進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1508201813040900
論文名稱(中文) 探討直接能量雷射沉積之製程參數對單層沉積之316L不鏽鋼中結構與性質的影響
論文名稱(英文) Effect of Process Parameters on Structure and Properties of single-track of 316L stainless steel deposited by Direct Energy Deposition
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 陳彥廷
研究生(英文) Yen-Ting Chen
學號 N56051077
學位類別 碩士
語文別 中文
論文頁數 163頁
口試委員 指導教授-郭瑞昭
口試委員-曹紀元
口試委員-黃聖杰
口試委員-劉浩志
口試委員-溫昌達
中文關鍵字 雷射披覆  直接能量沉積  製程參數影響  沉積性質 
英文關鍵字 Laser cladding  Direct Energy Deposition (DED)  Process parameters  Deposition properties 
學科別分類
中文摘要 直接能量沉積技術(Direct Energy Deposition)在近年來由於其便利的生產模式,在各領域上被廣泛利用於製造複雜結構的商品。但此技術仍然面臨許多問題,例如:「如何調控製程參數以提升產品品質?」

本研究中,使用了同為316L不鏽鋼的粉末與基板進行DED沉積,並藉此觀察製程中的參數(雷射功率與掃描速度) 在雷射成型性質上所造成的影響。在實驗裡,影像分析軟體ImageJ與EBSD技術一方面被用於分析尺寸及形貌,另一方面被用於分析孔隙、微結構與晶粒尺寸。

實驗結果顯示,首先,雷射瓦數的提升,使沉積面積、高度、寬度都獲得了上升;此外,高瓦數因溫度梯度上升,而提供了適合柱狀晶的生長環境但同時造成晶粒粗化,反之低中瓦數則僅有較少的柱狀晶比例被發現。其次,掃描速度的提升會導致沉積形貌的不對稱,同時會減少沉積面積與高度,但使對寬度的影響趨勢較弱;並且因為高掃速使冷卻與凝固速率上升,進而提供更適合等軸晶與細晶粒的生長環境。其三,能量指標E*>50時機板下方的熔池穩定出現;而當高度指標DI值>0.8後可得較高的沉積高度(0.8~1.1mm)。
關鍵字 : 雷射披覆、直接能量沉積、製程參數影響、沉積性質
英文摘要 Direct Energy Deposition (DED) has been recently applied for production of complex structure and for different areas, because of its convenient feature. However, there are still lots of problems, such as how to control the process parameters and to improve product properties.

In this study, DED experiments were carried out with powder and substrate of 316L stainless steel to investigate the influences of process parameters (Laser Power and Scan speed) on laser forming properties. Software ImageJ and EBSD were used to analyze the dimensions and morphology at one hand, and the porosity, solidification structure and grain size at the other hand.

From our results, it was found that increase in laser power leads to increasing the cladding area, height, and width. In addition, high power results in a large temperature gradient, that means, easy for columnar grain structure growth and the formation of coarse grains, while in the case low and medium power less columnar grain structure was observed inside. Secondly, increase in scan speed results in the un-symmetric morphology of cladding, and in decreasing the area and height of cladding, but it doesn’t have significant influence on the cladding width. Furthermore, high speed leads to a high cooling rate and solidification velocity, that is, easy for the formation of equiaxed grain structure and fine grain growth. Thirdly, when the energy index E^*>50, molten pool is stable form below the substrate. For DI > 0.8, cladding could deposit high in the range of 0.8~1.1mm.

Keywords : Laser cladding , Direct Energy Deposition(DED) , Process parameters , Deposition properties
論文目次 中文摘要 I
Extended Abstract II
誌謝 XIV
目錄 XVI
表目錄 XX
圖目錄 XXII
符號表 XXXIII
第一章 前言 1
第二章 文獻回顧 3
2.1 雷射熔覆製程 3
2.1.1 製程工作原理與參數 4
2.1.2 製程中的能量分布 7
2.1.3 有效能量 11
2.2 雷射沉積之金屬凝固 12
2.2.1 金屬之凝固模式 17
2.2.2 溫度梯度與凝固速率效應 20
2.3 柱狀晶-等軸晶之轉換模型理論 24
2.3.1 柱狀晶生長模型[33, 37] 26
2.3.2 等軸晶生長模型 30
2.3.3 柱狀晶-等軸晶之轉換 31
第三章 材料與實驗方法 33
3.1 實驗材料 33
3.1.1 粉末之成分分析 34
3.1.2 粉末之粒徑與粒徑分佈分析 35
3.1.3 粉末之形貌分析 36
3.2 實驗方法 37
3.2.1 直接能量雷射沉積製程下沉積物之製備 37
3.2.2 實驗參數表 38
3.2.3 實驗樣品之性質測定 40
3.3 沉積物與熔池之巨觀分析方法 43
3.3.1 形貌之測定 43
3.3.2 形貌之尺寸量測 45
3.4 沉積物與熔池之微觀分析方法 47
3.4.1 沉積物之孔隙率計算 47
3.4.2 沉積物之微觀組織 48
3.4.3 晶粒尺寸分析 50
3.5 柱狀晶-等軸晶之轉換模型 52
第四章 實驗結果 55
4.1 雷射能量與掃描速度對SS316L沉積物與熔池之巨觀影響 55
4.1.1 雷射能量對沉積物與熔池形貌之影響 55
4.1.2 掃描速度對沉積物物與熔池形貌之影響 62
4.1.3 雷射能量對沉積物與熔池尺寸之影響 66
4.1.4 掃描速度對沉積物與熔池尺寸之影響 78
4.2 雷射能量與掃描速度對SS316L沉積物與熔池之微觀影響 88
4.2.1 雷射能量對孔隙率之影響 88
4.2.2 掃描速度對沉積物與熔池孔隙率之影響 91
4.2.3 雷射能量對沉積物與熔池微觀組織之影響 93
4.2.4 掃描速度對沉積物與熔池微觀組織之影響 100
4.2.5 雷射能量對沉積物與熔池晶粒尺寸之影響 102
4.2.6 掃描速度對沉積物與熔池晶粒尺寸之影響 105
4.3 柱狀晶-等軸晶之轉換模型數值模擬結果 107
第五章 討論 110
5.1 雷射瓦數 110
5.2 掃描速度 123
5.3 雷射瓦數與掃描速度的交互影響 132
5.4 微觀結構之模擬 137
第六章 結論 141
參考文獻 142
附錄A 147
附錄B 151
參考文獻 1. Weisheit, A., Backes, G.,Stromeyer, R.,Gasser, A.,Wissenbach, K. and Poprawe, R., Powder injection: the key to reconditioning and generating components using laser cladding. in Proceedings of International Congress on Advanced Materials, Their Processes and Applications. 2001.
2. Schlienger, E.,Dimos, D.,Griffith, M.,Michael, J.,Oliver, M.,Romero, T. and Smugeresky, J., Near net shape production of metal components using LENS. 1998, Sandia National Labs., Albuquerque, NM (United States).
3. Kobryn, PA.,Moore, EH. and Semiatin, SL., The effect of laser power and traverse speed on microstructure, porosity, and build height in laser-deposited Ti-6Al-4V. Scripta Materialia, 2000. 43: p. 299-305.
4. Carroll, B.E.,Palmer, T.A. and Beese, A.M., Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing. Acta Materialia, 2015. 87: p. 309-320.
5. Zhang, K.,Liu, W. and Shang, X., Research on the processing experiments of laser metal deposition shaping. Optics & Laser Technology, 2007. 39: p. 549-557.
6. Vetter, PA.,Engel, T. and Fontaine, J., Laser cladding: the relevant parameters for process control. in Laser Materials Processing: Industrial and Microelectronics Applications. 1994. International Society for Optics and Photonics.
7. Zhang, K.,Wang, S.,Liu, W. and Shang, X., Characterization of stainless steel parts by laser metal deposition shaping. Materials & Design, 2014. 55: p. 104-119.
8. Shim, D.-S., Baek, G.-Y.,Seo, J.-S.,Shin, G.-Y.,Kim, K.-P. and Lee, K.-Y., Effect of layer thickness setting on deposition characteristics in direct energy deposition (DED) process. Optics & Laser Technology, 2016. 86: p. 69-78.
9. Li, Y.,Yang, H.,Lin, X.,Huang, W.,Li, J. and Zhou, Y., The influences of processing parameters on forming characterizations during laser rapid forming. Materials Science and Engineering: A, 2003. 360: p. 18-25.
10. Salehi, D.S., Sensing and control of Nd: YAG laser cladding process. Ph.D. thesis, Swinburne University of Technology, Industrial Research Institute Swinburne-2005.
11. Gedda, H., Powell, J. and Kaplan, A., A process efficiency comparison of Nd: YAG and CO2 laser cladding. Analysis and Developn1ent of the Laser Cladding Process, 2002: p.32.
12. Gedda, H., Powell, J.,Wahlström, G.,Li, WB.,Engström, H. and Magnusson, C., Energy redistribution during CO 2 laser cladding. Journal of laser applications, 2002. 14: p. 78-82.
13. Chen, X. and Tao, Z., Maximum thickness of the laser cladding. Key Engineering Materials, 1989. 46: p. 381-386.
14. Kar, A. and Mazumder, J., Extended solid solution and nonequilibrium phase diagram for Ni-Al alloy formed during laser cladding. Metallurgical Transactions A, 1989. 20: p. 363-371.
15. Schneider, M.F., Laser Cladding with Powders, Ph.D. thesis, University of Twente at Enschede, The Netherlands, 1998.
16. Barua, S., Liou, F.,Newkirk, J. and Sparks, T., Vision-based defect detection in laser metal deposition process. Rapid Prototyping Journal, 2014. 20: p. 77-85.
17. Picasso, M. and Hoadley, A., The influence of convection in the laser cladding process. in Seventh International Conference. 1991.
18. Lee, YS. and Farson, DF., Surface tension-powered build dimension control in laser additive manufacturing process. The International Journal of Advanced Manufacturing Technology, 2016. 85: p. 1035-1044.
19. Gan, Z.,Yu, G.,He, X. and Li, S., Surface-active element transport and its effect on liquid metal flow in laser-assisted additive manufacturing. International Communications in Heat and Mass Transfer, 2017. 86: p. 206-214.
20. Tan, H., Temperature Measurement and Research on Microstructure Controlling in Laser Rapid Forming Process. M.S. thesis., Northwestern Polytechnical University ,2005.
21. Liu, Z. and Qi, H., Effects of processing parameters on crystal growth and microstructure formation in laser powder deposition of single-crystal superalloy. Journal of Materials Processing Technology, 2015. 216: p. 19-27.
22. Stefanescu, D.M., Science and engineering of casting solidification., (third edition), Springer-Verlag, New York ,2015 : p. 12-26.
23. Rutter, JW. and Chalmers , B., A prismatic substructure formed during solidification of metals. Canadian Journal of Physics, 1953. 31: p. 15-39.
24. Sekerka, RF., A Stability Function for Explicit Evaluation of the Mullins‐Sekerka Interface Stability Criterion. Journal of Applied Physics, 1965. 36: p. 264-268.
25. Kou, S., Transport phenomena and materials processing., John Wiley and Sons, New York ,1996 : p. 696.
26. Porter, D.A. and Easterling K.E., Phase Transformations in Metals and Alloys, (second edition). Stanley Thornes Publishers, Cheltenham, UK ,2001 : p. 202-218.
27. Tu, C.-S., The Study of MIG-Flux Welding Technology of Stainless Steel. M.S. thesis., National Chiao Tung University , 2004.
28. Eshelman, M. and Trivedi, R., The planar to cellular transition during the directional solidification of alloys. Acta Metallurgica, 1987. 35: p. 2443-2452.
29. Hunt, J. and Lu, S.-Z., Numerical modeling of cellular/dendritic array growth: spacing and structure predictions. Metallurgical and Materials Transactions A, 1996. 27: p. 611-623.
30. Trivedi, R., Shen, Y. and Liu, S., Cellular-to-dendritic transition during the directional solidification of binary alloys. Metallurgical and Materials Transactions A, 2003. 34: p. 395-401.
31. Hunt, J., Steady state columnar and equiaxed growth of dendrites and eutectic. Materials science and engineering, 1984. 65 : p. 75-83.
32. Wang, C. and Beckermann, C., Prediction of columnar to equiaxed transition during diffusion-controlled dendritic alloy solidification. Metallurgical and Materials Transactions A, 1994. 25(5): p. 1081-1093.
33. Gäumann, M., Trivedi, R. and Kurz, W., Nucleation ahead of the advancing interface in directional solidification. Materials Science and Engineering: A, 1997. 226: p. 763-769.
34. Kou, S., Welding metallurgy., (second edition), John Wiley and Sons, Hoboken , 2003 : p. 166-201.
35. Griffith, ML., Schlienger, ME.,Harwell, LD.,Oliver, MS.,Baldwin, MD.,Ensz, MT.,Essien, M.,Brooks, J.,Robino, CV. and Smugeresky, etal JE., Understanding thermal behavior in the LENS process. Materials & design, 1999. 20 : p. 107-113.
36. Kurz, W., Giovanola, B. and Trivedi, R., Theory of microstructural development during rapid solidification. Acta metallurgica, 1986. 34: p. 823-830.
37. Lin, X., Li, Y., Wang, M., Feng, L., Chen, J. and Huang, W., Columnar to equiaxed transition during alloy solidification. Science in China Series E: Technological Sciences, 2003. 46: p. 475-489.
38. Langer, J. and Müller-Krumbhaar, H., Theory of dendritic growth—I. Elements of a stability analysis, in Dynamics of Curved Fronts. 1988, Elsevier. p. 281-287.
39. Lipton, J., Glicksman, M. and Kurz, W., Equiaxed dendrite growth in alloys at small supercooling. Metallurgical and Materials Transactions A, 1987. 18: p. 341-345.
40. Brown, S. and Spittle, J., Computer simulation of grain growth and macrostructure development during solidification. Materials science and technology, 1989. 5: p. 362-368.
41. Shi, P., Zheng, X., Ratkowsky, DA., Li, Y., Wang, P. and Cheng, L.,
A Simple Method for Measuring the Bilateral Symmetry of Leaves. Symmetry, 2018. 10: p. 118.
42. Boellinghaus, T., Lippold, J.C. and Cross, C.E., Cracking Phenomena in Welds IV.,(e-book) , Springer-Verlag, 2016 : p. 191.
43. Poole, W.J. and Weinberg, F., Observations of the columnar-to-equiaxed transition in stainless steels. Metallurgical and Materials Transactions A, 1998. 29: p. 855-861.
44. Zeng, C., Tian, W., Liao, W.-H. and Hua, L., Microstructure and porosity evaluation in laser-cladding deposited Ni-based coatings. Surface and Coatings Technology, 2016. 294: p. 122-130.
45. Capello, E., Colombo, D. and Previtali, B., Repairing of sintered tools using laser cladding by wire. Journal of materials processing technology, 2005. 164: p. 990-1000.
46. Wu, X., Liang, J., Mei, J., Mitchell, C., Goodwin, PS. and Voice, W., Microstructures of laser-deposited Ti–6Al–4V. Materials & design, 2004. 25: p. 137-144.
47. Pan, S.-F., The Study of Dissimilar Metal Welding of Multi-component High-entropy Alloys with Stainless Steel 304. M.S. thesis., National Chiao Tung University , 2004.
48. Ji, Z. and Wu, S., FEM simulation of the temperature field during the laser forming of sheet metal. Journal of Materials Processing Technology, 1998. 74 : p. 89-95.
49. Anderson, MP., Srolovitz, DJ.,Grest, GS. and Sahni, PS., Computer simulation of grain growth—I. Kinetics. Acta metallurgica, 1984. 32 : p. 783-791.
50. Fathi, A., Toyserkani, E., Khajepour, A. and Durali, Mohammad., Prediction of melt pool depth and dilution in laser powder deposition. Journal of Physics D: Applied Physics, 2006. 39 : p. 2613.
51. Farshidianfar, M.H., Khajepour, A. and Gerlich, A.P., Effect of real-time cooling rate on microstructure in laser additive manufacturing. Journal of Materials Processing Technology, 2016. 231: p. 468-478.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-06-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw