進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1508201816111200
論文名稱(中文) 高頻超快速超音波血流影像應用於成年斑馬魚
論文名稱(英文) High-Frequency Ultrafast Ultrasound Blood Flow Mapping for Adult Zebrafish
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 張朝筌
研究生(英文) Chao-Chuan Chang
學號 P86054153
學位類別 碩士
語文別 英文
論文頁數 69頁
口試委員 口試委員-周鼎贏
口試委員-崔博翔
口試委員-舒宇宸
指導教授-黃執中
中文關鍵字 成年斑馬魚  高頻超音波  超快速超音波成像  都卜勒成像  自適應時空濾波器 
英文關鍵字 adult zebrafish  high frequency ultrasound  ultrafast ultrasound imaging  Doppler imaging  adaptive spatiotemporal filtering 
學科別分類
中文摘要 斑馬魚在近幾年被認為是研究發育生物學,遺傳學,癌症以及心臟病學的理想脊椎動物,特別是用於觀察腫瘤形成,血管新生作用和組織再生。然而,一旦斑馬魚完全成熟,其身體就會失去透明度,因此傳統的光學成像技術將難以對內部解剖結構和血管分佈進行成像。
由於聲波比光學造影具有更好的穿透能力,因此高頻超音波(> 30 MHz)常用於成年斑馬魚的成像,特別是用於心臟超音波。然而,傳統的高頻超音波仍然難以看到斑馬魚的血管。在本研究中,基於超快速超音波成像的高頻高解析度都卜勒技術(High Frequency Micro-Doppler Imaging, HFμDI)被提出用於體內斑馬魚背部血管造影。透過不同的參數設定,基於特徵值分解的障壁濾波器(Eigen-Based Clutter Filter)可擷取超音波影像中的血流訊號。本研究使用8個月大的野生型AB成年斑馬魚進行實驗。在2D和3D HFμDI中均可清楚地觀察到斑馬魚背側的節間血管(Se),背側縱向吻合血管(DLAV)和背主動脈(DA)等血管。 HFμDI的最大成像深度為4mm,並且可以在不使用微泡(Microbubble)的情況下觀測到最小達36μm的血管直徑。在成年斑馬魚的背部血管上,最大流速範圍為3-4 mm/s。此外,由於斑馬魚生活環境的溫度變化,HFμDI可檢測到14.4%的血管收縮。相較於傳統的超音波都卜勒成像,HFμDI的確擁有較好的超微血管成像能力。
英文摘要 Recently, zebrafish has been considered as an ideal vertebrate for studying developmental biology, genetics, cancer, and cardiology, particularly for modeling tumorigenesis, angiogenesis, and regeneration in vivo. However, once the zebrafish has fully matured, its body loses transparency, thus conventional optical imaging techniques are difficult for imaging the internal anatomy and vasculature.
Since the acoustic wave has a better penetration ability than optical methods, high frequency (>30 MHz) ultrasound (HFUS) was an alternative imaging modality for adult zebrafish imaging, particularly for echocardiography. However, the conventional HFUS is still difficult to visualize the vessels of zebrafish. In the present study, high frequency micro-Doppler imaging (HFμDI) based on ultrafast ultrasound imaging was proposed for zebrafish dorsal vascular mapping in vivo. Blood flow signals were extracted by eigen-based clutter filter with different settings. Experiments were performed using 8-months old wild-type AB line adult zebrafish. Blood vessels including intersegmental vessels (Se), dorsal longitudinal anastomotic vessel (DLAV), and dorsal aorta (DA) were observed clearly in both 2D and 3D HFμDI. The maximum imging depth of HFμDI is 4 mm and a minimum vessel diameter of 36 μm can be detected without using microbubbles. The maximum flow velocity ranging around 3-4 mm/s was found on the dorsal vessels of adult zebrafish. In addition, a 14.4% vasoconstriction was detected by HFμDI due to temperature changes of zebrafish living environment. Compared to conventional ultrasound Doppler imaging, indeed, HFμDI exhibits a good ability for small vessel imaging.
論文目次 摘要 II
Abstract III
致謝 IV
Tables VII
Figures VIII
Chapter 1 Introduction 1
1.1 Background 1
1.2 Literature Reviews 3
1.3 Motivations and Purpose 7
Chapter 2 Basic Theory 8
2.1 Ultrasound 8
2.1.1 Fundamental of Acoustic Propagation 8
2.1.2 Reflection, Refraction and Attenuation 10
2.1.3 Ultrasonic Transducer and Arrays 13
2.1.4 Ultrasonic Imaging 17
2.2 Ultrafast Ultrasound Imaging 19
2.2.1 Plane-Wave Imaging 19
2.2.2 Coherent Plane-Wave Compounding 22
2.2.3 Ultrafast Compound Doppler Imaging 24
2.3 Clutter Filtering 26
2.3.1 DFT-Based Clutter Filtering 27
2.3.2 Single-Ensemble Eigen-Based Clutter Filtering 28
2.3.3 Multi-Ensemble Eigen-Based Clutter Filtering 31
Chapter 3 Materials and Methods 34
3.1 Animal Handling 34
3.2 Imaging System Configuration 35
3.3 High-Frequency Micro-Doppler Imaging 37
Chapter 4 Results 43
4.1 Tilted Plane-Wave Setting Experiments 43
4.2 Block Size Setting Experiments 45
4.3 Results of HFμDI 47
4.4 Resolution Evaluation 49
4.5 3D Blood Mapping 50
Chapter 5 Discussions 52
Chapter 6 Conclusions and Future Works 59
6.1 Conclusions 59
6.2 Future Works 60
References 61
參考文獻 [1] C. Demené et al., “Spatiotemporal clutter filtering of ultrafast ultrasound data highly increases Doppler and fUltrasound sensitivity,” IEEE Trans. Med. Imaging, vol. 34, no. 11, pp. 2271-2285, 2015.
[2] A. C. Yu, “Single-ensemble-based eigen-processing methods for color flow imaging-part I. the Hankel-SVD filter,” IEEE Trans. Ultrason. Ferroelectr., Freq. Control, 2008.
[3] F. W. Mauldin et al., “The singular value filter: a general filter design strategy for PCA-based signal separation in medical ultrasound imaging,” IEEE Trans. Med. Imaging, vol. 30, no. 11, pp. 1951-1964, 2011.
[4] L. A. Ledoux et al., “Reduction of the clutter component in Doppler ultrasound signals based on singular value decomposition: a simulation study,” Ultrason. Imaging, vol. 19, no. 1, pp. 1-18, 1997.
[5] D. E. Kruse et al., “A new high resolution color flow system using an eigendecomposition-based adaptive filter for clutter rejection,” IEEE Trans. Ultrason. Ferroelectr., Freq. Control, vol. 49, no. 10, pp. 1384-1399, 2002.
[6] P. J. Vaitkus, “A new time-domain narrowband velocity estimation technique for Doppler ultrasound flow imaging. I. Theory,” IEEE Trans. Ultrason. Ferroelectr., Freq. Control, vol. 45, no. 4, pp. 939-954, 1998.
[7] G. J. Lieschke et al., “Animal models of human disease: zebrafish swim into view,” Nat Rev Genet, vol. 8, no. 5, pp. 353, 2007.
[8] W. Goessling et al., “Ultrasound biomicroscopy permits in vivo characterization of zebrafish liver tumors,” Nature methods, vol. 4, no. 7, pp. 551, 2007.
[9] E. Chiavacci et al., “The zebrafish/tumor xenograft angiogenesis assay as a tool for screening anti-angiogenic miRNAs,” Cytotechnology, vol. 67, no. 6, pp. 969-975, 2015.
[10] C. Tobia et al., “Zebrafish embryo, a tool to study tumor angiogenesis,” Int. J. Dev. Biol., vol. 55, no. 4-5, pp. 505-509, 2011.
[11] Y. Chen et al., "Label-free imaging of developing vasculature in zebrafish with phase variance optical coherence microscopy." p. 97160A.
[12] S. Isogai et al., “The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development,” Dev. Biol., vol. 230, no. 2, pp. 278-301, 2001.
[13] H. C. A. Lin et al., “Selective plane illumination optical and optoacoustic microscopy for postembryonic imaging,” Laser & Photonics Reviews, vol. 9, no. 5, 2015.
[14] H. W. Laale, “The biology and use of zebrafish, Brachydanio rerio in fisheries research,” J. Fish Biol., vol. 10, no. 2, pp. 121-173, 1977.
[15] G. J. Lieschke et al., “Animal models of human disease: zebrafish swim into view,” Nature reviews. Genetics, vol. 8, no. 5, pp. 353, 2007.
[16] E. Ellertsdóttir et al., “Vascular morphogenesis in the zebrafish embryo,” Developmental biology, vol. 341, no. 1, pp. 56-65, 2010.
[17] F. Babaei et al., “Contrast-enhanced X-ray micro-computed tomography as a versatile method for anatomical studies of adult zebrafish,” Zebrafish, vol. 13, no. 4, pp. 310-316, 2016.
[18] S. Kabli et al., “In vivo magnetic resonance imaging to detect malignant melanoma in adult zebrafish,” Zebrafish, vol. 7, no. 2, pp. 143-148, 2010.
[19] Y. Liu et al., “Photoacoustic tomography imaging of the adult zebrafish by using unfocused and focused high-frequency ultrasound transducers,” Applied Sciences, vol. 6, no. 12, pp. 392, 2016.
[20] S. Ye et al., “Label-free imaging of zebrafish larvae in vivo by photoacoustic microscopy,” Biomed. Opt. Express, vol. 3, no. 2, pp. 360-365, 2012.
[21] T. Correia et al., “Accelerated optical projection tomography applied to in vivo imaging of zebrafish,” PLoS One, vol. 10, no. 8, pp. e0136213, 2015.
[22] L. Fieramonti et al., “Quantitative measurement of blood velocity in zebrafish with optical vector field tomography,” J. Biophotonics, vol. 8, no. 1-2, pp. 52-59, 2015.
[23] Y. Chen et al., "Label-free imaging of developing vasculature in zebrafish with phase variance optical coherence microscopy." p. 97160A.
[24] S. Kumar et al., “Quantitative in vivo optical tomography of cancer progression & vasculature development in adult zebrafish,” Oncotarget, vol. 7, no. 28, pp. 43939, 2016.
[25] C.-C. Huang et al., “High-resolution tissue Doppler imaging of the zebrafish heart during its regeneration,” Zebrafish, vol. 12, no. 1, pp. 48-57, 2015.
[26] T.-Y. Liu et al., “A study of the adult zebrafish ventricular function by retrospective Doppler-gated ultrahigh-frame-rate echocardiography,” IEEE Trans. Ultrason. Ferroelectr., Freq. Control, vol. 60, no. 9, pp. 1827-1837, 2013.
[27] C. Errico et al., “Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging,” Nature, vol. 527, no. 7579, pp. 499, 2015.
[28] C. Alfred et al., “Eigen-based clutter filter design for ultrasound color flow imaging: a review,” IEEE Trans. Ultrason. Ferroelectr., Freq. Control, vol. 57, no. 5, 2010.
[29] M. van der Ven et al., “High-Frame-Rate Power Doppler Ultrasound Is More Sensitive than Conventional Power Doppler in Detecting Rheumatic Vascularisation,” Ultrasound Med. Biol., vol. 43, no. 9, pp. 1868-1879, 2017.
[30] P. Song et al., “Ultrasound small vessel imaging with block-wise adaptive local clutter filtering,” IEEE Trans. Med. Imaging, vol. 36, no. 1, pp. 251-262, 2017.
[31] P. Song et al., “Improved Super-Resolution Ultrasound Microvessel Imaging With Spatiotemporal Nonlocal Means Filtering and Bipartite Graph-Based Microbubble Tracking,” IEEE Trans. Ultrason. Ferroelectr., Freq. Control, vol. 65, no. 2, pp. 149-167, 2018.
[32] R. M. White et al., “Transparent adult zebrafish as a tool for in vivo transplantation analysis,” Cell stem cell, vol. 2, no. 2, pp. 183-189, 2008.
[33] K. K. Shung, Diagnostic ultrasound: Imaging and blood flow measurements: CRC press, 2015.
[34] S. T. Lau et al., “Multiple matching scheme for broadband 0.72 Pb (Mg 1/3 Nb 2/3) O 3− 0.28 PbTiO 3 single crystal phased-array transducer,” J. Appl. Phys., vol. 105, no. 9, pp. 094908, 2009.
[35] M. K. Karmakar et al., "Ultrasound-guided regional anesthesia," A Practice of Anesthesia for Infants and Children (Sixth Edition), pp. 988-1022. e4: Elsevier, 2019.
[36] B. Delannoy et al., “Acoustical image reconstruction in parallel‐processing analog electronic systems,” J. Appl. Phys., vol. 50, no. 5, pp. 3153-3159, 1979.
[37] D. P. Shattuck et al., “Explososcan: A parallel processing technique for high speed ultrasound imaging with linear phased arrays,” The Journal of the Acoustical Society of America, vol. 75, no. 4, pp. 1273-1282, 1984.
[38] J. A. Jensen et al., “Ultrasound research scanner for real-time synthetic aperture data acquisition,” IEEE Trans. Ultrason. Ferroelectr., Freq. Control, vol. 52, no. 5, pp. 881-891, 2005.
[39] J. Bercoff, "Ultrafast ultrasound imaging," Ultrasound imaging-Medical applications: InTech, 2011.
[40] R. Ovland, “Coherent Plane-Wave Compounding in Medical Ultrasound Imaging,” Master thesis, Norwegian University of Science and Technology, 2012.
[41] C. C. Huang et al., “40 MHz high‐frequency ultrafast ultrasound imaging,” Med. Phys., vol. 44, no. 6, pp. 2185-2195, 2017.
[42] G. Montaldo et al., “Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography,” IEEE Trans. Ultrason. Ferroelectr., Freq. Control, vol. 56, no. 3, pp. 489-506, 2009.
[43] T. K. Song et al., "Synthetic aperture focusing method for ultrasound imaging based on planar waves," Google Patents, 2004.
[44] J. Cheng et al., “Extended high-frame rate imaging method with limited-diffraction beams,” IEEE Trans. Ultrason. Ferroelectr., Freq. Control, vol. 53, no. 5, pp. 880-899, 2006.
[45] J. Bercoff et al., “Ultrafast compound Doppler imaging: Providing full blood flow characterization,” IEEE Trans. Ultrason. Ferroelectr., Freq. Control, vol. 58, no. 1, 2011.
[46] E. Mace et al., “Functional ultrasound imaging of the brain: theory and basic principles,” IEEE Trans. Ultrason. Ferroelectr., Freq. Control, vol. 60, no. 3, pp. 492-506, 2013.
[47] S. Bjaerum et al., “Clutter filter design for ultrasound color flow imaging,” IEEE Trans. Ultrason. Ferroelectr., Freq. Control, vol. 49, no. 2, pp. 204-216, 2002.
[48] F. Lin et al., “3-D ultrasound localization microscopy for identifying microvascular morphology features of tumor angiogenesis at a resolution beyond the diffraction limit of conventional ultrasound,” Theranostics, vol. 7, no. 1, pp. 196, 2017.
[49] C. Tysoe et al., “Bias in mean frequency estimation of Doppler signals due to wall clutter filters,” Ultrasound Med. Biol., vol. 21, no. 5, pp. 671-677, 1995.
[50] S. Bjærum et al., “Statistical evaluation of clutter filters in color flow imaging,” Ultrasonics, vol. 38, no. 1-8, pp. 376-380, 2000.
[51] S. Bjaerum et al., “Clutter filters adapted to tissue motion in ultrasound color flow imaging,” IEEE Trans. Ultrason. Ferroelectr., Freq. Control, vol. 49, no. 6, pp. 693-704, 2002.
[52] C. Kargel et al., “Adaptive clutter rejection filtering in ultrasonic strain-flow imaging,” IEEE Trans. Ultrason. Ferroelectr., Freq. Control, vol. 50, no. 7, pp. 824-835, 2003.
[53] C. Kasai et al., “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” Trans. Sonics Ultrason., vol. 32, no. 3, pp. 458-464, 1985.
[54] M. Westerfield, The zebrafish: a guide for the laboratory use of zebrafish (Brachydanio reriro): Inst. of Neuroscience, University of Oregon, 1993.
[55] J. G. Fox, Laboratory animal medicine: Elsevier, 2015.
[56] L. Lee et al., “Functional assessment of cardiac responses of adult zebrafish (Danio rerio) to acute and chronic temperature change using high-resolution echocardiography,” PloS one, vol. 11, no. 1, pp. e0145163, 2016.
[57] M. Westerfield, The zebrafish book: a guide for the laboratory use of zebrafish (Brachydanio rerio): University of Oregon press, 1995.
[58] M. Matthews et al., “A virtual tour of the guide for zebrafish users,” Resource, vol. 31, pp. 34-40, 2002.
[59] A. Fenster et al., “Three-dimensional ultrasound imaging,” Phys. Med. Biol., vol. 46, no. 5, pp. R67, 2001.
[60] J. Provost et al., “3-D ultrafast Doppler imaging applied to the noninvasive mapping of blood vessels in vivo,” IEEE Trans. Ultrason. Ferroelectr., Freq. Control, vol. 62, no. 8, pp. 1467-1472, 2015.
[61] C. Demené et al., “4D microvascular imaging based on ultrafast Doppler tomography,” Neuroimage, vol. 127, pp. 472-483, 2016.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-08-15起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw