比較 134
簡歷 178
參考文獻 1、 Adachi S., and Nakatoh T. (1969), Changes of top set bed in a silted reservoir, Proc, IAHR, 13th Congress, Paper A-33, , pp. 297-304.
2、 Arattano M. and W.Z. Savage, (1992) , A Kinematic Wave Model for Debris Flows, U.S. Geological Survey Open-File Report, pp. 92-290.
3、 Ashida K., and Michiue M.(1972), An investigation of river bed degradation downstream of a dam, Proc. IAHR, 14th Congress, Paper C-30, pp. 245-255.
4、 Benoit C., Magnus L.(2005), A general formula for non-cohesive bed load sediment transport, Estuarine, Coastal and Shelf Science 63 249–260.
5、 Bellal M., Capart H., Soares-Frazão S., Zech Y.(2009), Analytical, experimental, and numerical models of knickpoint migration, Proceedings River, Coastal and Estuarine Morphodynamics : RCEM 2009, Santa Fe.
6、 Brooks G.R., Lawrence D.E. (1999), The drainage of the Lake Ha!Ha! reservoir and downstream geomorphic impacts along Ha!Ha! River, Saguenay area, Quebec, Canada: Geomorphology, v. 28, no. 1-2, p. 141-168.
7、 Bountry J., Y. Lai and T. Randle (2006), Comparison of numerical hydraulic models applied to the removal of Savage Rapids Dam near Grants Pass, Oregon. Proceedings of the Eighth Federal Interagency Sedimentation Conference, April 2–6, 2006, Reno, Nevada.
8、 Cantelli A., C. Paola, and G. Parker (2004), Experiments on upstream-migrating erosional narrowing and widening of an incisional channel caused by dam removal, Water Resources Research, Vol.40, W03304.
9、 Cantelli A., M. Wong, G. Parker, and C. Paola (2007), Numerical model linking bed and bank evolution of incisional channel created by dam removal, Water Resources Research, Vol.43, W07436, doi:10.1029/2006WR005621.
10、 Capart H. and Young D.L. (1998), Formation of a jump by the dam-break wave over a granular bed, Journal of Fluid Mechanics, 372: 165-187.
11、 Capart H., Bellal M. and Young D.L. (2007), Self-similar evolution of semi-infinite alluvial channels with moving boundaries, Journal of Sedimentary Research, 77, 13- 22.
12、 C. Bellos, V. Hrissanthou(1998), Numerical Simulation of Sediment Transport Following a Dam Break, Water Resources Management 12: 397–407.
13、 Cui Y., G. Parker, C. Braudrick, W. E. Dietrich and B. Cluer (2006), Dam removal express assessment models (DREAM): part 1. Model development and validation, J. Hydraul. Res., 44(3), 291– 307.
14、 Cui Y., C. Braudrick, W. E. Dietrich, B. Cluer, and G. Parker (2006), Dam removal express assessment models (DREAM): part 2. Sample runs/sensitivity tests, J. Hydraul. Res., 44(3), 307–323.
15、 Cui Y. and Wilcox, A. (2008), Development and application of numerical models of sediment transport associated with dam removal, in Garcia, M.H. (ed.), Sedimentation Engineering: Processes, Measurements, Modeling, and Practice., ASCE Manuals and Reports on Engineering Practice No. 110, American Society of Civil Engineers, Reston, VA, pp. 995–1010.
16、 Culling W.E.H. (1960), Analytical theory of erosion, Journal of Geology, 68: 3, 344-364.
17、 Costa J.E. and Schuster R.L. (1988), The formation and failure of natural dams. Geol. Soc. Am. Bull. 100, 1054–1068
18、 DeVries M. (1973), River bed variations - aggradation and degradation, International Seminar on Hydraulics of Alluvial Streams, IAHR, New Delhi, India, Jan.
19、 Doyle M. W., Stanley E.H. and Harbor J. M. (2002), Geomorphic Analogies for Assessing Probable Channel Response to Dam Removal, Journal of The American Water Resources Association, Vol. 38, No. 6, pp.1567-1579.
20、 Downs P.W., Y. Cui, J.K. Wooster, S.R. Dusterhoff, and D.K. Booth (2009), Managing reservoir sediment release in dam removal projects: An approach informed by physical and numerical modelling of non-cohesive sediment. Intl. J. River Basin Management 7(4): 433–452.
21、 Egashira S., K. Ashida, H. Yajima and J. Takahama (1989), Constitutive equation of debris flow. Annuals Disaster Prevention Research Institute, Kyoto Univ. Vol. 32B-2, pp. 487–501. (in Japanese)
22、 Egashira S., Miyamoto K. and Itoh T. (1997), Constitutive Equations of Debris Flow And Their Applicability, Proceedings of the First International Conference on Debris Flow Hazards Mitigation, California, USA, pp. 340 - 349.
23、 Egashira S., Honda N. and Itoh T. (2001), Experimental study on the entrainment of bed material into debris flow. Physics and Chemistry of the Earth, Vol. 26, No. 9, pp. 645-650.
24、 Egashira S. and Itoh T. (2005), Paradoxiacal discussions on sediment transport formulas. Proceedings of River, Coastal and Estuarine Morphodynamics: RCEM. Parker and Garcia (eds), Taylor and Francis Group, London, 33- 38.
25、 Fraccarollo L. and Capart H. (2002), Riemann wave description of erosional dam-break flows. J. Fluid Mech. 461, 183-228.
26、 Gregoretti C., Maltauro A. and Lanzoni S. (2010), , Laboratory Experiments on the Failure of Coarse Homogeneous Sediment Natural Dams on a Sloping Bed, Journal of Hydraulic Engineering, Vol. 136, Issue 11, pp.868-879.
27、 Gill M. A. (1983), Diffusion model for aggrading channels, Journal of Hydraulic Research, 21: 5, 355-367.
28、 Gill M.A. (1987), Nonlinear Solution of Aggradation and Degradation in Channels, Journal of Hydraulic Research, 25: 537-547.
29、 Heede(1967), The Fusion of Discontinuous gullies, Hydrological Sciences Journal, Vol.12, Issue4, 45-50.
30、 Huang (1992), Aggradation and Degradation in Channels, National Taiwan University, Master thesis.
31、 Itoh T. and Egashira S. (1999), Comparative study of constitutive equations for debris flows. Journal of Hydroscience and Hydraulic Engineering, Vol. 17, No. 1, pp. 59-71.
32、 Itoh T., Egashira S. and Miyamoto K.(2000), Influence of interparticle friction angle on debris-flows, Proceedings of the Second International Conference on Debris Flow Hazards Mitigation, Taipei, Taiwan, pp. 219 - 228.
33、 Itoh T. and Miyamoto K. (2002), Study on one dimensional numerical simulation of debris flow. Annual Journal of Hydraulic Engineering, Vol. 46, pp. 671-676. (in Japanese)
34、 Itoh T., Miyamoto K. and Egashira S. (2003), Numerical simulation of debris flow over erodible bed, Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment; Proceedings. 3rd International Conference, pp. 457-468.
35、 Iverson R.M., Denlinger R.P. LaHusen R.G. and Logan, M. (2000), Two-phase debris-flow across 3-D terrain: Model predictions and experimental tests. Debris-Flow HazardsMitigation: Mechanics, Prediction, and Assessment; Proceedings, 2nd International Conference, pp. 521-529.
36、 Iverson R.M. and Denlinger R.P. (2001), Flow of variably fluidized granular masses across three dimensional terrain: 1. Coulomb mixture theory. Journal of Geophysical Research, Vol. 106, No. B1, pp. 537-552.
37、 Jan C. D. (1997), A Study on the Numerical Modeling of Debris Flows,”Proceedings of the First International Conference on Debris Flow Hazards Mitigation, California, USA, pp.717-726.
38、 Jonathan L. Carrivick(2010), Dam break–Outburst flood propagation and transient hydraulics: A geosciences perspective, Journal of Hydrology 380 338–355.
39、 Jim Pizzuto, (2002), Effects of Dam Removal on River Form and Process. BioScience, 52(8), pp.683-691.
40、 Kamal El Kadi Abderrezzak , André Paquier , Bernard Gay(2008), One-dimensional numerical modelling of dam-break waves over movable beds: application to experimental and field cases, Environ Fluid Mech 8:169–198.
41、 Konrad C.P. (2009), Simulating the recovery of suspended sediment transport and river-bed stability in response to dam removal on the Elwha River,Washington. Ecological Engineering 35: 1104–1115.
42、 Leal J. G. A. B., Ferreira R. M. L. and Cardoso A. H., Bousmar, D. and Zech Y. (eds) (2002), Dam-Break Waves on Movable Bed. the 1st IAHR Institute Conference on Fluvial Hydraulics Louvain-la-Neuve, Belgium Balkema pp. 981-990. River Flow 2002.
43、 Major J. J., J.E. O'Connor, G.E. Grant, K.R. Spicer, H.M. Bragg, A. Rhode, D.Q. Tanner, C. W. Anderson, and J.R. Wallick (2008), Initial fluvial response to the removal of Oregon's Marmot Dam, Eos Trans. AGU, 89(27), 241–242.
44、 M.A. Madej (2001), Development of channel organization and roughness following sediment pulses in single-thread, gravel bed rivers, Water Resources Research, Vol. 37, No. 8, pp. 2259–2272.
45、 Nakagawa H. and Takahashi T. (1997), Estimation of a Debris Flow Hydrograph and Hazard Area, Proceedings of the First International Conference on Debris Flow Hazards Mitigation, California, USA, pp.64-73.
46、 O’Brien J. S. and P. Y. Julien (1985), Physical Properties and Mechanics of Hyperconcentrated Sediment flows, Specialty Conf. Delineation of Landslides, Flash Flood & Debris flow Hazards in Utah, pp.260-279.
47、 O’Connor J., J. Major, and G. Grant (2008), The dams come down: unchaining U.S. rivers. Geotimes 53:22-28.
48、 Osti R., Egashira S., and Itoh T. (2004), Prediction of 1999-San Julian debris flows based on dependent and independent occurrences, Annual Journal of Hydraulic Engineering, Vol. 48, pp. 913-918.
49、 P. K. Stansby, A. Chegini, T. C. D. Barnes(1998),The initial stages of dam-break flow, J. Fluid Mech. , vol. 374, pp. 407-424.
50、 Smart G.M. (1984), Sediment Transport Formula For Steep Channels, Journal of Hydraulic Engineering, Vol. 110, Issue 3, pp.267-276.
51、 Soni J.P., Garde R.J. and Ranga Raju K.G. (1980), Aggradation in streams due to overloading, Journal of the Hydraulics Division, ASCE, Vol. 106, No. HY1, Jan., pp.117-132.
52、 Spinewine B. and Zech Y. (2007), Small-scale laboratory dam-break waves on movable beds, Journal of Hydraulic Research, 45: 6, 73-86.
53、 Tsuchiya A., and Ishizaki K. (1969), Estimation of river bed aggradation due to a dam, Proc. IAHR, 13th Congress, Paper A-33, pp. 297-304.
54、 Takahashi T. (1981), Debris Flow. Annual Review of Fluid Mechanics, Vol. 13: 57-770.
55、 Takahashi T., (1982), Study on deposition of debris flows(3): Erosion of debris fan, Annuals of Disaster Prevention Research Institute. Kyoto Univ., Kyoto, Japan, No.25B-2, pp.327-348. (in Japanese)
56、 Takahashi T. (1985), Debris Flow Its Mechanics and Hazard Mitigation, Proceeding of the ROC-JAPAN Joint Seminar on Multiple Hazards Mitigation, National Taiwan University, Taipei, Taiwan, ROC, pp.1079-1092.
57、 Takahashi T., Nakagawa H. and Kuang S. (1987), Estimation of debris flow hydrograph on varied slope bed, Proc. Symposium on Erosion and Sedimentation in the Pacific Rim, IAHS Publ. No.165, pp.167-177.
58、 Takahashi T., Debris Flows, (1991), International Association for Hydraulic Research, Published by A. Balkema, Rotterdam, and Brookfield.
59、 Takahashi T., Nakagawa, H., Harada, T. and Yamashiki, Y. (1992), Routing debris flows with particle segregation, Journal of Hydraulic Engineering., ASCE, 118, No.11, pp. 1490-1507.
60、 Takahashi T.(2000), Initiation and flow of various types of debris-flow, Proceedings of the Second International Conference on Debris Flow Hazards Mitigation, Taipei, Taiwan, pp. 15 - 25.
61、 Takahashi T., Debris Flows—Mechanics, Prediction and Counter -measures, (2007), Published by Taylor & Francis/Balkema.
62、 USBR (2003), Sediment and Geomorphic Assessment for the Potential Removal of Chiloquin Dam, Denver, Colorado.
63、 Wang H.W., S.S. Shih, S.C. Yang(2009), Where will all the sediments go? Impressions from Balin Dam Failure in Taiwan, The 4th International Yellow River Forum, Zhenzhou, China, October 20-23.
64、 Yan Jun, Cao Zhi-xian, Liu Huai-han, Chen Li(2009),Experimental study of landslide dam-break flood over erodible bed in open channels, Journal of Hydrology,21(1): 124-130.
65、 宮本邦明(1985),「Newton流體を含む粒子流之流動機構に關する研究」,日本立命館大學學位論文。
66、 伊藤隆郭(2000),「土石流の構成則およびその適用に關する研究」,日本筑波大學博士論文。
67、 劉格非、郭哲昆、吳昌修(1993),「緩坡上土石流運動之研究」,中華水土保持學報,第二十四卷,第一期,第1-11頁。
68、 劉格非、黃名村(2002),「土石流之現場數值模擬-應用於南投縣神木村」,中華水土保持學報,第三十三卷,第三期,第215-221頁。
69、 林美聆、王國隆、溫惠鈺(2003),「台灣藝術村土石流潛勢模擬」,中華民國大地工程學會。
70、 林德貴、徐森彥、趙啟宏、溫惠鈺、許世孟、顧承宇、冀樹勇(2008),「土石流流動模擬技術於災害風險區劃定及災損評估應用之研究」,中華水土保持學報,第三十九卷,第四期,第391-402頁。
71、 曹家文(1993),「土石流沖淤模式之開發與應用」,碩士論文,國立成功大學水利及海洋工程研究所。
72、 余昌益(1997),「高含砂水流流變參數之實驗研究」,碩士論文,國立成功大學水利及海洋工程研究所。
73、 蔡元芳(1999),「土石流扇狀地形狀特性之研究」,博士論文,國立成功大學水利及海洋工程研究所。
74、 許佩蓁(2007),「沖積河川上支流堰塞湖之形成與發展:理論及實驗」,國立台灣大學土木工程學研究所碩士論文。
75、 林欣怡(2008),「防砂壩移除對河床變遷影響之研究-以巴陵壩為例」,國立台灣大學土木工程學研究所碩士論文。
76、 王瀅婷(2010),「巴陵壩潰壩後對上游河床變遷影響之研究」,國立台灣大學土木工程學研究所碩士論文。
77、 吳建民(1991),「泥砂運移學」,中國工程水利工程學會。
78、 經濟部水利署(2002),「大漢溪上游石門水庫集水區特性檢討之研究」。
79、 行政院農業委員會水保局(2006),「石門水庫土砂評量與整治率評估模式建立」。
80、 經濟部水利署水利規劃試驗所(2007),「高台水庫可行性規劃—替代石門水庫供水水源工程規劃」。
81、 經濟部水利署北區水資源局(2008),「巴陵防砂壩災損原因調查及壩址後續處置」。
82、 經濟部水利署北區水資源局(2008-2010),「巴陵壩上下游淤積砂石下移河道測量作業」。
83、 行政院農業委員會水保局(2009),「石門水庫集水區高精度地形量測及地形貌變化歷程之研究」。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2012-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2012-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw