進階搜尋


下載電子全文  
系統識別號 U0026-1602201612151400
論文名稱(中文) 於碎屑沉積岩地層中建立擬合成震波圖的替代方案
論文名稱(英文) Alternative Methods for Constructing Pseudo-Synthetic Seismograms from Clastic Rock Formations
校院名稱 成功大學
系所名稱(中) 資源工程學系
系所名稱(英) Department of Resources Engineering
學年度 104
學期 1
出版年 105
研究生(中文) 曾國軒
研究生(英文) Kuo-Hsuan Tseng
學號 N46011059
學位類別 碩士
語文別 英文
論文頁數 92頁
口試委員 指導教授-陸喬克
召集委員-郭明錦
口試委員-傅式齊
口試委員-李健平
中文關鍵字 Faust equation  偽P波波速  合成震波圖修正  鳳山背斜  屏東平原  含氣效應  井測與震測資料對比  低速砂岩 
英文關鍵字 Faust equation  Pseudo P-wave velocity  Synthetic seismogram corrections  Fengshan Anticline  Pingtung Plain  Gas effect  Well-seismic tie  Low velocity sandstone 
學科別分類
中文摘要 震測剖面圖乃油氣探勘中用於判讀地下地層之差異的地球物理探勘技術。然而於部分特殊狀況下,探勘區域的地表狀態並不適合進行反射震測法,且反射震測法施測後其建立之結果亦會受到諸多地質條件影響。本研究將使用數種井測資料,諸如:伽瑪射線井測、自然電位井測、及電阻井測等建立偽合成震波圖。該井測資料均來自以碎屑沉積岩為主的台灣西南部區域,且部分測井在聲波井測資料上有著缺失或是品質的問題,亦有測井未曾擁有任何聲波井測或是密度井測的資料。

本論文以伽瑪射線井測資料為主體,並將其配合以電阻井測透過Faust equation所轉換之偽聲波井測資料,在與深度相關之數值趨勢上進行修改,以建立一非傳統的偽聲波井測資料建構方案。本論文包含數種用於建立偽合成震波圖的子方法:井測資料比對、修正型Faust equation、地層資料分類、井測資料對深度趨勢修正、傳統與非傳統散佈圖分析方法、及透過頁岩體積計算將自然電位井測轉換為偽伽瑪射線井測之方法。

根據測井的偽聲波井測建立成果,其中兩口井得以進行偽合成震波圖與反射震測剖面圖之比對;而另一口井即便擁有良好的聲波井測及偽聲波井測之吻合度,然受地質條件及震測剖面圖品質的影響,其偽合成震波圖與反射震測剖面圖之比對缺乏良好的確定性。本論文所使用的方法及成效有望提升震測資料判讀之成果,並對相關專業人士起協助之作用。
英文摘要 The seismic profile is useful to identify different subsurface formations in the geophysical exploration for hydrocarbons. The surface conditions may not be appropriate for making a seismic reflection survey in some situations, and the results may be affected by several geological factors. In this study, various logs such as gamma ray, spontaneous potential, and resistivity from three wells in southwestern Taiwan consisting primarily of clastic rocks, were used to calculate pseudo-synthetic seismograms for portions of wells where sonic log quality was poor or missing and for entire wells where the sonic and/or density logs were never run.

In this thesis, the gamma ray log is modified with the trend of a pseudo P-wave velocity log that is converted from the resistivity log by the Faust equation to make an alternative pseudo-sonic equation. The thesis includes several methods for generating pseudo-synthetic seismograms: well logs comparison, adjusted Faust equation for pseudo P-wave velocity, zones classification, logs trend modification, regular and alternative cross-plot techniques, and pseudo gamma ray from spontaneous potential log by shale volume conversion.

According to the construction results for three wells, the pseudo-synthetic seismograms correlate well with seismic reflection profiles in two wells; the other well’s correlation is less certain due to the poor quality of the seismic reflection profile, despite the good match between the original P-wave velocity log and the pseudo P-wave velocity log. Hopefully these valuable techniques can be applied to aid the seismic interpreter, resulting in enhanced efforts for seismic interpretation.
論文目次 1. INTRODUCTION 1
1.1. BASIC THEORY 1
1.2. LITERATURE REVIEW 3
1.3. GEOLOGICAL BACKGROUND 5
2. DATA REQUIREMENTS 7
3. METHODOLOGY 14
3.1. WELL LOG AVAILABILITY CHECK 17
3.2. SCREENING OF GEOLOGIC ENVIRONMENT 17
3.3. RESISTIVITY CONSTRUCTION METHODS: PSEUDO P-WAVE VELOCITY LOG FROM RESISTIVITY LOG 18
3.3.1. Faust Equation 18
3.3.2. Adjusted Faust Equation 18
3.4. GAMMA RAY CONSTRUCTION METHODS: PSEUDO P-VELOCITY LOG FROM GAMMA RAY LOG 21
3.4.1. Log Trend Observation 21
3.4.2. Pseudo-sonic ITT log 23
3.4.3. Zone Classification 27
3.4.4. Trend Rotation for Individual Zones 28
3.4.5. Data Value Range Adjustment for Individual Zones 31
3.5. SYNTHETIC SEISMOGRAM CONSTRUCTION 32
4. RESULTS 34
4.1. WELL LOG AVAILABILITY CHECK 34
4.2. SCREENING OF GEOLOGIC ENVIRONMENT 34
4.3. RESISTIVITY CONSTRUCTION METHODS FOR WELL A 34
4.4. GAMMA RAY CONSTRUCTION METHODS FOR WELL A 40
4.5. GAMMA RAY CONSTRUCTION METHODS FOR WELL B 51
4.6. RESISTIVITY CONSTRUCTION METHODS FOR WELL C 62
4.7. GAMMA RAY CONSTRUCTION METHODS FOR WELL C 64
4.8. SYNTHETIC SEISMOGRAM CONSTRUCTION 72
5. DISCUSSION 83
6. CONCLUSION 87
7. REFERENCES 89

參考文獻 Alberty, M. (1993). Standard interpretation. In D. Morton-Thompson, A. M. Woods (Eds.), Development geology reference manual: AAPG methods in exploration series, No. 10 (pp. 180-185). Tulsa, OK: AAPG.
Bassiouni, Z. (1994). Theory, measurement and interpretation of well logs. Richardson, TX: Society of Petroleum Engineers, 384 pp.
Brito Dos Santos, W. L., Ulrych, T. J., & De Lima, O. A. L. (1988). A new approach for deriving pseudo velocity logs from resistivity logs. Geophysical Prospecting, 36, 83-91.
Bourbié, T., Coussy, O. & Zinszner, B. (1987). Acoustics of porous media. Paris: Editions TECHNIP (in France), 334 pp.
Carrasquilla, A., & Leite, M. V. (2009). Fuzzy logic in the simulation of sonic log using as input combinations of gamma ray, resistivity, porosity and density well logs from Namorado oilfield. 11th International Congress of the Brazilian Geophysical Society & EXPOGEF 2009, Salvador, Bahia, Brazil, 24-28 August 2009, 200-203.
Chen, S. C., Hsu, S. K., Wang, Y. S., Chung, S. H., Chen, P. C., Tsai, C. H., Liu, C. S., Lin H. S. & Lee Y. W. (2014). Distribution and characters of the mud diapirs and mud volcanoes off southwest Taiwan. Journal of Asian Earth Sciences, 92, 201–214.
Chen, S. C., Hsu, S. K., Yang, Y., & Liu, C. S. (2014). Distribution of mud diapirs and active mud volcanoes, and natural gas potential in the upper Kaoping Slope, offshore southwest Taiwan. Mining & Metallurgy, 58(2), 30-49.
Chen, T. S., & Shih, W. C. (2013). The distribution of mud volcanoes and natural gas potential in the southwestern Taiwan. Mining & Metallurgy, 57(3), 65-74.
Cheng, H. C. (2000). Structural geology of the Tainan to Pingtung area of southwestern Taiwan. Master thesis of National Central University, 92pp.
Chiang, S. C. (1971). Seismic study of the Chaochou structure, Pingtung, Taiwan. Petroleum Geology of Taiwan, 8, 281-294.
Chuang, H. J. (2006). Distribution and structural relationships of mud diapirs offshore southwestern Taiwan. Master thesis of National Taiwan University, 113 pp.
Close, D., Cho, D., Horn, F., & Edmundson, H. (2009). The sound of sonic: a historical perspective and introduction to acoustic logging. The Canadian Society of Exploration Geophysicists Recorder, 226, 30-49.
Faust, L. Y. (1951). Seismic velocity as a function of depth and geologic time. Geophysics, 16(2), 192-206.
Faust, L. Y. (1953). A velocity function including lithologic variation. Geophysics, 18(2), 271-288.
Gardner, G. H. F., Gardner, L. W., & Gregory, A. R. (1974). Formation velocity and density -- the diagnostic basics for stratigraphic traps. Geophysics, 39, 770–780.
Hacikoylu, P., Dvorkin, J., & Mavko, G. (2006). Elastic and petrophysical bounds for unconsolidated sediments, Society of Exploration Geophysicists (Eds.), SEG Technical Program Expanded Abstracts 2006 (pp. 1762-1766). Tulsa, OK: Author.
Hsieh, B. Z., Lewis, C. & Lin, Z. S. (2005). Lithology identification of aquifers from geophysical well logs and fuzzy logic analysis: Shui-Lin Area, Taiwan. Computers & Geosciences, 31, 263-275.
Hsieh, S. H. (1970). Geology and gravity anomalies of the Pingtung Plain, Taiwan. Proceedings of the Geological Society of China, 13, 76-89.
Kao, C. Y., Wu, C. Y., Chiu, C. Y. & Tseng, C. Y. (2011) Lithofacies and depositional environment analyses of the Nanshihlun Sandstone in southwest Taiwan, Mining & Metallurgy, 63(3), 18-30.
Kung, S. L., Lewis, C. & Wu, J. C. (2013). A technique for improving pseudo-synthetic seismograms generated from neutron logs in gas-saturated clastic rocks. Journal of Geophysics and Engineering, 10(3), 035015.
Kung, S. L., Lewis, C. & Wu, J. C. (2014). A resistivity log-derived and gas-corrected pseudo-synthetic seismogram: application to the Fanpokeng Gas Field of northwestern Taiwan. New Zealand Journal of Geology and Geophysics, 57(1), 21-31.
Larionov, W. W. (1969). Borehole radiometry. Moscow: Nedra (in Russia), 127 pp.
Lee, D. H., Lin, H. M. & Wu, J. H. (2007). The basic properties of mudstone slopes in southwestern Taiwan. Journal of GeoEngineering, 2(3), 81-95.
Meju, M. A., Gallardo, L. A. & Mohamed, A. K. (2003). Evidence for correlation of electrical resistivity and seismic velocity in heterogeneous near-surface materials. Geophysical Research Letters, 30(7), 4 pp.
Miller, S. L. M. & Stewart, R. R. (1990). Effects of lithology, porosity and shaliness on P- and S-wave velocities from sonic logs. Canadian Journal of Exploration Geophysics, 26, 94-103.
Pan, Y. S. (1968). Interpretation and seismic coordination of the Bouguer Gravity Anomalies obtained in southwestern Taiwan. Petroleum Geology of Taiwan, 5, 197-208.
Russell, W. L. (1944). The total gamma ray activity of sedimentary rocks as indicated by Geiger counter determinations. Geophysics, 9(2), 180-216.
Shea, K. S., & Horng, C. S. (2010). Some problems in stratigraphic correlations of the foothills in southwest Taiwan. In Central Geological Survey, MOEA (Eds.), The 6th Taiwan Stratigraphy Symposium (pp. 45-53). Taipei: Author.
Sun, C. H., Chang, S. C., Kuo, C. L., Wu, J. C., Shao, P. H. & Oung, J. N. (2010). Origins of Taiwan’s mud volcanoes: Evidence from geochemistry. Journal of Asian Earth Sciences, 37, 105-116.
Tittle, C.W. (1989). A history of nuclear well logging in the oil industry. Nuclear Geophysics, 3(2), 75-85.
Tiwary, D. N., Singh, Birbal, Arasu, R. T., Rhaman, M., Saha, P., & Chandra, Mahesh. (2004). Travel time modelling using gamma ray and resistivity log in sand shale sequence of Gandhar field. 5th Conference & Exposition on Petroleum Geophysics, Hyderabad-2004, India, 146-151.
Wang, L., Mao, Z. Q., Sun, Z. C., Luo, X. P., Song, Y. & Liu, Z. (2013). Genesis analysis of high-gamma ray sandstone reservoir and its log evaluation techniques: a case study from the Junggar basin, northwest China. The Scientific World Journal, 2013, 6 pp.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-02-18起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-02-18起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw