進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1508201323231700
論文名稱(中文) 熱機處理對Ti-7.5Mo合金結構與機械性質之影響
論文名稱(英文) Effect of thermomechanical treatment on structure and mechanical properties of Ti-7.5Mo alloys
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系碩博士班
系所名稱(英) Department of Materials Science and Engineering
學年度 101
學期 2
出版年 102
研究生(中文) 許博淵
研究生(英文) Po-Yuan Shu
學號 N56001315
學位類別 碩士
語文別 中文
論文頁數 106頁
口試委員 指導教授-朱建平
指導教授-陳瑾惠
口試委員-李經維
中文關鍵字 Ti-7.5Mo合金  熱機處理  機械性質 
英文關鍵字 Ti-7.5Mo alloy  thermomechanical treatment  mechanical properties 
學科別分類
中文摘要 本實驗藉由對Ti-7.5Mo合金進行不同的熱機處理,探討其微結構與機械性質的關係,Ti-7.5Mo在經過T1℃熱滾壓t1分鐘後空冷,呈現α’相與商用Ti-6Al-4V (ELI)有較相近之拉伸性質,降伏強度為777MPa、最大拉伸強度為1093MPa、伸長11%、彈性模數為104GPa,而經過固溶處理後,其強度大幅下降,但伸長量大幅提升,其性質較趨近於Ti-7.5Mo as cast。
Ti-7.5Mo合金在熱滾壓固溶處理後冷滾壓再時效,時效溫度T2℃,時效時間t8分鐘~t12分鐘,呈現α"相,其拉伸強度都較熱滾壓後固溶高,且隨著時效溫度與時效時間的增加,其強化效果越強。而進行時效溫度T2℃,t11分鐘之時效熱處理,降伏強度為935MPa、最大拉伸強度為1021MPa、伸長20%、彈性模數為92GPa,與商用Ti-6Al-4V (ELI)相比,有更好的強度、延性及較低的彈性模數。
英文摘要 In this study, the influence of microstructures on mechanical properties of Ti-7.5Mo alloy after different thermomechanical treatment is discussed. The results indicated that Ti-7.5Mo alloy, which was hot rolled at T1℃ for t1 minutes and followed by air-cooling, consists of α’ phase. The tensile properties of Ti-7.5Mo alloy after treatment are similar to that of commercial Ti-6Al-4V (ELI), including its yield strength (777MPa), maximum tensile strength (1093MPa), elongation (11%), and elastic modulus (104GPa). However, the tensile strength of Ti-7.5Mo alloy declines largely but its elongation substantially increases after solution treatment, which is considerably similar to as-cast Ti- 7.5Mo.
Ti-7.5Mo alloy after solution heat treatment was subsequently cold rolled, and followed by aging at T2℃ for t8~ t12 minutes. The alloy on which aging treatments has been conducted contains α" phase. The tensile strength of Ti-7.5Mo alloy increases after aging process, which is obviously detected when the aging time extends. Compared with commercial Ti-6Al-4V (ELI), the alloy aging at T2℃for t11 minutes has better yield strength (935MPa), maximum strength (1021MPa), elongation (20%), but lower elastic modulus (92GPa).
論文目次 摘要 I
Abstract II
誌謝 III
總目錄 IV
圖目錄 IX
表目錄 XIII
第一章 前言 1
1-1 生醫材料的介紹 1
1-2 金屬生醫材料之介紹 2
1-2-1 316L不鏽鋼 2
1-2-2 鈷基合金 3
1-2-3 鈦基合金 4
1-3 金屬生醫材料之應用 5
1-3-1 人工關節 7
1-3-2 人工牙根 8
1-3-3 骨折固定 10
1-4 研究目的 13
第二章 鈦及鈦合金 15
2-1 鈦元素的介紹 15
2-1-1 鈦的起源 15
2-1-2 鈦的物理性質 16
2-1-3 鈦的化學性質 17
2-2 鈦的製備 18
2-2-1 亨特(Hunter)法 19
2-2-2 Crystal bar process 20
2-2-3 克羅爾(Kroll)法 21
2-2-4 FFC劍橋法 22
2-3 鈦合金的分類 24
2-3-1 α或near α型鈦合金 25
2-3-2 β型鈦合金 27
2-3-3 α+β型鈦合金 32
2-4 鈦合金的非平衡相 33
2-5 鈦與鈦合金的性質與應用 35
第三章 理論基礎 39
3-1 鈦合金之設計理論 39
3-1-1 分離式多樣化叢集方式 39
3-1-2 電子結構的分子軌域計算 40
3-1-3 Mo當量方程式 41
3-2 金屬的強化機制 42
3-2-1 細晶粒強化 43
3-2-2 加工硬化 43
3-2-3 固溶強化 45
3-2-4 析出強化 46
3-3 拉伸破斷機制 51
3-3-1 脆性破斷 52
3-3-2 延性破斷 53
第四章 實驗步驟及方法 55
4-1 實驗流程圖 55
4-2 合金材料的製備 56
4-3 合金熔煉與鑄造 56
4-4 合金鑄造及儀器 59
4-5 滾壓製成 60
4-6 試片製作 62
4-7 固溶熱處理 62
4-8 時效熱處理 63
4-9 拉伸試驗 63
4-10 微硬度試驗 64
4-11 X光繞射相分析 66
4-12 金相組織觀察 67
4-13 掃描式電子顯微鏡分析 68
第五章 實驗結果與討論 69
5-1 Ti-7.5Mo、純鈦、Ti-6Al-4V ELI 性質比較 69
5-1-1 拉伸強度與彈性模數 70
5-1-2 Ti-7.5Mo合金的相組成 72
5-2 熱壓後直接固溶結果與分析 73
5-2-1 合金的相組成 74
5-2-2 金相觀察 75
5-2-3 拉伸強度與彈性模數 77
5-2-4 微硬度測試 79
5-2-5 SEM破斷面 80
5-3 固溶後時效熱處理結果與分析 82
5-3-1 合金的相組成 83
5-3-2 金相觀察 84
5-3-3 拉身強度與拉伸彈性模數 86
5-3-4 微硬度測試 87
5-3-5 SEM破斷面 88
5-4 固溶後冷滾壓再時效熱處理結果與分析 90
5-4-1 合金的相組成 91
5-4-2 金相觀察 92
5-4-3 拉身強度與拉伸彈性模數 95
5-4-4 微硬度測試 97
5-4-5 SEM破斷面 98
第六章 結論 102
第七章 參考資料 103
參考文獻 F. Sun, F. Prima, T. Gloriant, “High-strength nanostructured Ti–12Mo alloy from ductile metastable beta state precursor”, Materials Science and Engineering A 527 4262–4269, 2010.

D.A Porter and K.E. Easterling, “Phase Transformations in Metals and Alloys” second edition, CRC Press, USA, 2004.

Rengen Ding, Ian Pjones and Huisheng Jiao, “Effect of Mo and Hf on the mechanical properties and microstructure of Nb–Ti–C alloys”, Elsevier B.V, 2007.

Sujata V.Bhat, “Biomaterials, 2nd Edition”, Alpha Science International, Ltd , 2005.

Y.L. Zhou, M. Niinomi, T. Akahori, “Decomposition of martensite α” during aging treatment and resulting mechanical properties of Ti-Ta alloys”, Materials Science and Engineering A, 371, 283-290, 2004.

G. He, M. Hagiwara, “Bimodal structured Ti-base alloy with large elasticity and low Young’s modulus”, Materials Science and Engineering C 25 290 – 295, 2005.

Bania PJ., “Beta titanium alloys and their role in the titanium industry”, In: Eylon D, Boyer R, Koss D, editors. Beta titanium alloys in the 1990's. Warrendale, PA: TMS, p. 3-14, 1993.

Blackburn MJ and Williams JC., “Phase transformation in Ti-Mo and Ti-V alloys”, Trans Metal Soc AIME, 242:2461-9, 1968.

Mitsuo Niinomi, “Mechanical biocompatibilities of titanium alloys for biomedical applications”, journal of the Mechanical behavior of biomedical materials I, 30–42, 2008.

Cheal E, Spector M, Hayes W. “Role of loads and prosthesis material properties on the mechanics of the proximal femur after total hip arthroplasty”, J Orthop Res ; 10:405-422.1992.

Clemson Advisory Board for Biomaterials “Definition of the word biomaterial”, The 6th Annual International Biomaterial Symposium, April 20-24, 1974.

Davis R., “Martensitic transformations in Ti-Mo alloys”, Journal of materials science v14,P712-722, 1979.

Donachie Jr. M. J., Titanium A Technical Guide, ASM International, Metal Park Ohio, 1989.

Fedotov SG. “Peculiarities of Changes in Elastic Properties of Ti Martensite”, Titanium Science and Technology , 2:871-81.1973.

Furuhara. T, Maki. T., Makino. T. “Microstructure control by thermomechanical processing in β-Ti-15-3 alloy”, Journal of Materials Processing Technology, 117, 318-323, 2001.

Hansson S. “A conical implant–abutment interface at the level of the marginal bone improves the distribution of stresses in the supporting bone”, Clin Implant Dent Relat Res , 2(1):33-41.2000.

Ho WF, Ju CP and Chern Lin JH. “Structure and properties of cast binary Ti-Mo alloys”, Biomaterials, 20:2115-22, 1999.

Koeneman JB, Hansen TM, Toal TR. “Effects of implant geometry position and boundary conditions on cancellous bone stresses: a finite element analysis”, Proceedings of Biomechanics Symposium, 120:117-120, 1991.

Lewis JL, Askew MJ, Wixson RL, Kramer GM, Tarr RR. “The influence of prosthetic stem stiffness and of a calcar collar on stresses in the proximal end of the femur with a cemented femoral component”, J Bone Jt Surg, 66A:280-286, 1984.

Metal Park, Titanium a technical guide, ASM International, Oh44073., P.14, 1998.

Molchanova EK, “phase diagrams of titanium alloys” [transl. of Atlas diagram sostoyaniya titanovyk splavov], Israel program for scientific translations, Jerusalem, 1965.

Smith W.F., “Structure and Properties of Engineering Alloys”, McGraw-Hill, Inc., USA, 433-484, 1993.

Wolff J, “Das Gesetz Der Transformation Der Knochen”, Hirshwald Verlag, Berlin, 1892.

X.H. Min, S. Emura, T. Nishimura, L. Zhang, S. Tamilselvi, K. Tsuchiya, K. Tsuzaki, “Effects of _ phase precipitation on crevice corrosion and tensile strength in Ti–15Mo alloy”, Materials Science and Engineering, 2009.

Pei-Wen Peng, Keng-Liang Ou, Chih-Yeh Chao, Yung-Ning Pan, Chau-Hsiang Wang, “Research of microstructure and mechanical behavior on duplex (α+β) Ti–4.8Al–2.5Mo–1.4V alloy”, Journal of Alloys and Compounds, 2009.

林家緯, “鑄造鈦-鉬合金疲勞性質研究”, 成功大學材料工程研究所博士論文, 2005.

林殿傑, “鑄造鈦-鉬-鐵及鈦-鉬-鉻合金性質研究”, 成功大學材料工程研究所博士論文, 2002.

林士哲, “熱機處理對鈦-鉬合金機械性質的影響”, 成功大學材料工程研究所碩士論文, 2008.

鄭文偉, “添加合金元素對鈦或鈦合金鑄造性及性質研究”, 成功大學材料工程研究所博士論文, 2002.

陳俊廷, “熱機處理對Ti-7.5Mo合金機械性質的影響”, 成功大學材料工程研究所碩士論文, 2010.

楊士德, “熱處理對鑄造合金Ti-7.5Mo機械性質的影響”, 成功大學材料工程研究所碩士論文, 2010.

朱胤碩, “熱機處理對鑄造Ti-7.5Mo合金結構與機械性質之研究
”, 成功大學材料工程研究所碩士論文, 2011.

王士瑋, “熱機處理對Ti-7.5Mo合金機械性質之影響”, 成功大學材料工程研究所碩士論文, 2012.

葉哲政/金屬中心, “生醫用金屬產業全局佈局與競爭策略”, 2005.

侯貫智, “環保成為海綿鈦製成的焦點議題”, ITIS產業評析專欄, 2008.

曾婉如, “鈦金屬”, 金屬材料月報, 2011.

施詠堯, “噴覆成型與連續鑄造6063鋁合金之微結構、機械性質與成型性質之研究”, 成功大學材料工程研究所碩士論文, 2003.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-08-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-08-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw