進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1508201919301400
論文名稱(中文) 透過高頻向量都卜勒超音波影像評估手指肌腱運動
論文名稱(英文) Evaluation of finger tendon movement by using high frequency ultrasound vector Doppler imaging
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 王民遠
研究生(英文) Min-Yuan Wang
學號 P86054098
學位類別 碩士
語文別 英文
論文頁數 44頁
口試委員 指導教授-黃執中
口試委員-李佳燕
口試委員-楊岱樺
口試委員-郭立杰
中文關鍵字 屈指肌腱  肌腱運動  高頻超音波  超快速超音波成像  向量都卜勒成像 
英文關鍵字 Flexor tendon  Tendon motion  High frequency ultrasound  Ultrafast ultrasound imaging  Vector Doppler imaging 
學科別分類
中文摘要 肌腱與周遭組織的沾黏會影響肌腱運動進而影響病患復原成效。與肌腱的運動最直接相關的即為肌腱的位移,因此若能透過儀器去量測手部肌腱的速度與位移,這些運動資訊將能提供給臨床人員以進一步評估患者復健成效。超音波能提供動態且即時的影像,先前研究已有許多利用超音波影像去測量肌腱運動的相關研究,但由於先前研究中所使用的傳統超音波中心頻率不足,僅能提供手部肌腱側向滑動並難以量測橫向旋轉,除此之外,先前研究也已經提出肌腱的旋轉構造與橫向旋轉能使力量的傳遞更具效率。另外常見的幾種量測方式:斑點追蹤與組織都卜勒皆不足以準確量測肌腱橫向旋轉。因此本論文提出透過高頻向量都卜勒影像來量測手部肌腱的側向滑動與橫向旋轉。
研究一開始利用向量都卜勒量測等速率圓周運動的仿體測試演算法,我們同時也比較不同旋轉速度下的結果。在人體實驗部分,本篇論文中量測一般人在不同手部運動下的屈指肌腱側向位移與其橫向旋轉,並從結果中討論此技術的成效與其生理意義。
透過此技術我們能從側向肌腱影像中分析一般人屈指淺肌肌腱與屈指深肌肌腱滑動分布;從縱向影像量測受試者在不同的手部運動下的肌腱橫向旋轉的運動資訊。
然而手部肌腱結構相當複雜,除此之外我們也從影像上觀察到肌腱橫向旋轉時也伴隨形變與偏移,使得正確的量測肌腱本身的運動更加困難,但此技術仍然展現出其在量測肌腱運動的可行性與發展性。
英文摘要 The formation of adhesion between tendon and surrounding tissue in patient will influence tendon motion and further decrease effect of rehabilitation. The displacement of tendon is the most direct information about tendon moment. Therefore, the ability of measuring hand tendon movement by medical instruments would provide important information for clinicians and patients to evaluate the performance of rehabilitation.
Ultrasound imaging can provide dynamic and real-time images. In previous studies, there have been numerous studies applying ultrasound imaging to measure tendon motion.
However, because of the limitation of center frequency in traditional ultrasound, previous studies only measured the tendon longitudinal displacement and neglected the transverse rotation. However, the twisting structure and transverse rotation make force transmission more efficient. Moreover, the method measuring tendon displacement: tissue Doppler imaging and speckle tracking is not enough to measure the tendon transverse rotation accurately. Thus, the study proposes that applying high frequency ultrasound vector Doppler imaging to estimate the hand tendon motion in longitudinal and transverse view.
At first, we applied a phantom rotated in uniform circular motion to simulate tendon rotation and examine the accuracy of vector Doppler imaging. Because tendon and compared the results at different rotational speed. In human study, we measured flexor tendon longitudinal displacement and transverse rotation in normal subjects in different hand motion.
Moreover, we discussed the performance of the technique and meaning of physiology.
In longitudinal view, we analyzed the longitudinal displacement distribution in flexor digitorum superficialis and flexor digitorum profundus tendons through the technique. In transverse view, we measured the direction and magnitude of tendon rotation in different joint motion. However, the hand structure is very complicated. Moreover, we observed hand tendon transverse rotation accompany deformation and translation. The phenomena make that measuring the tendon more difficult. However, the technique still demonstrates the feasibility and potential for measuring tendon transverse rotation.
論文目次 摘要 ................ II
Abstract................ III
誌謝................ V
Contents ............... VI
List of Figures............. VIII
List of Tables .............. X
Chapter 1 Introduction ........... 1
1.1. The Structure and Importance of Tendons....... 1
1.2. Human Tendon Imaging Modalities ........ 2
1.3. Motivation and Objectives......... 4
Chapter 2 Theoretical Foundation.......... 6
2.1. Ultrasound ............. 6
2.1.1. Reflection, Refraction and Attenuation ....... 7
2.1.2. Doppler Effect ........... 9
2.1.3. Ultrasound Transducer......... 10
2.2. Ultrasound Imaging ........... 13
2.2.1. A-mode, B-mode and M-mode........ 13
2.2.2. Doppler Ultrasound ......... 15
2.3. Ultrafast Ultrasound Imaging ........ 17
2.3.1. Plane Wave Transmission ........ 17
2.3.2. Coherent Plane Wave Compounding....... 18
Chapter 3 Materials and Methods .......... 22
3.1. System Configuration .......... 22
3.2. Vector Doppler Imaging .......... 23
3.3. Phantom Validation.......... 25
3.4. Human Experiment.......... 26
Chapter 4 Results ............. 28
4.1. Phantom Validation.......... 28
4.2. Human Experiment in Longitudinal View....... 30
4.3. Human Experiment in Transverse View ...... 33
Chapter 5 Discussion............ 37
Chapter 6 Conclusion ........... 40
Chapter 7 Future Work ........... 41
References ............... 42
參考文獻 [1] D. Amini, "Occupational Therapy Interventions for Work-Related Injuries and Conditions of the Forearm, Wrist, and Hand: A Systematic Review," American Journal of Occupational Therapy, vol. 65, no. 1, pp. 29-36, 2011.
[2] M. A. Hardy, "Principles of Metacarpal and Phalangeal Fracture Management: A Review of Rehabilitation Concepts," Journal of Orthopaedic & Sports Physical Therapy, vol. 34, no. 12, pp. 781-799, 2004.
[3] V. Schöffl, A. Heid, and T. Küpper, "Tendon injuries of the hand," (in eng), World J Orthop, vol. 3, no. 6, pp. 62-69, 2012.
[4] P. Kannus, "Structure of the tendon connective tissue," Scandinavian Journal of Medicine & Science in Sports, vol. 10, no. 6, pp. 312-320, 2000/12/01 2000.
[5] J. J. Budovec, G. S. Sudakoff, W. W. Dzwierzynski, H. S. Matloub, and J. R. Sanger, "Sonographic Differentiation of Digital Tendon Rupture From Adhesive Scarring After Primary Surgical Repair," The Journal of Hand Surgery, vol. 31, no. 4, pp. 524-529, 2006/04/01/ 2006.
[6] B. Neumayer et al., "Reducing acquisition time for MRI-based forensic age estimation," Scientific Reports, vol. 8, no. 1, p. 2063, 2018/02/01 2018.
[7] W. Grassi, E. Filippucci, A. Farina, and C. Cervini, "Sonographic imaging of tendons," Arthritis & Rheumatism, vol. 43, no. 5, pp. 969-976, 2000.
[8] C. Martinoli, S. Bianchi, M. H. Dahmane, F. Pugliese, M. Bianchi-Zamorani, and M. Valle, "Ultrasound of tendons and nerves," European Radiology, journal article vol. 12, no. 1, pp. 44-55, January 01 2002.
[9] S. Bianchi, C. Martinoli, R. de Gautard, and C. Gaignot, "Ultrasound of the digital flexor system: Normal and pathological findings()," (in eng), J Ultrasound, vol. 10, no. 2, pp. 85-92, 2007.
[10] W. D. Middleton, S. A. Teefey, and M. I. Boyer, "Hand and wrist sonography," (in eng), Ultrasound quarterly, vol. 17, no. 1, pp. 21-36, Mar 2001.
[11] Y. Yoshii, H. R. Villarraga, J. Henderson, C. Zhao, K. N. An, and P. C. Amadio, "Speckle tracking ultrasound for assessment of the relative motion of flexor tendon and subsynovial connective tissue in the human carpal tunnel," Ultrasound Med Biol, vol. 35, no. 12, pp. 1973-81, Dec 2009.
[12] J.-W. H. Korstanje, T. R. Schreuders, J. van der Sijde, S. E. R. Hovius, J. G. Bosch, and R. W. Selles, "Ultrasonographic Assessment of Long Finger Tendon Excursion in Zone V During Passive and Active Tendon Gliding Exercises," The Journal of Hand Surgery, vol. 35, no. 4, pp. 559-565, 2010/04/01/ 2010.
[13] M. H. van Doesburg, Y. Yoshii, J. Henderson, H. R. Villarraga, S. L. Moran, and P. C. Amadio, "Speckle-tracking sonographic assessment of longitudinal motion of the flexor tendon and subsynovial tissue in carpal tunnel syndrome," (in eng), Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine, vol. 31, no. 7, pp. 1091-8, Jul 2012.
[14] K. J. Stegman, S. Djurickovic, and N. Dechev, "In Vivo Estimation of Flexor Digitorum Superficialis Tendon Displacement with Speckle Tracking on 2-D Ultrasound Images Using Laplacian, Gaussian and Rayleigh Techniques," Ultrasound in Medicine & Biology, vol. 40, no. 3, pp. 568-582, 2014/03/01/ 2014.
[15] T. Y. Lai, H. I. Chen, C. C. Shih, L. C. Kuo, H. Y. Hsu, and C. C. Huang, "Application of a novel Kalman filter based block matching method to ultrasound images for hand tendon displacement estimation," Medical Physics, vol. 43, no. 1, pp. 148-158, Jan 2016.
[16] T. Y. Lai, H. I. Chen, C. C. Shih, L. C. Kuo, H. Y. Hsu, and C. C. Huang, "A Novel Adhesion Index for Verifying the Extent of Adhesion for the Extensor Digitorum Communis in Patients with Metacarpal Fractures," Sci Rep, vol. 6, p. 31102, Aug 5 2016.
[17] M. Edama et al., "The twisted structure of the human Achilles tendon," Scandinavian Journal of Medicine & Science in Sports, vol. 25, no. 5, pp. e497-e503, 2015/10/01 2015.
[18] L. Lantieri, H. Hennebert, D. Le Viet, and H. Guérin-Surville, "A study of the orientation of the fibers of the flexor carpi radialis tendon: Anatomy and clinical applications," Surgical and Radiologic Anatomy, vol. 15, no. 2, pp. 85-89, 1993/06/01 1993.
[19] M. N. Dean, E. Azizi, and A. P. Summers, "Uniform strain in broad muscles: active and passive effects of the twisted tendon of the spotted ratfish Hydrolagus colliei," Journal of Experimental Biology, vol. 210, no. 19, pp. 3395-3406, 2007.
[20] S. J. Obst, J.-B. Renault, R. Newsham-West, and R. S. Barrett, "Three-dimensional deformation and transverse rotation of the human free Achilles tendon in vivo during isometric plantarflexion contraction," Journal of Applied Physiology, vol. 116, no. 4, pp. 376-384, 2014/02/15 2013.
[21] C. Shih, C. Huang, Q. Zhou, and K. K. Shung, "High-Resolution Acoustic-Radiation-Force-Impulse Imaging for Assessing Corneal Sclerosis," IEEE Transactions on Medical Imaging, vol. 32, no. 7, pp. 1316-1324, 2013.
[22] C.-C. Huang et al., "Evaluation of Lens Hardness in Cataract Surgery using High-Frequency Ultrasonic Parameters in Vitro," Ultrasound in Medicine & Biology, vol. 33, no. 10, pp. 1609-1616, 2007/10/01/ 2007.
[23] A. Mandava, P. R. Ravuri, and R. Konathan, "High-resolution ultrasound imaging of cutaneous lesions," (in eng), Indian J Radiol Imaging, vol. 23, no. 3, pp. 269-277, Jul-Sep 2013.
[24] C.-C. Shih, T.-Y. Lai, and C.-C. Huang, "Evaluating the intensity of the acoustic radiation force impulse (ARFI) in intravascular ultrasound (IVUS) imaging: Preliminary in vitro results," Ultrasonics, vol. 70, pp. 64-74, 2016/08/01/ 2016.
[25] C. Chang, P. Chen, H. Huang, and C. Huang, "In Vivo Visualization of Vasculature in Adult Zebrafish by Using High-Frequency Ultrafast Ultrasound Imaging," IEEE Transactions on Biomedical Engineering, vol. 66, no. 6, pp. 1742-1751, 2019.
[26] S. L. Viviano, L. K. Chandler, and J. D. Keith, "Ultrahigh Frequency Ultrasound Imaging of the Hand: A New Diagnostic Tool for Hand Surgery," HAND, vol. 13, no. 6, pp. 720-725, 2018/11/01 2017.
[27] A. Swillens, P. Segers, H. Torp, and L. Lovstakken, "Two-dimensional blood velocity estimation with ultrasound: speckle tracking versus crossed-beam vector doppler based on flow simulations in a carotid bifurcation model," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 57, no. 2, pp. 327-339, 2010.
[28] B. Dunmire, K. W. Beach, K. H. Labs, M. Plett, and D. E. Strandness, "Cross-beam vector Doppler ultrasound for angle-independent velocity measurements," Ultrasound in Medicine & Biology, vol. 26, no. 8, pp. 1213-1235, 2000/10/01/ 2000.
[29] A. Eranki et al., "Measurement of tendon velocities using vector Tissue Doppler Imaging: A feasibility study," in 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010, pp. 5310-5313.
[30] B. Y. Yiu, S. S. Lai, and A. C. Yu, "Vector projectile imaging: time-resolved dynamic visualization of complex flow patterns," Ultrasound Med Biol, vol. 40, no. 9, pp. 2295-309, Sep 2014.
[31] J. A. Ketterling et al., "High-speed, high-frequency ultrasound, in utero vector-flow imaging of mouse embryos," Scientific Reports, vol. 7, no. 1, p. 16658, 2017/11/30 2017.
[32] B. Y. S. Yiu and A. C. H. Yu, "Spiral Flow Phantom for Ultrasound Flow Imaging Experimentation," IEEE Trans Ultrason Ferroelectr Freq Control, vol. 64, no. 12, pp. 1840-1848, Dec 2017.
[33] A. Carovac, F. Smajlovic, and D. Junuzovic, "Application of ultrasound in medicine," (in eng), Acta Inform Med, vol. 19, no. 3, pp. 168-171, 2011.
[34] K. K. Shung, Diagnostic Ultrasound: Imaging and Blood Flow Measurements. Taylor & Francis, 2006.
[35] C. R. Merritt, "Doppler US: the basics," RadioGraphics, vol. 11, no. 1, pp. 109-119, 1991.
[36] D. S. Babcock, H. Patriquin, M. LaFortune, and M. Dauzat, "Power doppler sonography: basic principles and clinical applications in children," (in eng), Pediatric radiology, vol. 26, no. 2, pp. 109-15, 1996.
[37] J. Bercoff, "Ultrafast ultrasound imaging," Ultrasound imaging-Medical applications, pp. 3-24, 2011.
[38] B. Delannoy, R. Torguet, C. Bruneel, and E. Bridoux, "Ultrafast Electronical Image Reconstruction Device," in Echocardiology, C. T. Lancée, Ed. Dordrecht: Springer Netherlands, 1979, pp. 447-450.
[39] B. Delannoy, R. Torguet, C. Bruneel, E. Bridoux, J. M. Rouvaen, and H. Lasota, "Acoustical image reconstruction in parallel‐processing analog electronic systems," Journal of Applied Physics, vol. 50, no. 5, pp. 3153-3159, 1979/05/01 1979.
[40] D. P. Shattuck, M. D. Weinshenker, S. W. Smith, and O. T. von Ramm, "Explososcan: a parallel processing technique for high speed ultrasound imaging with linear phased arrays," (in eng), The Journal of the Acoustical Society of America, vol. 75, no. 4, pp. 1273-82, Apr 1984.
[41] J. Y. Lu and J. F. Greenleaf, "Pulse-echo imaging using a nondiffracting beam transducer," (in eng), Ultrasound Med Biol, vol. 17, no. 3, pp. 265-81, 1991.
[42] G. R. Lockwood, J. R. Talman, and S. S. Brunke, "Real-time 3-D ultrasound imaging using sparse synthetic aperture beamforming," (in eng), IEEE Trans Ultrason Ferroelectr Freq Control, vol. 45, no. 4, pp. 980-8, 1998.
[43] M. Tanter, J. Bercoff, L. Sandrin, and M. Fink, "Ultrafast compound imaging for 2-D motion vector estimation: application to transient elastography," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 49, no. 10, pp. 1363-1374, 2002.
[44] J. Bercoff et al., "In vivo breast tumor detection using transient elastography," (in eng), Ultrasound Med Biol, vol. 29, no. 10, pp. 1387-96, Oct 2003.
[45] G. Montaldo, M. Tanter, J. Bercoff, N. Benech, and M. Fink, "Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, no. 3, pp. 489-506, 2009.
[46] C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, "Real-Time Two-Dimensional Blood Flow Imaging Using an Autocorrelation Technique," IEEE Transactions on Sonics and Ultrasonics, vol. 32, no. 3, pp. 458-464, 1985.
[47] D. H. Evans, "Colour flow and motion imaging," Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 224, no. 2, pp. 241-253, 2010.
[48] T.-H. Yang et al., "Assessing Finger Joint Biomechanics by Applying Equal Force to Flexor Tendons In Vitro Using a Novel Simultaneous Approach," PLOS ONE, vol. 11, no. 8, p. e0160301, 2016.
[49] P.-L. Kuo, D. L. Lee, D. L. Jindrich, and J. T. Dennerlein, "Finger joint coordination during tapping," Journal of Biomechanics, vol. 39, no. 16, pp. 2934-2942, 2006/01/01/ 2006.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-12-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw