進階搜尋


下載電子全文  
系統識別號 U0026-1508201913262500
論文名稱(中文) 立方衛星於指向限制下之姿態控制探討
論文名稱(英文) Investigation of CubeSat Attitude Control Subject to Pointing Constraints
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 廖豈國
研究生(英文) Kai-Kuo Liao
學號 n26061084
學位類別 碩士
語文別 英文
論文頁數 55頁
口試委員 指導教授-莊智清
口試委員-苗君易
口試委員-蔡永富
口試委員-卓大靖
口試委員-汪愷悌
中文關鍵字 立方衛星  姿態控制  修正式羅德里格參數 
英文關鍵字 CubeSat  Attitude Control  Modified Rodrigues Parameters 
學科別分類
中文摘要 立方衛星在最近幾年有蓬勃的發展,執行的任務越來越多樣化,隨著相關技術的成熟,立方衛星已具有高精確度姿態控制的能力。為了確保任務成功執行並儘可能地延長執行時間,應為立方衛星上高靈敏性的光感測元件進行一定程度的保護。透過對姿態精確的控制可以避免這類型感測元件與太陽或類似的發光體直射,以達到保護效果。另一方面,立方衛星上還有一類型的儀器需要時刻保持特定方向才能維持正常運作,例如指向性天線抑或是地球感測器,這類型儀器的操作同樣需仰賴姿態控制的能力。綜上所述,立方衛星在做姿態的控制時須同時考量各儀器在指向上的要求,本論文探討在此種限制下該如何對姿態控制的控制法則做出修正。
本研究將以修正式羅德里格參數作為描述姿態的主要方式,適當利用此參數的非唯一性將能夠在最低維度並且避開奇異點的情況下描述所有姿態,並以一對數懲罰函數來描述指向性的姿態限制,根據李亞普諾夫的穩定理論來推導出控制法則,最後提出一套控制流程來應對單一控制法則在應用上的限制。
英文摘要 In recent years, CubeSat has become a popular platform to demonstrate state-of-the-art technology in various fields as it is cheaper and can be launched in a short time compared to a regular satellite. Thanks to the rapid development of technology, CubeSat is now able to meet the highly accurate pointing requirement. To ensure the success of the mission and prolong the lifetime of the CubeSat, it is necessary to protect the sensitive instruments on the CubeSat. By controlling the attitude deliberately, we can have those sensors to avoid direct exposure to very bright celestial objects. On the other hand, there is another kind of onboard instruments which should point toward a certain direction in order to function properly. Therefore, implementing the attitude maneuver of the CubeSat is actually subject to several kinds of pointing constraints.
In this thesis, we use the modified Rodrigues parameters (MRPs) as the main attitude representations. MRPs are able to describe all the orientations with the lowest dimension and avoid encountering any singularity by taking advantage of the non-uniqueness properly. The attitude constraints are expressed in the logarithmic barrier potential functions so it is easy to combine them with the Lyapunov functions which are used to generate the unconstrained control law. Finally, we discuss the issue of the control law under the attitude tracking scenario and propose a control scheme to deal with it.
論文目次 摘要 I
Abstract II
Acknowledgements IV
Contents V
List of Tables VIII
List of Figures IX
List of Abbreviations XI
Chapter 1 Introduction 1
1.1. Motivation 1
1.2. Literature Review 1
1.2.1. Geometric Method 1
1.2.2. Constraint Monitor Algorithm (CMT) 2
1.2.3. Optimal Control 2
1.2.4. Lyapunov Method 3
1.3. Real Case 3
1.3.1. Bevo-2 4
1.3.2. ARMADILLO 4
1.4. Thesis Objective 5
1.5. Thesis Overview 6
Chapter 2 Unconstrained Attitude Control 7
2.1. Attitude Representations 7
2.1.1. Direction Cosine Matrix 7
2.1.2. Principal Rotation Vector 9
2.1.3. Quaternion 10
2.1.4. Modified Rodrigues Parameters 11
2.2. Motion of Equations 11
2.2.1. Attitude Dynamics 11
2.2.2. Attitude Kinematics 12
2.3. Unconstrained Attitude Control Law 12
2.4. Investigation of Unwinding Problem 14
2.4.1. The Solution to Unwinding Problem for Quaternion 14
2.4.2. The Solution to Unwinding Problem for MRPs 15
Chapter 3 Mathematical Formulation of Attitude Constraints 17
3.1. Attitude Constrained Zones 17
3.1.1. Attitude-Forbidden Zones 17
3.1.2. Attitude-Mandatory Zones 18
3.1.3. Attitude-Permissible Zones 19
3.2. Attitude Constraints Type 20
3.2.1. Type 1 (Static Hard Constraints) 20
3.2.2. Type 2 (Static Soft Constraints) 21
3.2.3. Type 3 (Dynamic Constraints) 21
3.2.4. Type 4 (Mixed Constraints) 21
Chapter 4 Attitude Constrained Control Law 22
4.1. Attitude Constrained Control: Regulation Case 23
4.2. Attitude Constrained Control: Tracking Case 26
Chapter 5 Numerical Simulation 29
5.1. Attitude Regulation in the Presence of Attitude-Forbidden Zones 29
5.2. Attitude Regulation in the Presence of Attitude-Mandatory Zones 34
5.3. Attitude Tracking in Presence of Attitude-Forbidden Zones 39
Chapter 6 Application 45
6.1. Issues of the Attitude Constrained Control Law 45
6.2. Control Scheme for the Application of Attitude Tracking 46
6.3. Numerical Simulation of the Control Scheme 47
Chapter 7 Conclusions and Future Work 53
7.1. Conclusions 53
7.2. Future Work 53
References 54

參考文獻 References
[1] Wie, B., and Barba, P.M., “Quaternion Feedback for Spacecraft Large Angle Maneuvers,” AIAA Journal of Guidance, Control, and Dynamics, Vol. 8, No.3, 1985, pp. 360-365
[2] Tsiotras, P., “Stabilization and Optimality Results for the Attitude Control Problem,” AIAA Journal of Guidance, Control, and Dynamics, Vol. 19, No.4, 1996, pp. 772-779
[3] Wen, J., and Kreutz-Delgado, K., “The Attitude Control Problem,” IEEE Transactions on Automatic Control, Vol.36, No. 10, 1991, pp. 1148-1161
[4] Bach, R., and Paielli, R., “Linearization of Attitude Control Error Dynamics,” IEEE Transactions on Automatic Control, Vol.38, No. 10, 1993, pp. 1521-1525
[5] Junkins, J., and Turner, J., “Optimal Continuous Torque Attitude Maneuvers,” AIAA Journal of Guidance, Control, Dynamics, Vol. 3, No. 3, 1980, pp. 210-217
[6] Schaub, H., Akella, M., and Junkins, J., “Adaptive Control of Nonlinear Attitude Motions Realizing Linear Closed Loop Dynamics,” AIAA Journal of Guidance, Control, and Dynamics, Vol. 24, No. 1, 2001, pp. 95-100
[7] Hablani, H. B., “Attitude Command Avoiding Bright Object,” AIAA Journal of Guidance, Control, and Dynamics, Vol. 22, No.6, 1999, pp. 759-767
[8] Singh, G., Macala, G., Wong, E., and Rasmussen, R., “A Constraint Monitor Algorithm for The Cassini Spacecraft,” Proceedings of the AIAA Guidance, Navigation, and Control Conference, 1997, pp. 272-282.
[9] Markley, F. L., and Crassidis, J. L., “Fundamentals of Spacecraft Attitude Determination and Control,” Space Technology Library 33, 2014.
[10] Cheng, X., Cui, H., Cui, P., and Xu, P., “Large Angular Autonomous Attitude Maneuver of Deep Spacecraft using Pseudospectral Method,” Proceedings of the 3rd International Symposium on Systems and Control in Aeronautics and Astronautics, 2010, pp. 1510-1514
[11] Wu, C., Xu, R., Zhu, S., and Cui, P., “Time-Optimal Spacecraft Attitude Maneuver Path Planning under Boundary and Pointing Constraints,” Acta Astrinautica, Vol. 137, 2017, pp. 129-137
[12] Sun, C., and Dai, R., “Spacecraft Attitude Control under Constrained Zones via Quadratically Constrained Quadratic Programming,” Proceedings of the AIAA Guidance, Navigation, and Control Conference, 2015
[13] Kim, Y., and Mesbahi, M., “Quadratically Constrained Attitude Control via Semidefinite Programming,” IEEE Transactions on Automatic Control, Vol. 49, No. 5, 2004, pp. 731-735
[14] Kim, Y., Mesbahi, M., Singh, G., and Hadaegh, F., “On the Convex Parameterization of Spacecraft Orientation,” IEEE Transactions on Aerospace and Electronics Systems, Vol. 46, No. 3, 2010, pp. 1097-1109
[15] McInnes, C., “Large Angle Slew Maneuvers with Autonomous Sun Vector Avoidance,” AIAA Journal of Guidance, Control, and Dynamics, Vol. 17, No. 4, 1994, pp. 875-877
[16] Lee, U., and Mesbahi, M., “Spacecraft Reorientation in Presence of Attitude Constraint via Logarithmic Barrier Potentials,” Proceedings of the American Control Conference, 2011, pp. 450-455
[17] Lee, U., and Mesbahi, M., “Feedback Control for Spacecraft Reorientation via Convex Potential,” IEEE Transactions on Aerospace and Electronics Systems, Vol. 50, No. 4, 2014, pp. 2578-2592
[18] Ramos, M.F.D., “Kinematics Steering Law for Conically Constrained Torqued-Limited Spacecraft Attitude Control,” M.S. Thesis, University of Colorado at Boulder, 2017
[19] Schaub, H., and Junkins, J. L., “Analytical Mechanics of Space Systems,” AIAA Education Series, Reston, VA, 2003.
[20] Bevo-2, Available: https://space.skyrocket.de/doc_sdat/bevo-2.htm, Accessed in 2019
[21] ARMADILLO, Available: https://sites.utexas.edu/tsl/armadillo/, Accessed in 2019
[22] Kjellberg, H.C., Lightsey, E.G., “A Constrained Attitude Control Module for Small Satellites,” Proceedings of the 26th Annual AIAA/USU Conference on Small Satellites, Logan UT, 2012
[23] Kjellberg, H.C., “Constrained Attitude Guidance and Control for Satellites,” Ph.D. Thesis, The University of Texas at Austin, 2014
[24] Kjellberg, H.C., “Design of A CubeSat Guidance, Navigation, and Control Module,” M.S. Thesis, The University of Texas at Austin, 2011
[25] Koenig, J.D., “A Novel Attitude Guidance Algorithm for Exclusion Zone Avoidance,” Proceedings of the IEEE Aerospace Conference, USA, 2009
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-06-17起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-06-17起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw