進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1508201914573900
論文名稱(中文) Rab37在CD8+ T細胞中經由胞外運輸IL-6促進PD-1表現進而促進肺癌進程
論文名稱(英文) Rab37 mediates exocytosis of IL-6 and enhances PD-1 expression in CD8+ T cells to promote lung cancer progression
校院名稱 成功大學
系所名稱(中) 藥理學研究所
系所名稱(英) Department of Pharmacology
學年度 107
學期 2
出版年 108
研究生(中文) 蔡宇柔
研究生(英文) Yu-Jou Tsai
學號 S26054049
學位類別 碩士
語文別 英文
論文頁數 77頁
口試委員 指導教授-王憶卿
口試委員-阮雪芬
口試委員-蘇五洲
口試委員-張志鵬
中文關鍵字 Rab37  CD8+ T 細胞  白細胞介白素-6  程序性死亡受體-1 
英文關鍵字 Rab37  CD8+ T cells  IL-6  PD-1  exocytosis 
學科別分類
中文摘要 研究背景: 許多的證據顯示浸潤的免疫細胞扮演促進腫瘤進程的角色,腫瘤微環境 (tumor microenvironment) 當中的複雜性造成免疫細胞分泌細胞激素的失調,並被教育成具有促進腫瘤生長能力的族群。先前本實驗室的研究發現小G蛋白 (small GTPase) Rab37調控癌細胞的胞吐作用 (exocytosis);然而,Rab37蛋白在CD8+ T細胞所調控的胞吐作用在腫瘤微環境的角色以及其調控功能目前仍未知。
研究目的: 由於先導實驗發現CD8+ T細胞於Rab37基因剔除老鼠 (knockout mice) 其細胞激素:白細胞介白素-6 (IL-6) 蛋白分泌量與免疫抑制因子:程序性死亡受體-1 (PD-1) 分子的細胞膜表現量呈正相關,因此本研究探討Rab37是否介導IL-6蛋白的分泌路徑來促進CD8+ T 細胞上PD-1分子的表現進而影響肺癌進程,並且探討結合阻斷IL-6以及免疫抑制因子CTLA-4對於肺癌的治療效果。
研究結果: 從Lewis lung carcinoma (LLC) 皮下腫瘤的動物模式發現,Rab37 knockout (KO) 老鼠中,腫瘤的生長有受抑制的現象,並且進行流式細胞儀的分析後發現PD-1分子在浸潤CD8+ T 細胞的表現有下降的趨勢;除此之外,在經過LLC培養液 (conditioned medium, CM) 處理過後,Rab37 KO 老鼠的splenic CD8+ T細胞上的PD-1相較wild-type (WT) 組別有下降的趨勢,屬於免疫抑制族群的調節T細胞也有降低,指出Rab37在CD8+ T細胞中為一促進腫瘤的因子。接著我們利用細胞激素/趨化激素陣列 (cytokines/chemokines array) 分析,篩選出IL-6在Rab37 KO CD8+ T細胞CM培養液的分泌量相較於Rab37 WT 組別有降低的現象;透過酶聯免疫吸附實驗 (ELISA) 以及西方點墨法證實IL-6在T細胞CM培養液的表現量與Rab37的表現量呈正相關,且利用免疫螢光染色與全反射倒立螢光影像證實Rab37在細胞內與IL-6分佈的情形與位置一致 (colocalization),並調控IL-6運輸 (trafficking and exocytosis) 的過程。西方點墨法與反轉錄聚合酵素連續反應實驗證明磷酸化STAT-3的蛋白表現量以及PD-1的mRNA表現量在表現Rab37-WT 以及Rab37-Q89L 活化態 (GTP active mutant) 時增加,但Rab37-T43N 去活化態 (GDP inactive mutant) 時下降,顯示IL-6可能透過活化STAT-3路徑增加PD-1基因的表現。而在後續的動物實驗也觀察到聯合阻斷IL-6以及免疫抑制因子CTLA-4在LLC皮下腫瘤模式以及原位腫瘤模式提供更佳的腫瘤抑制效果,並且增加浸潤免疫細胞在腫瘤當中免疫活化的特性。
研究結論:本研究提出新穎機制指出Rab37在腫瘤微環境當中的CD8+ T細胞當中,藉由調控IL-6之分泌來增加腫瘤微環境當中CD8+ T細胞PD-1的表現進而促進肺癌進程。因此,透過同時針對IL-6以及另外一個免疫抑制分子CTLA-4的阻斷抗體,可能提供病人更好的治療效果。
英文摘要 Background: Emerging evidence indicates that tumor-infiltrating immune cells play important roles in tumor progression. The complexity of tumor microenvironment leads to the dysregulation of cytokine production in immune cells to shift themselves to have pro-tumor functions. We previously identified that Rab37 small GTPase mediates exocytosis in cancer epithelial cells. However, the role of Rab37 in tumor microenvironmental cells such as CD8+ T cells is not well understood.
Purpose: Our pilot tests showed a concordant reduction of interleukin-6 (IL-6) secretion and PD-1 membrane presentation on splenic CD8+ T cells derived from Rab37 knockout (KO) mice compared to those from wild-type (WT) mice. We therefore aimed to investigate the trafficking pathway of Rab37-mediated IL-6 secretion to promote PD-1 expression and examine the therapeutic efficacy of combined blockade of IL-6 and immunoinhibitory receptor CTLA-4 in animal models.
Results: Our in vivo results showed that Rab37 KO displayed an anti-tumor effect to inhibit Lewis lung carcinoma (LLC) tumor growth and decreased PD-1 presentation on infiltrated CD8+ T cells. Moreover, the percentage of PD-1 on splenic CD8+ T cells was reduced in Rab37 KO mice compared to that in WT mice, suggesting that Rab37 may play a pro-tumor role in tumor microenvironmental cells. We then collected the conditioned media (CM) of splenic CD8+ T cells from WT and Rab37 KO mice to identify the Rab37-mediated secretory factor(s) that regulated the function of CD8+ T cells using cytokines/chemokines array. The results showed that IL-6 was the potential exocytic cargo mediated by Rab37. Immunofluorescence images demonstrated that Rab37 colocalized with IL-6 in splenic CD8+ as well as mouse EL4 T cells and human Jurkat T cells expressing the Rab37-WT and Rab37-Q89L GTP-bound active mutant, but not in Rab37-T43N GDP-bound inactive mutant. Importantly, our total internal reflection fluorescence data demonstrated the dynamic movement of IL-6 mediated by Rab37, confirming that the IL-6 was the cargo mediated by Rab37. In addition, the protein levels of phosphorylated STAT-3 and the mRNA of PD-1 gene increased upon Rab37 expression in a GTPase nucleotide-dependent manner, indicating that IL-6 may regulate the transcription of PD-1 gene through STAT-3 signal. Furthermore, combination treatment of anti-IL-6 and anti-CTLA-4 inhibited tumor growth and decreased the percentage of CTLA4+PD-1+ on infiltrated CD4+ T cells and immunosuppressive Tregs population in subcutaneous model. In orthotopic model, combined treatment prolonged survival of treated mice and changed immune cell profiling such as the localization of M1/M2 macrophages and CD8+ T cells infiltrating in LLC tumors.
Conclusion: Together, these results provide a new insight that Rab37 plays a pro-tumor role to increase IL-6 secretion and PD-1 presentation on CD8+ T cells in the tumor microenvironment to promote lung cancer progression. Targeting IL-6 with immunoinhibitory receptor CTLA-4 may be helpful to improve patient outcome.
論文目次 Introduction 1
I. Lung cancer 1
(A) Epidemiology of lung cancer 1
(B) Therapeutic strategies in lung cancer 1
II. Tumor microenvironment (TME) 2
(A) Role of immune cells in tumor microenvironment 2
(B) Current immunotherapies in lung cancer 4
III. Cytokines in the tumor microenvironment 6
(A) The overviews of cytokines in the immune system 6
(B) The signaling of interleukin 6 (IL-6) in the TME and its therapeutic potential 7
(C) Transcription regulation of immunosuppressive molecule programmed cell death protein 1 (PD-1) 9
IV. Rab GTPases in vesicle trafficking and tumor progression 10
(A) Role of Rab family in vesicle trafficking 10
(B) Rab GTPase and diseases 11
(C) Our previous findings on Rab37 12
(D) Rab proteins in immune cells 13
Study basis and specific aims 15
Materials and methods 17
1. Animal studies 17
2. Cell lines and culture condition 18
3. CD4+ and CD8+ T cells isolation and activation 18
4. Cytokines and chemokines array 19
5. Plasmid, RNAi and transfection 19
6. Conditioned medium preparation, collection and treatment 20
7. Membrane fraction and Western blot analysis 21
8. Vesicle isolation and immunoprecipitation 22
9. Confocal microscopy 22
10. Total internal reflection fluorescence microscopy 23
11. FLOW cytometry 24
12. Immunohistochemistry assay (IHC) and immunofluorescence-IHC 24
13. Enzyme-linked immunosorbent assay 25
14. Statistical analysis 26
Results 27
1. Rab37-/- knockout (KO) mice provided an anti-tumor microenvironment to inhibit tumor growth. 27
2. IL-6 secretion and PD-1 membrane presentation were regulated by Rab37-mediated exocytosis. 28
3. Immunofluorescence showed that Rab37 colocalized with IL-6 in a GTP-dependent manner. 29
4. The dynamics of Rab37-regulated IL-6 trafficking in 293T cell line. 31
5. Overexpression of Rab37 and IL-6 increased STAT-3 phosphorylation and PD-1 mRNA and protein expression. 31
6. Combination of anti-CTLA-4 and anti-IL-6 further inhibited tumor growth and prolonged overall survival. 32
7. Combined treatment exchanged the distribution of immune cells. 33
Discussion 34
References 40
Figures 53
Tables 65
Appendix Tables and Figures 73
FIGURE CONTENTS
Figure 1. Rab37 deficiency possessed an anti-tumor microenvironment in part by increasing the anti-tumor activity of CD8+ T cells. 54
Figure 2. Identification and validation of Rab37-mediated IL-6 secretion in relation to PD-1 membrane presentation. 56
Figure 3. Rab37 mediated the exocytosis of IL-6 in a GTP-dependent manner. 58
Figure 4. The dynamics of Rab37-mediated IL-6 intracellular trafficking. 59
Figure 5. Rab37 regulated PD-1 transcription and membrane presentation via IL-6/STAT3 signal in CD8+ T cells. 60
Figure 6. Combined blockade of CTLA-4 and IL-6 provided synergistic anti-tumor immune responses. 61
Figure 7 Combined treatment of -IL-6 and -CTLA-4 changed the distribution of infiltrated immune cells. 63
Figure 8. The schematic model of Rab37/IL-6/STAT3/PD-1 axis in CD8+ T cell in regulation of lung tumor growth ------------------------------------------------------------------ 64 
TABLE CONTENTS
Table 1. Current clinical studies using anti-IL-6 or anti-IL-6R antibodies as therapeutic strategies. 66
Table 2. Current clinical trials which use immune checkpoint inhibitors to measure the levels of IL-6 in patients’ plasma. 67
Table 3. The plasmids and their characteristics used in the current study 68
Table 4. The primers used in the current study 69
Table 5. Antibodies and their reaction conditions used in the current study 70
Table 6. List of the cytokines/chemokines that were downregulated in CD8+ T cells from Rab37 KO mice compared to wild-type mice 72

APPENDIX CONTENTS
Appendix Figure 1. Sequential steps of Rab-mediated vesicle trafficking. 74
Appendix Figure 2. Localization of Rab proteins and their functions. 75
Appendix Figure 3. Circulating IL-6 level is a prognostic marker for advanced non-small cell lung cancer (NSCLC) patients treated with chemotherapy. 76
Appendix Figure 4. IL-6 mRNA overexpression in the non-responders of NSCLC patients received anti-PD-1 therapy. 77
參考文獻 Ahmadzadeh M., Johnson LA, Heemskerk B, Wunderlich JR, Dudley ME, White DE and Rosenberg SA (2009). Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood. 114(8): 1537-1544.
Aktas E, Kucuksezer UC, Bilgic S, Erten G and Deniz G (2009). Relationship between CD107a expression and cytotoxic activity. Cellular Immunol. 254(2): 149-154.
Amornphimoltham P, Rechache K, Thompson J, Masedunskas A, Leelahavanichkul K, Patel V, Molinolo A, Gutkind JS and Weigert R (2013). Rab25 regulates invasion and metastasis in head and neck cancer. Clin Cancer Res. 19(6): 1375-1388.
Austin JW, Lu P, Majumder P, Ahmed R and Boss JM (2014). STAT3, STAT4, NFATc1, and CTCF regulate PD-1 through multiple novel regulatory regions in murine T cells. J Immunol. 192(10): 4876-4886.
Balkwill FR, Capasso M and Hagemann T (2012). The tumor microenvironment at a glance. J Cell Sci. 125(Pt 23): 5591-5596.
Belli C, Trapani D, Viale G, D'Amico P, Duso BA, Della Vigna P, Orsi F and Curigliano G (2018). Targeting the microenvironment in solid tumors. Cancer Treat Rev. 65: 22-32.
Bhat P, Leggatt G, Waterhouse N and Frazer IH (2017). Interferon-gamma derived from cytotoxic lymphocytes directly enhances their motility and cytotoxicity. Cell Death Dis. 8(6): e2836.
Blank C, Gajewski TF and Mackensen A (2005). Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: implications for tumor immunotherapy. Cancer Immunol Immunother. 54(4): 307-314.
Brahmer, J., K. L. Reckamp, P. Baas, L. Crino, W. E. Eberhardt, E. Poddubskaya, S. Antonia, A. Pluzanski, E. E. Vokes, E. Holgado, D. Waterhouse, N. Ready, J. Gainor, O. Aren Frontera, L. Havel, M. Steins, M. C. Garassino, J. G. Aerts, M. Domine, L. Paz-Ares, M. Reck, C. Baudelet, C. T. Harbison, B. Lestini and D. R. Spigel (2015). Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. N Engl J Med. 373(2): 123-135.
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68(6): 394-424.
Brody R. Zhang Y, Ballas M, Siddiqui MK, Gupta P, Barker C, Midha A and Walker J (2017). PD-L1 expression in advanced NSCLC: Insights into risk stratification and treatment selection from a systematic literature review. Lung Cancer 112: 200-215.
Buchbinder EI and Desai A (2016). CTLA-4 and PD-1 pathways: Similarities, differences, and implications of their inhibition. Am J Clin Oncol. 39(1): 98-106.
Casella G, Garzetti L, Gatta AT, Finardi A, Maiorino C, Ruffini F, Martino G, Muzio L and Furlan R (2016). IL4 induces IL6-producing M2 macrophages associated to inhibition of neuroinflammation in vitro and in vivo. J Neuroinflammation. 13(1): 139-139
Caswell PT, Spence HJ, Parsons M, White DP, Clark K, Cheng KW, Mills GB, Humphries MJ, Messent AJ, Anderson KI, McCaffrey MW, Ozanne BW and Norman JC (2007). Rab25 associates with α5β1 integrin to promote invasive migration in 3D microenvironments. Dev Cell. 13(4): 496-510.
Chae YK, Arya A, Iams W, Cruz MR, Chandra S, Choi J and Giles F (2018). Current landscape and future of dual anti-CTLA4 and PD-1/PD-L1 blockade immunotherapy in cancer; lessons learned from clinical trials with melanoma and non-small cell lung cancer (NSCLC). J Immunother Cancer. 6(1): 39-39.
Chang CH, Hsiao CF, Yeh YM, Chang GC, Tsai YH, Chen YM, Huang MS, Chen HL, Li YJ, Yang PC, Rokavec CJ, Hsiung CA and Su WC (2013). Circulating interleukin-6 level is a prognostic marker for survival in advanced nonsmall cell lung cancer patients treated with chemotherapy. Int J Cancer. 132(9): 1977-1985.
Che D, Zhang S, Jing Z, Shang L, Jin S, Liu F, Shen J, Li Y, Hu J, Meng Q and Yu Y (2017). Macrophages induce EMT to promote invasion of lung cancer cells through the IL-6-mediated COX-2/PGE2/β-catenin signalling pathway. Mol Immunol. 90: 197-210.
Chen L, Grabowski KA, Xin JP, Coleman J, Huang Z, Espiritu B, Alkan S, Xie HB, Zhu Y, White FA, Clancy J Jr and Huang H (2004). IL-4 induces differentiation and expansion of Th2 cytokine-producing eosinophils. J Immunol. 172(4): 2059-2066.
Chen MF, Chen PT, Lu MS, Lin PY, Chen WC and Lee KD (2013). IL-6 expression predicts treatment response and outcome in squamous cell carcinoma of the esophagus. Mol Cancer. 12: 26.
Cheng KW, Lahad JP, Kuo Wl, Lapuk A, Yamada K, Auersperg N, Liu J, Smith-McCune K, Lu K., Fishman D, Gray JW and Mills GB (2004). The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nature Med. 10(11): 1251-1256.
Cho SH, Kuo IY, Lu PF, Tzeng HT, Lai WW, Su WC and Wang YC (2018). Rab37 mediates exocytosis of secreted frizzled-related protein 1 to inhibit Wnt signaling and thus suppress lung cancer stemness. Cell Death Dis. 9(9): 868.
Cohen N, Shani O, Raz Y, Sharon Y, Hoffman D, Abramovitz L and Erez N (2017). Fibroblasts drive an immunosuppressive and growth-promoting microenvironment in breast cancer via secretion of Chitinase 3-like 1. Oncogene 36(31): 4457-4468.
Coward J, Kulbe H, Chakravarty P, Leader D, Vassileva V, Leinster DA, R. Thompson, Schioppa T, Nemeth J, Vermeulen J, Singh N, Avril N, Cummings J, Rexhepaj E, Jirström K, Gallagher WM, Brennan DJ, McNeish IA and Balkwill FR (2011). Interleukin-6 as a therapeutic target in human ovarian cancer. Clin Cancer Res. 17(18): 6083.
Culig Z and Puhr M (2012). Interleukin-6: a multifunctional targetable cytokine in human prostate cancer. Mol Cell Endocrinol. 360(1-2): 52-58.
da Cunha Santos G, Shepherd FA and Tsao MS (2011). EGFR mutations and lung cancer. Annu Rev Pathol. 6: 49-69.
Dethlefsen C, Højfeldt G and Hojman P (2013). The role of intratumoral and systemic IL-6 in breast cancer. Breast Cancer Res Treat. 138(3): 657-64.
Dranoff G (2004). Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer. 4(1): 11-22
Fisher DT, Appenheimer MM and Evans SS (2014). The two faces of IL-6 in the tumor microenvironment. Semin Immunol. 26(1): 38-47.
Fizazi K, De Bono JS, Flechon A, Heidenreich A, Voog E, Davis NB, Qi M, Bandekar R, Vermeulen JT, Cornfeld M and Hudes GR (2012). Randomised phase II study of siltuximab (CNTO 328), an anti-IL-6 monoclonal antibody, in combination with mitoxantrone/prednisone versus mitoxantrone/prednisone alone in metastatic castration-resistant prostate cancer. Eur J Cancer. 48(1): 85-93.
Francisco LM, Sage PT and Sharpe AH (2010). The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 236: 219-242.
Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L, Carcereny E, Ahn MJ., Felip E, Lee JS, Hellmann MD, Hamid O, Goldman JW, Soria JC, Dolled-Filhart M, Rutledge RZ, Zhang J, Lunceford JK, Rangwala R, Lubiniecki GM, Roach C, Emancipator K, Gandhi L and KEYNOTE-001 Investigators (2015). Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 372(21): 2018-2028.
Gridelli C, Rossi A, Carbone DP, Guarize J, Karachaliou N, Mok T, Petrella F, Spaggiari L and Rosell R (2015). Non-small-cell lung cancer. Nat Rev Dis Primers. 1: 15009.
Hendrix A, Maynard D, Pauwels P, Braems G, Denys H, Broecke RV, Lambert J, Belle SV, Cocquyt V, Gespach C, Bracke M, Seabra MC, Gahl WA, Wever OD and Westbroek W (2010) Effect of the secretory small GTPase Rab27b on breast cancer growth, invasion, and metastasis. J Natl Cancer Inst. 102(12): 866–880
Higashio H, Satoh Y and Saino T (2016). Mast cell degranulation is negatively regulated by the Munc13-4-binding small-guanosine triphosphatase Rab37. Sci Rep. 6: 22539.
Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ, Wu YL and Paz-Ares L (2017). Lung cancer: current therapies and new targeted treatments. The Lancet. 389(10066): 299-311
Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbé C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A and Urba WJ (2010). Improved Survival with Ipilimumab in Patients with Metastatic Melanoma. N Engl J Med. 363(8): 711-723.
Hong DS, Angelo LS and Kurzrock R (2007). Interleukin-6 and its receptor in cancer. Cancer 110(9): 1911-1928.
Horikawa N, Abiko K, Matsumura N, Hamanishi J, Baba T, Yamaguchi K, Yoshioka Y, Koshiyama M and Konishi I (2017). Expression of vascular endothelial growth factor in ovarian cancer inhibits tumor immunity through the accumulation of myeloid-derived suppressor Cells. Clin Cancer Res. 23(2): 587.
Huse M, Lillemeier BF, Kuhns MS, Chen DS, Davis MM (2006). T cells use two directionally distinct pathways for cytokine secretion. Nat Immunol. 7(3): 247-255.
Ishida Y, Agata Y, Shibahara K and Honjo T (1992). Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 11(11): 3887-3895.
Ito SE, Shirota H, Kasahara Y, Saijo K and Ishioka C (2017). IL-4 blockade alters the tumor microenvironment and augments the response to cancer immunotherapy in a mouse model. Cancer Immunol Immunother. 66(11): 1485-1496.
Ji R, Zhang X, Qian H, Gu H, Sun Z, Mao F, Yan Y, Chen J, Liang Z and Xu W (2017). miR-374 mediates the malignant transformation of gastric cancer-associated mesenchymal stem cells in an experimental rat model. Oncol Rep. 38(3): 1473-1481.
Jiang Y, Han Y, Sun C, Han C, Han N, Zhi W and Qiao Q (2016). Rab23 is overexpressed in human bladder cancer and promotes cancer cell proliferation and invasion. Tumour Biol. 37(6): 8131-8138.
Jiang Y., Li Y and Zhu B (2015). T-cell exhaustion in the tumor microenvironment. Cell Death Dis. 6: e1792
Johnson DE, O'Keefe RA and Grandis JR (2018). Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 15(4): 234-248.
Jung T, Schauer U, Heusser C, Neumann C and Rieger C (1993). Detection of intracellular cytokines by flow cytometry. J Immunol Methods. 159(1): 197-207.
Kakavand H, Rawson RV, Pupo GM, Yang JYH, Menzies AM, Carlino MS, Kefford RF, Howle JR, Saw RPM, Thompson JF, Wilmott JS, Long GV, Scolyer RA and Rizos H (2017). PD-L1 expression and immune escape in melanoma resistance to MAPK inhibitors. Clin Cancer Res. 23(20): 6054.
Kamata T, Jin H, Giblett S, Patel B, Patel F, Foster C and Pritchard C (2015). The cholesterol-binding protein NPC2 restrains recruitment of stromal macrophage-lineage cells to early-stage lung tumours. EMBO Mol Med. 7(9): 1119-1137.
Karkera J, Steiner H, Li W, Skradski V, Moser PL, Riethdorf S, Reddy M, Puchalski T, Safer K, Prabhakar U, Pantel K, Qi M and Culig Z (2011). The anti-interleukin-6 antibody siltuximab down-regulates genes implicated in tumorigenesis in prostate cancer patients from a phase I study. Prostate. 71(13): 1455-1465.
Kelly EE., Horgan CP, Goud B and McCaffrey MW (2012). The Rab family of proteins: 25 years on. Biochem Soc Trans. 40(6): 1337-1347.
Kudo M (2019). Combination cancer immunotherapy with molecular targeted agents/anti-CTLA-4 antibody for hepatocellular carcinoma. Liver Cancer. 8(1): 1-11.
Kumari N, Dwarakanath BS, Das A and Bhatt AN (2016). Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biol. 37(9): 11553-11572.
Landskron G, De la Fuente M, Thuwajit P, Thuwajit C and Hermoso MA (2014). Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res. 2014: 149185.
Lee KS, Kim BH, Oh HK, Kim DW, Kang SB, Kim H and Shin E (2018). Programmed cell death ligand-1 protein expression and CD274/PD-L1 gene amplification in colorectal cancer: Implications for prognosis. Cancer Sci. 109(9): 2957-2969.
Li G and Marlin MC (2015). Rab family of GTPases. Methods in molecular biology (Clifton, N.J.). 1298: 1-15.
Liao W, Lin JX and Leonard WJ (2013). Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity. 38(1): 13-25.
Lim SM, Syn NL, Cho BC and Soo RA (2018). Acquired resistance to EGFR targeted therapy in non-small cell lung cancer: Mechanisms and therapeutic strategies. Cancer Treat Rev. 65: 1-10.
Lipson EJ and Drake CG (2011). Ipilimumab: an anti-CTLA-4 antibody for metastatic melanoma. Clin Cancer Res. 17(22): 6958-6962.
Liu H., Shen J and Lu K (2017). IL-6 and PD-L1 blockade combination inhibits hepatocellular carcinoma cancer development in mouse model. Biochem Biophys Res Commun. 486(2): 239-244.
Luo ML, Gong C, Chen CH, Hu H, Huang P, Zheng M, Yao Y, Wei S, Wulf G, Lieberman J, Zhou XZ, Song E and Lu KP (2015). The Rab2A GTPase promotes breast cancer stem cells and tumorigenesis via Erk signaling activation. Cell Rep. 11(1): 111-124.
Macciò A and Madeddu C (2012). Inflammation and ovarian cancer. Cytokine. 58(2): 133-147.
Mace TA, Shakya R, Pitarresi JR, Swanson B, McQuinn CW, Loftus S, Nordquist E, Cruz-Monserrate Z, Yu L, Young G, Zhong X, Zimmers TA, Ostrowski MC, Ludwig T, Bloomston M, Bekaii-Saab T and Lesinski GB (2018). IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer. Gut. 67(2): 320-332.
McDermott DF (2007). Update on the application of interleukin-2 in the treatment of renal cell carcinoma. Clin Cancer Res. 13(2 Pt 2): 716s-720s.
Mori R, Ikematsu K, Kitaguchi T, Kim SE, Okamoto M, Chiba T, Miyawaki A, Shimokawa I, Tsuboi T (2011). Release of TNF-alpha from macrophages is mediated by small GTPase Rab37. Eur J Immunol. 41(11): 3230-3239.
Muenst S, Laubli H, Soysal SD, Zippelius A, Tzankov A and Hoeller S (2016). The immune system and cancer evasion strategies: therapeutic concepts. J Intern Med. 279(6): 541-562.
Murray RZ, Kay JG, Sangermani DG and Stow JL (2005). A Role for the phagosome in cytokine secretion. Science. 310(5753): 1492.
Nam KT, Lee HJ, Smith JJ, Lapierre LA, Kamath VP, Chen X, Aronow BJ, Yeatman TJ, Bhartur SG, Calhoun BC, Condie B, Manley NR, Beauchamp RD, Coffey RJ and Goldenring JR (2010). Loss of Rab25 promotes the development of intestinal neoplasia in mice and is associated with human colorectal adenocarcinomas. J Clin Invest. 120(3): 840-849.
Noy R and Pollard JW (2014). Tumor-associated macrophages: from mechanisms to therapy. Immunity. 41(1): 49-61.
Pachnia D, Drop B, DworzaŃSka A, Kliszczewska E and Polz-Dacewicz M (2017). Transforming growth factor-β, interleukin-10, and serological markers in EBV-associated gastric carcinoma. Anticancer Res. 37(9): 4853-4858.
Panagopoulos V, Leach DA, Zinonos I, Ponomarev V, Licari G, Liapis V, Ingman WV, Anderson P, DeNichilo MO and Evdokiou A (2017). Inflammatory peroxidases promote breast cancer progression in mice via regulation of the tumour microenvironment. Int J Oncol. 50(4): 1191-1200.
Patel SP and Kurzrock R (2015). PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther. 14(4): 847.
Prat A, Navarro A, Paré L, Reguart N, Galván P, Pascual T, Martínez A, Nuciforo P, Comerma L, Alos L, Pardo N, Cedrés S, Fan C, Parker JS, Gaba L, Victoria I, Viñolas N, Vivancos A, Arance A and Felip E (2017). Immune-related gene expression profiling after PD-1 blockade in non–small cell lung carcinoma, head and neck squamous cell carcinoma, and melanoma. Cancer Res. 77(13): 3540 -3550.
Qian BZ and Pollard JW (2010). Macrophage diversity enhances tumor progression and metastasis. Cell. 141(1): 39-51.
Quezada SA, Peggs KS, Curran MA and Allison JP (2006). CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. J Clin Invest. 116(7): 1935-1945.
Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM, Baker J, Jeffery LE, Kaur S, Briggs Z, Hou TZ, Futter CE, Anderson G, Walker LS and Sansom DM (2011). Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science. 332(6029): 600-603.
Rice SJ, Liu X, Zhang J, Jia B, Zheng H and Belani CP (2019). Advanced NSCLC patients with high IL-6 levels have altered peripheral T cell population and signaling. Lung Cancer. 131: 58-61.
Rokavec M, Oner MG, Li H, Jackstadt R, Jiang L, Lodygin D, Kaller M, Horst D, Ziegler PK, Schwitalla S, Slotta-Huspenina J, Bader FG, Greten FR and Hermeking H (2015). IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest. 125(3): 1362.
Rossi JF, Lu ZY, Jourdan M and Klein B (2015). Interleukin-6 as a therapeutic target. Clin Cancer Res. 21(6): 1248.
Sakaguchi S, Wing K, Onishi Y, Prieto-Martin P and Yamaguchi T (2009). Regulatory T cells: how do they suppress immune responses? Int Immunol. 21(10): 1105-1111.
Seidel JA, Otsuka A and Kabashima K (2018). Anti-PD-1 and anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations. Front Oncol. 8: 86-86.
Seifert L, Werba G, Tiwari S, Giao Ly NN, Nguy S, Alothman S, Alqunaibit D, Avanzi A, Daley D, Barilla R, Tippens D, Torres-Hernandez A, Hundeyin M, Mani VR, Hajdu C, Pellicciotta I, Oh P, Du K and Miller G (2016). Radiation therapy induces macrophages to suppress T-cell responses against pancreatic tumors in mice. Gastroenterology. 150(7): 1659-1672.e1655.
Sharma SV, Bell DW, Settleman J and Haber DA (2007). Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 7(3): 169-181.
Socinski, M. A., R. M. Jotte, F. Cappuzzo, F. Orlandi, D. Stroyakovskiy, N. Nogami, D. Rodriguez-Abreu, D. Moro-Sibilot, C. A. Thomas, F. Barlesi, G. Finley, C. Kelsch, A. Lee, S. Coleman, Y. Deng, Y. Shen, M. Kowanetz, A. Lopez-Chavez, A. Sandler, M. Reck and I. M. S. Group (2018). Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC. N Engl J Med. 378(24): 2288-2301
Song L, Rawal B, Nemeth JA and Haura EB (2011). JAK1 activates STAT3 activity in non-small-cell lung cancer cells and IL-6 neutralizing antibodies can suppress JAK1-STAT3 signaling. Mol Cancer Ther. 10(3): 481-494.
Sorensen MR, Holst PJ, Steffensen MA, Christensen JP and Thomsen AR (2010). Adenoviral vaccination combined with CD40 stimulation and CTLA-4 blockage can lead to complete tumor regression in a murine melanoma model. Vaccine. 28(41): 6757-6764.
Stenmark H (2009). Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 10(8): 513-525.
Strauss L, Bergmann C, Szczepanski M, Gooding W, Johnson JT and Whiteside TL (2007). A unique subset of CD4+CD25highFoxp3+ T cells secreting interleukin-10 and transforming growth factor-beta1 mediates suppression in the tumor microenvironment. Clin Cancer Res. 13(15 Pt 1): 4345-4354.
Sung WW, Wang YC, Lin PL, Cheng YW, Chen CY, Wu TC and Lee H (2013). IL-10 promotes tumor aggressiveness via upregulation of CIP2A transcription in lung adenocarcinoma. Clin Cancer Res. 19(15): 4092-4103.
Swann JB and Smyth MJ (2007). Immune surveillance of tumors. J Clin Invest. 117(5): 1137-1146.
Taiwan Ministry of Health and Welfare (2017) General Health Statistics. https://dep.mohw.gov.tw/DOS/cp-3960-41756-113.html
Tanaka T, Narazaki M and Kishimoto T (2016). Immunotherapeutic implications of IL-6 blockade for cytokine storm. Immunotherapy. 8(8):959-70.
Tanaka T, Narazaki M and Kishimoto T (2018). Interleukin (IL-6) Immunotherapy. Cold Spring Harb Perspect Biol. 10(8).
Tong M, Wang J, He W, Wang Y, Pan H, Li D and Zhang H (2018). Predictive biomarkers for tumor immune checkpoint blockade. Cancer Manag Res. 10: 4501-4507.
Tsai CH, Cheng HC, Wang YS, Lin P, Jen J, I. Kuo Y, Chang YH, Liao PC, Chen RH, Yuan WC, Hsu HS, Yang MH, Hsu MT, Wu CY and Wang YC (2014). Small GTPase Rab37 targets tissue inhibitor of metalloproteinase 1 for exocytosis and thus suppresses tumour metastasis. Nat Commun. 5: 4804.
Tsukamoto H, Fujieda K, Miyashita A, Fukushima S, Ikeda T, Kubo Y, Senju S, Ihn H, Nishimura Y and Oshiumi H (2018). Combined blockade of IL6 and PD-1/PD-L1 signaling abrogates mutual regulation of their immunosuppressive effects in the tumor microenvironment. Cancer Res. 78(17): 5011-5022.
Tzeng HT, Su CC, Chang CP, Lai WW, Su WC and Wang YC (2018). Rab37 in lung cancer mediates exocytosis of soluble ST2 and thus skews macrophages toward tumor-suppressing phenotype. Int J Cancer. 143(7): 1753–1763.
Tzeng HT, Tsai CH, Yen YT, Cheng HC, Chen YC, Pu SW, Wang YS, Shan YS, Tseng YL, Su WC, Lai WW, Wu LW and Wang YC (2017). Dysregulation of Rab37-mediated cross-talk between cancer cells and endothelial cells via thrombospondin-1 promotes tumor neovasculature and metastasis. Clin Cancer Res. 23(9): 2335-2345.
Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E, Lichtor T, Decker WK, Whelan RL, Kumara HMCS, Signori E, Honoki K, Georgakilas AG., Amin A, Helferich WG, Boosani CS, Guha G, Ciriolo MR, Chen S, Mohammed SI, Azmi AS, Keith WN, Bilsland A, Bhakta D, Halicka D, Fujii H, Aquilano K, Ashraf SS, Nowsheen S, Yang X, Choi BK and Kwon BS (2015). Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin Cancer Biol. 35 Suppl: S185-S198.
Vonderheide RH and Glennie MJ (2013). Agonistic CD40 antibodies and cancer therapy. Clin Cancer Res. 19(5): 1035.
Voronov E and Apte RN (2017). Targeting the tumor microenvironment by intervention in interleukin-1 biology. Curr Pharm Des. 23(32): 4893-4905.
Waldner MJ, Foersch S and Neurath MF (2012). Interleukin-6  a key regulator of colorectal cancer development. Int J Biol Sci. 8(9): 1248-1253.
Wang B, Qin L, Ren M and Sun H (2018). Effects of combination of anti-CTLA-4 and anti-PD-1 on gastric cancer cells proliferation, apoptosis and metastasis. Cell Physiol Biochem. 49(1): 260-270.
Wang T, Gilkes DM, Takano N, Xiang L, Luo W, Bishop CJ, Chaturvedi P, Green JJ and Semenza GL (2014). Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis. Proc Natl Acad Sci U S A. 111(31): E3234-E3242.
Wu CY, Tseng RC, Hsu HS, Wang YC and Hsu MT (2009). Frequent down-regulation of hRAB37 in metastatic tumor by genetic and epigenetic mechanisms in lung cancer. Lung Cancer. 63(3): 360-367.
Wu T, and Dai Y (2017). Tumor microenvironment and therapeutic response. Cancer Lett. 387: 61-68.
Yadav A, Kumar B, Datta J, Teknos TN and Kumar P (2011). IL-6 promotes head and neck tumor metastasis by inducing epithelial-mesenchymal transition via the JAK-STAT3-SNAIL signaling pathway. Mol Cancer Res. 9(12): 1658-1667.
Yi M, Jiao D, Xu H, Liu Q, Zhao W, Han X and Wu K (2018). Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Mol Cancer. 17(1): 129.
You Y, Li Y, Li M, Lei M, Wu M, Qu Y, Yuan Y, Chen T and Jiang H (2018). Ovarian cancer stem cells promote tumour immune privilege and invasion via CCL5 and regulatory T cells. Clin Exp Immunol. 191(1): 60-73.
Zhen Y and Stenmark H (2015). Cellular functions of Rab GTPases at a glance. J Cell Sci. 128(17): 3171-3176.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw