進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1508201522153200
論文名稱(中文) 液晶微球在光渦流光鉗下轉動行為之研究
論文名稱(英文) Rotation Behaviors of Liquid Crystal Microsphere Manipulated by Optical Vortex Tweezers
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 103
學期 2
出版年 104
研究生(中文) 莊群
研究生(英文) Chun Chuang
學號 L76034027
學位類別 碩士
語文別 英文
論文頁數 71頁
口試委員 指導教授-李佳榮
共同指導教授-黃家逸
口試委員-李偉
口試委員-鄭協昌
中文關鍵字 液晶微球  光渦流  光鉗系統 
英文關鍵字 liquid crystal microspheres  optical vortex  optical tweezers 
學科別分類
中文摘要 光鉗是利用光操控微米等級微粒之技術,由於其非接觸與非破壞式的特點在生醫及材料科學方面皆多有應用,其輸入的光場與微粒交互作用之下能使微粒操控性能產生多樣的結果。本論文利用偶氮染料SD1經光配向後結合向列型液晶製作出可調製雷射光相位的特殊元件q-plate(QP),並利用此元件產生不同階數之渦流光束,將之與光鉗技術結合,研究觀察兩種向列型液晶微球在光渦流光鉗下之轉動行為表現。
本論文的研究分成兩個部分。第一個部分將敘述QP的製作方式以及製作參數,並參考文獻,利用線偏振及圓偏振光輸入QP,觀察不同QP所產生的光斑形態以檢驗其q值,並得到與文獻相符的實驗結果;第二部分將QP元件與光鉗系統結合,在輸入光源為660 nm的圓偏振光鉗架設中加入了使用SD1光配向材料製作的QP,使得光鉗操作光源同時具有軌道角動量以及自旋角動量,並藉此操控雙極型及輻射發散型的向列型液晶微球。本論文比較在不同光鉗功率及不同階數的渦旋光(l = 6、8、10、12)光鉗作用下,不同結構(雙極型、輻射發散型)及大小的液晶微球轉動行為的表現。實驗結果顯示,其轉動行為表現與液晶微球具有雙折射性與否、渦旋光鉗單位光強軌道角動量大小以及微球大小皆有相關。
英文摘要 Optical tweezers are extensively applied in biomedical and materials sciences because it can provide a noncontact and nondestructive method for manipulating micron-sized particles. The interaction between the microspheres (MSs) and the incident light field of optical tweezers has attracted increasing attention. This thesis aims to investigate the orbital motion of NLC MSs under the manipulation of optical vortex tweezers (OVTs). We used the azo dye SD1 as the photo-alignment material to fabricate the q-plates (QPs), which were subsequently integrated into the optical tweezers to generate the optical vortex beam.
This thesis is divided into two parts. In the first part, we established the photo-alignment setup to fabricate the QPs and demonstrated their usefulness. In the second part, the QPs were integrated with a circularly polarized optical beam (wavelength: 660 nm) as vortex tweezer beams, with vortex beams of l = 6, 8, 10, and 12, to manipulate the NLC MSs. The QP-integrated optical tweezers possessed spin angular momentum and orbital angular momentum at the same time. The optical tweezers can rotate the NLC microdroplet through angular momentum transfer. The orbital motions of the NLC MSs manipulated by the optical tweezers were investigated under various experimental conditions, such as LC structure and diameters of the MS and the power and value of l (l = 6, 8, 10, 12) of the incident vortex beam. Experimental results showed that the orbital motion of the NLC MSs depends on the sizes of the MSs, the l value of the incident vortex beam, and the internal LC structure of the MSs.
論文目次 摘要 I
Abstract II
致謝 III
Contents IV
List of Figures VII
List of Tables XI
Chapter 1 Introduction 1
Chapter 2 Introduction to Liquid Crystals 4
2.1 Discovery of LCs 4
2.2 Classification of LCs 5
2.2.1 Lyotropic LCs 5
2.2.2 Thermotropic LCs 5
2.3 Physical properties of LCs 11
2.3.1 Optical anisotropy and birefringence 11
2.3.2 Dielectric anisotropy 13
2.3.3 Elastic continuum theory of LCs 15
2.4 Formation of LC microspheres 17
Chapter 3 Related Theories 19
3.1 Principle of optical tweezer 19
3.1.1 RO model 20
3.1.2 Force caused by a single optical ray based on RO model 21
3.1.3 Force of the overall optical rays of incident light on the MS 25
3.1.4 Angular momentum of light 26
3.1.4.1 Orbital angular momentum of light 28
3.2 Introduction to q-plates and its optical properties 29
3.2.1 Optical properties of QP 29
3.2.1.1 Laguerre-Gaussian beam 31
3.3 Photo-alignment with azo-dye 32
3.3.1 Photo-isomerization of azobenzene derivatives 33
3.3.2 Weigert effect 34
Chapter 4 Sample Preparation and Experimental Setups 36
4.1 Fabrication of QPs 36
4.1.1 Materials 36
4.1.2 Sample Preparation 38
4.1.3 Photo-alignment Process 39
4.2 Fabrication of NLC MSs 41
4.2.1 Materials 41
4.2.2 Sample Preparation 43
4.3 Experimental setups for OVT and micro-observation system 44
Chapter 5 Results and Discussion 48
5.1 Fabrication of QPs through photoalignment by using cell rotation method 48
5.2 Qualitative discussion about orbital motion of NLC MSs manipulated by OVTs 51
5.2.1 Evidence of orbital motion of NLC MSs manipulated by OVTs and effect of handedness of incident circularly-polarized optical beam 51
5.2.2 Effect of size of NLC MSs 52
5.2.3 Effect of optical power of vortex tweezers 53
5.2.4 Effect of internal structure of NLC MSs 55
5.3 Quantitative analysis about orbital motion of NLC MSs manipulated by OVTs 56
5.3.1 Orbital motion of NLC MSs with various diameters manipulated by OVTs with various topological charges 57
5.2.3 Orbital motion of NLC MSs with different structures 61
Chapter 6 Conclusion and Future Work 64
6.1 Conclusion 64
6.2 Future work 64
List of References 66
參考文獻 1. J. F. Jianhua Zou, “Director Configuration of Liquid-Crystal Droplets Encapsulated by Polyelectrolytes, ” Langmuir 26, 7025-7028 (2010).
2. V. A. Loiko, and V. I. Molochko, “Influence of the director field structure on extinction and scattering by a nematic liquid-crystal droplet, ” Appl. Opt. 38, 2857-2861 (1999).
3. D. Sec, T. Porenta, M. Ravnik, and S. Zumer, “Geometrical frustration of chiral ordering in cholesteric droplets,” Soft Matter 8, 11982-11988 (2012).
4. F. Xu, and P. P. Crooker, “Chiral nematic droplets with parallel surface anchoring,” Phys. Rev. E. 56, 6853-6860 (1997).
5. V. J. Alino, J. Pang, and K.-L. Yang, “Liquid Crystal Droplets as a Hosting and Sensing Platform for Developing Immunoassays,” Langmuir 27, 11784-11789 (2011).
6. J. K. Gupta, J. S. Zimmerman, J. J. de Pablo, F. Caruso, and N. L. Abbott, “Characterization of Adsorbate-Induced Ordering Transitions of Liquid Crystals within Monodisperse Droplets,” Langmuir 25, 9016-9024 (2009).
7. I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-Induced Structural Transformations in Liquid Crystalline Droplets,” Science 332, 1297-1300 (2011).
8. S. Sivakumar, K. L. Wark, J. K. Gupta, N. L. Abbott, and F. Caruso, “Liquid Crystal Emulsions as the Basis of Biological Sensors for the Optical Detection of Bacteria and Viruses,” Adv. Funct. Mater. 19, 2260-2265 (2009).
9. E. Tjipto, K. D. Cadwell, J. F. Quinn, A. P. R. Johnston, N. L. Abbott, and F. Caruso, “Tailoring the interfaces between nematic liquid crystal emulsions and aqueous phases via layer-by-layer assembly,” Nano Lett. 6, 2243-2248 (2006).
10. D. J. Gardiner, S. M. Morris, P. J. W. Hands, C. Mowatt, R. Rutledge, T. D. Wilkinson, and H. J. Coles, “Paintable Band-Edge Liquid Crystal Lasers,” Opt. Express 19, 2432-2439 (2011).
11. P. J. W. Hands, D. J. Gardiner, S. M. Morris, C. Mowatt, T. D. Wilkinson, and H. J. Coles, “Band-edge and random lasing in paintable liquid crystal emulsions,” Appl. Phys. Lett. 98, 141102 (2011).
12. M. Humar, and I. Musevic, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18, 26995-27003 (2010).
13. J.-D. Lin, M.-H. Hsieh, G.-J. Wei, T.-S. Mo, S.-Y. Huang, and C.-R. Lee, “Optically tunable/switchable omnidirectionally spherical microlaser based on a dye-doped cholesteric liquid crystal microdroplet with an azo-chiral dopant,” Opt. Express 21, 15765-15776 (2013).
14. E. Brasselet, and S. Juodkazis, “Optical Angular Manipulation of Liquid Crystal Droplets in Laser Tweezers,” J. Nonlinear Opt. Phys. 18, 167-194 (2009).
15. G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, and R. Bartolino, “Chiral Self-Assembled Solid Microspheres: A Novel Multifunctional Microphotonic Device,” Adv. Mater. 23, 5773-5778 (2011).
16. J. Hernandez, C. Provenzano, P. Pagliusi, and G. Cipparrone, “Optical Manipulation of Liquid Crystal Droplets Through Holographic Polarized Tweezers: Magnus Effect,” Mol. Cryst. Liq. Cryst. 558, 72-83 (2012).
17. S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, “High-efficiency optical transfer of torque to a nematic liquid crystal droplet,” Appl. Phys. Lett. 82, 4657-4659 (2003).
18. S. Juodkazis, M. Shikata, T. Takahashi, S. Matsuo, and H. Misawa, “Fast optical switching by a laser-manipulated microdroplet of liquid crystal,” Appl. Phys. Lett. 74, 3627-3629 (1999).
19. C. Manzo, D. Paparo, L. Marrucci, and I. Janossy, “Light-induced rotation of dye-doped liquid crystal droplets,” Phys. Rev. E 73, 051707 (2006).
20. C. Manzo, D. Paparo, L. Marrucci, and I. Janossy, “Total optical torque and angular momentum conservation in dye-doped liquid crystal droplets spun by circularly polarized light,” Mol. Cryst. Liq. Cryst. 454, 101-110 (2006).
21. N. Murazawa, S. Juodkazis, S. Matsuo, and H. Misawa, “Control of the molecular alignment inside liquid-crystal droplets by use of laser tweezers,” Small 1, 656-661 (2005).
22. N. Murazawa, S. Juodkazis, and H. Misawa, “Characterization of bipolar and radial nematic liquid crystal droplets using laser-tweezers,” J. Phys. D: Appl. Phys. 38, 2923-2927 (2005).
23. Y. Yang, P. D. Brimicombe, N. W. Roberts, M. R. Dickinson, M. Osipov, and H. F. Gleeson, “Continuously rotating chiral liquid crystal droplets in a linearly polarized laser trap,” Opt. Express 16, 6877-6882 (2008).
24. R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115-125 (1936).
25. M. W. Beijersbergen, L. Allen, H. Vanderveen, and J. P. Woerdman, “Astigmatic Laser Mode Convertors and Transfer of Orbital Angular-Momentum,” Opt. Commun. 96, 123-132 (1993).
26. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital Angular-Momentum Of Light and the Transformation of Laguerre-Gaussian Laser Modes,” Phys. Rev. A 45, 8185-8189 (1992).
27. L. Aolita, and S. P. Walborn, “Quantum Communication without Alignment Using Multiple-Qubit Single-Photon States,” Phys. Rev. Lett 98, 100501 (2007).
28. F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the Rayleigh criterion limit with optical vortices,” Phys. Rev. Lett 97, 163903 (2006).
29. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinszteindunlop, “Direct Observation of Transfer of Angular-Momentum to Absorptive Particles from a Laser-Beam with a Phase Sigularity,” Phys. Rev. Lett 75, 826-829 (1995).
30. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: An optical spanner,” Opt. Lett. 22, 52-54 (1997).
31. A. T. O'Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett 88, 053601 (2002).
32. M. J. Padgett, and L. Allen, “The Poynting Vector in Laguerre-Gaussian Laser Modes.,” Opt. Commun. 121, 36-40 (1995).
33. V. Garces-Chavez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett 91, 093602 (2003).
34. T. Tako, S. Masubuchi, T. Akahane, and T. Nakada, “New Type of Analog Voltmeter Using Electrooptic Effect in Nematic Liquid-Crystals,” Mol. Cryst. Liq. Cryst. 38, 661-667 (1977).
35. A. Ashkin, "Acceleration and Trapping of Particles by Radiation Pressure, “ Phys. Rev. Lett 24, 156-159 (1970).
36. A. Ashkin, "Optical trapping and manipulation of neutral particles using lasers, “ Proceedings of the National Academy of Sciences of the United States of America 94, 4853-4860 (1997).
37. A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE Journal of Selected Topics in Quantum Electronics 6, 841-856 (2000).
38. 陳永昇, “光鉗的製作及其特性的了解,” 國立成功大學物理研究所碩士論文, 5-14 (民國90年7月).
39. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett 96, 163905 (2006).
40. L. Allen, and M. J. Padgett, “The Poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density,” Opt. Commun. 184, 67-71 (2000).
41. Z. Bouchal, V. Kollarova, P. Zemanek, and T. Cizmar, “Orbital angular momentum of mixed vortex beams,” Proceedings of the SPIE - The International Society for Optical Engineering 6609, 660907-660908 (2007).
42. E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94, 231124 (2009).
43. L. Marrucci, “Generation of helical modes of light by spin-to-orbital angular momentum conversion in inhomogeneous liquid crystals,” Mol. Cryst. Liq. Cryst. 488, 148-162 (2008).
44. Y. Hirshberg, “Reversible Formation and Eradication of Colors by Irradiation at Low Temperatures - A Photochemical Memory Model,” Journal of the American Chemical Society 78, 2304-2312 (1956).
45. W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-Mediated Alignment of Nematic Liquid-Crystals with Polarized Laser-Light,” Nature 351, 49-50 (1991).
46. A. H. Takada Hirokazu “Liquid Crystal Alignment Materials Using Low Molecular-weight Azo Dye Derivatives,” DIC Technical Review No.9 15-21 (2003).
47. S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express 19, 4085-4090 (2011).
48. L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation,” Appl. Phys. Lett. 88, 221102 (2006).
49. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348-350 (1998).
50. A. Rohrbach, “Stiffness of optical traps: Quantitative agreement between experiment and electromagnetic theory,” Phys. Rev. Lett 95, 168102 (2005).
51. E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical Vortices from Liquid Crystal Droplets,” Phys. Rev. Lett 103, 103903 (2009).
52. P. M. Harman, “The Collected Papers of Albert Einstein, Vol 2, The Swiss Years-Writings, 1990-1909-Einstein, A,” Isis 82, 768-769 (1991).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-27起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-08-27起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw